cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

fsl_dma.c (29703B)


      1// SPDX-License-Identifier: GPL-2.0
      2//
      3// Freescale DMA ALSA SoC PCM driver
      4//
      5// Author: Timur Tabi <timur@freescale.com>
      6//
      7// Copyright 2007-2010 Freescale Semiconductor, Inc.
      8//
      9// This driver implements ASoC support for the Elo DMA controller, which is
     10// the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
     11// the PCM driver is what handles the DMA buffer.
     12
     13#include <linux/module.h>
     14#include <linux/init.h>
     15#include <linux/platform_device.h>
     16#include <linux/dma-mapping.h>
     17#include <linux/interrupt.h>
     18#include <linux/delay.h>
     19#include <linux/gfp.h>
     20#include <linux/of_address.h>
     21#include <linux/of_irq.h>
     22#include <linux/of_platform.h>
     23#include <linux/list.h>
     24#include <linux/slab.h>
     25
     26#include <sound/core.h>
     27#include <sound/pcm.h>
     28#include <sound/pcm_params.h>
     29#include <sound/soc.h>
     30
     31#include <asm/io.h>
     32
     33#include "fsl_dma.h"
     34#include "fsl_ssi.h"	/* For the offset of stx0 and srx0 */
     35
     36#define DRV_NAME "fsl_dma"
     37
     38/*
     39 * The formats that the DMA controller supports, which is anything
     40 * that is 8, 16, or 32 bits.
     41 */
     42#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \
     43			    SNDRV_PCM_FMTBIT_U8 	| \
     44			    SNDRV_PCM_FMTBIT_S16_LE     | \
     45			    SNDRV_PCM_FMTBIT_S16_BE     | \
     46			    SNDRV_PCM_FMTBIT_U16_LE     | \
     47			    SNDRV_PCM_FMTBIT_U16_BE     | \
     48			    SNDRV_PCM_FMTBIT_S24_LE     | \
     49			    SNDRV_PCM_FMTBIT_S24_BE     | \
     50			    SNDRV_PCM_FMTBIT_U24_LE     | \
     51			    SNDRV_PCM_FMTBIT_U24_BE     | \
     52			    SNDRV_PCM_FMTBIT_S32_LE     | \
     53			    SNDRV_PCM_FMTBIT_S32_BE     | \
     54			    SNDRV_PCM_FMTBIT_U32_LE     | \
     55			    SNDRV_PCM_FMTBIT_U32_BE)
     56struct dma_object {
     57	struct snd_soc_component_driver dai;
     58	dma_addr_t ssi_stx_phys;
     59	dma_addr_t ssi_srx_phys;
     60	unsigned int ssi_fifo_depth;
     61	struct ccsr_dma_channel __iomem *channel;
     62	unsigned int irq;
     63	bool assigned;
     64};
     65
     66/*
     67 * The number of DMA links to use.  Two is the bare minimum, but if you
     68 * have really small links you might need more.
     69 */
     70#define NUM_DMA_LINKS   2
     71
     72/** fsl_dma_private: p-substream DMA data
     73 *
     74 * Each substream has a 1-to-1 association with a DMA channel.
     75 *
     76 * The link[] array is first because it needs to be aligned on a 32-byte
     77 * boundary, so putting it first will ensure alignment without padding the
     78 * structure.
     79 *
     80 * @link[]: array of link descriptors
     81 * @dma_channel: pointer to the DMA channel's registers
     82 * @irq: IRQ for this DMA channel
     83 * @substream: pointer to the substream object, needed by the ISR
     84 * @ssi_sxx_phys: bus address of the STX or SRX register to use
     85 * @ld_buf_phys: physical address of the LD buffer
     86 * @current_link: index into link[] of the link currently being processed
     87 * @dma_buf_phys: physical address of the DMA buffer
     88 * @dma_buf_next: physical address of the next period to process
     89 * @dma_buf_end: physical address of the byte after the end of the DMA
     90 * @buffer period_size: the size of a single period
     91 * @num_periods: the number of periods in the DMA buffer
     92 */
     93struct fsl_dma_private {
     94	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
     95	struct ccsr_dma_channel __iomem *dma_channel;
     96	unsigned int irq;
     97	struct snd_pcm_substream *substream;
     98	dma_addr_t ssi_sxx_phys;
     99	unsigned int ssi_fifo_depth;
    100	dma_addr_t ld_buf_phys;
    101	unsigned int current_link;
    102	dma_addr_t dma_buf_phys;
    103	dma_addr_t dma_buf_next;
    104	dma_addr_t dma_buf_end;
    105	size_t period_size;
    106	unsigned int num_periods;
    107};
    108
    109/**
    110 * fsl_dma_hardare: define characteristics of the PCM hardware.
    111 *
    112 * The PCM hardware is the Freescale DMA controller.  This structure defines
    113 * the capabilities of that hardware.
    114 *
    115 * Since the sampling rate and data format are not controlled by the DMA
    116 * controller, we specify no limits for those values.  The only exception is
    117 * period_bytes_min, which is set to a reasonably low value to prevent the
    118 * DMA controller from generating too many interrupts per second.
    119 *
    120 * Since each link descriptor has a 32-bit byte count field, we set
    121 * period_bytes_max to the largest 32-bit number.  We also have no maximum
    122 * number of periods.
    123 *
    124 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
    125 * limitation in the SSI driver requires the sample rates for playback and
    126 * capture to be the same.
    127 */
    128static const struct snd_pcm_hardware fsl_dma_hardware = {
    129
    130	.info   		= SNDRV_PCM_INFO_INTERLEAVED |
    131				  SNDRV_PCM_INFO_MMAP |
    132				  SNDRV_PCM_INFO_MMAP_VALID |
    133				  SNDRV_PCM_INFO_JOINT_DUPLEX |
    134				  SNDRV_PCM_INFO_PAUSE,
    135	.formats		= FSLDMA_PCM_FORMATS,
    136	.period_bytes_min       = 512,  	/* A reasonable limit */
    137	.period_bytes_max       = (u32) -1,
    138	.periods_min    	= NUM_DMA_LINKS,
    139	.periods_max    	= (unsigned int) -1,
    140	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
    141};
    142
    143/**
    144 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
    145 *
    146 * This function should be called by the ISR whenever the DMA controller
    147 * halts data transfer.
    148 */
    149static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
    150{
    151	snd_pcm_stop_xrun(substream);
    152}
    153
    154/**
    155 * fsl_dma_update_pointers - update LD pointers to point to the next period
    156 *
    157 * As each period is completed, this function changes the link
    158 * descriptor pointers for that period to point to the next period.
    159 */
    160static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
    161{
    162	struct fsl_dma_link_descriptor *link =
    163		&dma_private->link[dma_private->current_link];
    164
    165	/* Update our link descriptors to point to the next period. On a 36-bit
    166	 * system, we also need to update the ESAD bits.  We also set (keep) the
    167	 * snoop bits.  See the comments in fsl_dma_hw_params() about snooping.
    168	 */
    169	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
    170		link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
    171#ifdef CONFIG_PHYS_64BIT
    172		link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
    173			upper_32_bits(dma_private->dma_buf_next));
    174#endif
    175	} else {
    176		link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
    177#ifdef CONFIG_PHYS_64BIT
    178		link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
    179			upper_32_bits(dma_private->dma_buf_next));
    180#endif
    181	}
    182
    183	/* Update our variables for next time */
    184	dma_private->dma_buf_next += dma_private->period_size;
    185
    186	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
    187		dma_private->dma_buf_next = dma_private->dma_buf_phys;
    188
    189	if (++dma_private->current_link >= NUM_DMA_LINKS)
    190		dma_private->current_link = 0;
    191}
    192
    193/**
    194 * fsl_dma_isr: interrupt handler for the DMA controller
    195 *
    196 * @irq: IRQ of the DMA channel
    197 * @dev_id: pointer to the dma_private structure for this DMA channel
    198 */
    199static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
    200{
    201	struct fsl_dma_private *dma_private = dev_id;
    202	struct snd_pcm_substream *substream = dma_private->substream;
    203	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
    204	struct device *dev = rtd->dev;
    205	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
    206	irqreturn_t ret = IRQ_NONE;
    207	u32 sr, sr2 = 0;
    208
    209	/* We got an interrupt, so read the status register to see what we
    210	   were interrupted for.
    211	 */
    212	sr = in_be32(&dma_channel->sr);
    213
    214	if (sr & CCSR_DMA_SR_TE) {
    215		dev_err(dev, "dma transmit error\n");
    216		fsl_dma_abort_stream(substream);
    217		sr2 |= CCSR_DMA_SR_TE;
    218		ret = IRQ_HANDLED;
    219	}
    220
    221	if (sr & CCSR_DMA_SR_CH)
    222		ret = IRQ_HANDLED;
    223
    224	if (sr & CCSR_DMA_SR_PE) {
    225		dev_err(dev, "dma programming error\n");
    226		fsl_dma_abort_stream(substream);
    227		sr2 |= CCSR_DMA_SR_PE;
    228		ret = IRQ_HANDLED;
    229	}
    230
    231	if (sr & CCSR_DMA_SR_EOLNI) {
    232		sr2 |= CCSR_DMA_SR_EOLNI;
    233		ret = IRQ_HANDLED;
    234	}
    235
    236	if (sr & CCSR_DMA_SR_CB)
    237		ret = IRQ_HANDLED;
    238
    239	if (sr & CCSR_DMA_SR_EOSI) {
    240		/* Tell ALSA we completed a period. */
    241		snd_pcm_period_elapsed(substream);
    242
    243		/*
    244		 * Update our link descriptors to point to the next period. We
    245		 * only need to do this if the number of periods is not equal to
    246		 * the number of links.
    247		 */
    248		if (dma_private->num_periods != NUM_DMA_LINKS)
    249			fsl_dma_update_pointers(dma_private);
    250
    251		sr2 |= CCSR_DMA_SR_EOSI;
    252		ret = IRQ_HANDLED;
    253	}
    254
    255	if (sr & CCSR_DMA_SR_EOLSI) {
    256		sr2 |= CCSR_DMA_SR_EOLSI;
    257		ret = IRQ_HANDLED;
    258	}
    259
    260	/* Clear the bits that we set */
    261	if (sr2)
    262		out_be32(&dma_channel->sr, sr2);
    263
    264	return ret;
    265}
    266
    267/**
    268 * fsl_dma_new: initialize this PCM driver.
    269 *
    270 * This function is called when the codec driver calls snd_soc_new_pcms(),
    271 * once for each .dai_link in the machine driver's snd_soc_card
    272 * structure.
    273 *
    274 * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
    275 * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
    276 * is specified. Therefore, any DMA buffers we allocate will always be in low
    277 * memory, but we support for 36-bit physical addresses anyway.
    278 *
    279 * Regardless of where the memory is actually allocated, since the device can
    280 * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
    281 */
    282static int fsl_dma_new(struct snd_soc_component *component,
    283		       struct snd_soc_pcm_runtime *rtd)
    284{
    285	struct snd_card *card = rtd->card->snd_card;
    286	struct snd_pcm *pcm = rtd->pcm;
    287	int ret;
    288
    289	ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(36));
    290	if (ret)
    291		return ret;
    292
    293	return snd_pcm_set_fixed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
    294					    card->dev,
    295					    fsl_dma_hardware.buffer_bytes_max);
    296}
    297
    298/**
    299 * fsl_dma_open: open a new substream.
    300 *
    301 * Each substream has its own DMA buffer.
    302 *
    303 * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
    304 * descriptors that ping-pong from one period to the next.  For example, if
    305 * there are six periods and two link descriptors, this is how they look
    306 * before playback starts:
    307 *
    308 *      	   The last link descriptor
    309 *   ____________  points back to the first
    310 *  |   	 |
    311 *  V   	 |
    312 *  ___    ___   |
    313 * |   |->|   |->|
    314 * |___|  |___|
    315 *   |      |
    316 *   |      |
    317 *   V      V
    318 *  _________________________________________
    319 * |      |      |      |      |      |      |  The DMA buffer is
    320 * |      |      |      |      |      |      |    divided into 6 parts
    321 * |______|______|______|______|______|______|
    322 *
    323 * and here's how they look after the first period is finished playing:
    324 *
    325 *   ____________
    326 *  |   	 |
    327 *  V   	 |
    328 *  ___    ___   |
    329 * |   |->|   |->|
    330 * |___|  |___|
    331 *   |      |
    332 *   |______________
    333 *          |       |
    334 *          V       V
    335 *  _________________________________________
    336 * |      |      |      |      |      |      |
    337 * |      |      |      |      |      |      |
    338 * |______|______|______|______|______|______|
    339 *
    340 * The first link descriptor now points to the third period.  The DMA
    341 * controller is currently playing the second period.  When it finishes, it
    342 * will jump back to the first descriptor and play the third period.
    343 *
    344 * There are four reasons we do this:
    345 *
    346 * 1. The only way to get the DMA controller to automatically restart the
    347 *    transfer when it gets to the end of the buffer is to use chaining
    348 *    mode.  Basic direct mode doesn't offer that feature.
    349 * 2. We need to receive an interrupt at the end of every period.  The DMA
    350 *    controller can generate an interrupt at the end of every link transfer
    351 *    (aka segment).  Making each period into a DMA segment will give us the
    352 *    interrupts we need.
    353 * 3. By creating only two link descriptors, regardless of the number of
    354 *    periods, we do not need to reallocate the link descriptors if the
    355 *    number of periods changes.
    356 * 4. All of the audio data is still stored in a single, contiguous DMA
    357 *    buffer, which is what ALSA expects.  We're just dividing it into
    358 *    contiguous parts, and creating a link descriptor for each one.
    359 */
    360static int fsl_dma_open(struct snd_soc_component *component,
    361			struct snd_pcm_substream *substream)
    362{
    363	struct snd_pcm_runtime *runtime = substream->runtime;
    364	struct device *dev = component->dev;
    365	struct dma_object *dma =
    366		container_of(component->driver, struct dma_object, dai);
    367	struct fsl_dma_private *dma_private;
    368	struct ccsr_dma_channel __iomem *dma_channel;
    369	dma_addr_t ld_buf_phys;
    370	u64 temp_link;  	/* Pointer to next link descriptor */
    371	u32 mr;
    372	int ret = 0;
    373	unsigned int i;
    374
    375	/*
    376	 * Reject any DMA buffer whose size is not a multiple of the period
    377	 * size.  We need to make sure that the DMA buffer can be evenly divided
    378	 * into periods.
    379	 */
    380	ret = snd_pcm_hw_constraint_integer(runtime,
    381		SNDRV_PCM_HW_PARAM_PERIODS);
    382	if (ret < 0) {
    383		dev_err(dev, "invalid buffer size\n");
    384		return ret;
    385	}
    386
    387	if (dma->assigned) {
    388		dev_err(dev, "dma channel already assigned\n");
    389		return -EBUSY;
    390	}
    391
    392	dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
    393					 &ld_buf_phys, GFP_KERNEL);
    394	if (!dma_private) {
    395		dev_err(dev, "can't allocate dma private data\n");
    396		return -ENOMEM;
    397	}
    398	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
    399		dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
    400	else
    401		dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
    402
    403	dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
    404	dma_private->dma_channel = dma->channel;
    405	dma_private->irq = dma->irq;
    406	dma_private->substream = substream;
    407	dma_private->ld_buf_phys = ld_buf_phys;
    408	dma_private->dma_buf_phys = substream->dma_buffer.addr;
    409
    410	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
    411			  dma_private);
    412	if (ret) {
    413		dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
    414			dma_private->irq, ret);
    415		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
    416			dma_private, dma_private->ld_buf_phys);
    417		return ret;
    418	}
    419
    420	dma->assigned = true;
    421
    422	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
    423	runtime->private_data = dma_private;
    424
    425	/* Program the fixed DMA controller parameters */
    426
    427	dma_channel = dma_private->dma_channel;
    428
    429	temp_link = dma_private->ld_buf_phys +
    430		sizeof(struct fsl_dma_link_descriptor);
    431
    432	for (i = 0; i < NUM_DMA_LINKS; i++) {
    433		dma_private->link[i].next = cpu_to_be64(temp_link);
    434
    435		temp_link += sizeof(struct fsl_dma_link_descriptor);
    436	}
    437	/* The last link descriptor points to the first */
    438	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
    439
    440	/* Tell the DMA controller where the first link descriptor is */
    441	out_be32(&dma_channel->clndar,
    442		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
    443	out_be32(&dma_channel->eclndar,
    444		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
    445
    446	/* The manual says the BCR must be clear before enabling EMP */
    447	out_be32(&dma_channel->bcr, 0);
    448
    449	/*
    450	 * Program the mode register for interrupts, external master control,
    451	 * and source/destination hold.  Also clear the Channel Abort bit.
    452	 */
    453	mr = in_be32(&dma_channel->mr) &
    454		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
    455
    456	/*
    457	 * We want External Master Start and External Master Pause enabled,
    458	 * because the SSI is controlling the DMA controller.  We want the DMA
    459	 * controller to be set up in advance, and then we signal only the SSI
    460	 * to start transferring.
    461	 *
    462	 * We want End-Of-Segment Interrupts enabled, because this will generate
    463	 * an interrupt at the end of each segment (each link descriptor
    464	 * represents one segment).  Each DMA segment is the same thing as an
    465	 * ALSA period, so this is how we get an interrupt at the end of every
    466	 * period.
    467	 *
    468	 * We want Error Interrupt enabled, so that we can get an error if
    469	 * the DMA controller is mis-programmed somehow.
    470	 */
    471	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
    472		CCSR_DMA_MR_EMS_EN;
    473
    474	/* For playback, we want the destination address to be held.  For
    475	   capture, set the source address to be held. */
    476	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
    477		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
    478
    479	out_be32(&dma_channel->mr, mr);
    480
    481	return 0;
    482}
    483
    484/**
    485 * fsl_dma_hw_params: continue initializing the DMA links
    486 *
    487 * This function obtains hardware parameters about the opened stream and
    488 * programs the DMA controller accordingly.
    489 *
    490 * One drawback of big-endian is that when copying integers of different
    491 * sizes to a fixed-sized register, the address to which the integer must be
    492 * copied is dependent on the size of the integer.
    493 *
    494 * For example, if P is the address of a 32-bit register, and X is a 32-bit
    495 * integer, then X should be copied to address P.  However, if X is a 16-bit
    496 * integer, then it should be copied to P+2.  If X is an 8-bit register,
    497 * then it should be copied to P+3.
    498 *
    499 * So for playback of 8-bit samples, the DMA controller must transfer single
    500 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
    501 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
    502 *
    503 * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
    504 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
    505 * and 8 bytes at a time).  So we do not support packed 24-bit samples.
    506 * 24-bit data must be padded to 32 bits.
    507 */
    508static int fsl_dma_hw_params(struct snd_soc_component *component,
    509			     struct snd_pcm_substream *substream,
    510			     struct snd_pcm_hw_params *hw_params)
    511{
    512	struct snd_pcm_runtime *runtime = substream->runtime;
    513	struct fsl_dma_private *dma_private = runtime->private_data;
    514	struct device *dev = component->dev;
    515
    516	/* Number of bits per sample */
    517	unsigned int sample_bits =
    518		snd_pcm_format_physical_width(params_format(hw_params));
    519
    520	/* Number of bytes per frame */
    521	unsigned int sample_bytes = sample_bits / 8;
    522
    523	/* Bus address of SSI STX register */
    524	dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
    525
    526	/* Size of the DMA buffer, in bytes */
    527	size_t buffer_size = params_buffer_bytes(hw_params);
    528
    529	/* Number of bytes per period */
    530	size_t period_size = params_period_bytes(hw_params);
    531
    532	/* Pointer to next period */
    533	dma_addr_t temp_addr = substream->dma_buffer.addr;
    534
    535	/* Pointer to DMA controller */
    536	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
    537
    538	u32 mr; /* DMA Mode Register */
    539
    540	unsigned int i;
    541
    542	/* Initialize our DMA tracking variables */
    543	dma_private->period_size = period_size;
    544	dma_private->num_periods = params_periods(hw_params);
    545	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
    546	dma_private->dma_buf_next = dma_private->dma_buf_phys +
    547		(NUM_DMA_LINKS * period_size);
    548
    549	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
    550		/* This happens if the number of periods == NUM_DMA_LINKS */
    551		dma_private->dma_buf_next = dma_private->dma_buf_phys;
    552
    553	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
    554		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
    555
    556	/* Due to a quirk of the SSI's STX register, the target address
    557	 * for the DMA operations depends on the sample size.  So we calculate
    558	 * that offset here.  While we're at it, also tell the DMA controller
    559	 * how much data to transfer per sample.
    560	 */
    561	switch (sample_bits) {
    562	case 8:
    563		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
    564		ssi_sxx_phys += 3;
    565		break;
    566	case 16:
    567		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
    568		ssi_sxx_phys += 2;
    569		break;
    570	case 32:
    571		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
    572		break;
    573	default:
    574		/* We should never get here */
    575		dev_err(dev, "unsupported sample size %u\n", sample_bits);
    576		return -EINVAL;
    577	}
    578
    579	/*
    580	 * BWC determines how many bytes are sent/received before the DMA
    581	 * controller checks the SSI to see if it needs to stop. BWC should
    582	 * always be a multiple of the frame size, so that we always transmit
    583	 * whole frames.  Each frame occupies two slots in the FIFO.  The
    584	 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
    585	 * (MR[BWC] can only represent even powers of two).
    586	 *
    587	 * To simplify the process, we set BWC to the largest value that is
    588	 * less than or equal to the FIFO watermark.  For playback, this ensures
    589	 * that we transfer the maximum amount without overrunning the FIFO.
    590	 * For capture, this ensures that we transfer the maximum amount without
    591	 * underrunning the FIFO.
    592	 *
    593	 * f = SSI FIFO depth
    594	 * w = SSI watermark value (which equals f - 2)
    595	 * b = DMA bandwidth count (in bytes)
    596	 * s = sample size (in bytes, which equals frame_size * 2)
    597	 *
    598	 * For playback, we never transmit more than the transmit FIFO
    599	 * watermark, otherwise we might write more data than the FIFO can hold.
    600	 * The watermark is equal to the FIFO depth minus two.
    601	 *
    602	 * For capture, two equations must hold:
    603	 *	w > f - (b / s)
    604	 *	w >= b / s
    605	 *
    606	 * So, b > 2 * s, but b must also be <= s * w.  To simplify, we set
    607	 * b = s * w, which is equal to
    608	 *      (dma_private->ssi_fifo_depth - 2) * sample_bytes.
    609	 */
    610	mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
    611
    612	out_be32(&dma_channel->mr, mr);
    613
    614	for (i = 0; i < NUM_DMA_LINKS; i++) {
    615		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
    616
    617		link->count = cpu_to_be32(period_size);
    618
    619		/* The snoop bit tells the DMA controller whether it should tell
    620		 * the ECM to snoop during a read or write to an address. For
    621		 * audio, we use DMA to transfer data between memory and an I/O
    622		 * device (the SSI's STX0 or SRX0 register). Snooping is only
    623		 * needed if there is a cache, so we need to snoop memory
    624		 * addresses only.  For playback, that means we snoop the source
    625		 * but not the destination.  For capture, we snoop the
    626		 * destination but not the source.
    627		 *
    628		 * Note that failing to snoop properly is unlikely to cause
    629		 * cache incoherency if the period size is larger than the
    630		 * size of L1 cache.  This is because filling in one period will
    631		 * flush out the data for the previous period.  So if you
    632		 * increased period_bytes_min to a large enough size, you might
    633		 * get more performance by not snooping, and you'll still be
    634		 * okay.  You'll need to update fsl_dma_update_pointers() also.
    635		 */
    636		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
    637			link->source_addr = cpu_to_be32(temp_addr);
    638			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
    639				upper_32_bits(temp_addr));
    640
    641			link->dest_addr = cpu_to_be32(ssi_sxx_phys);
    642			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
    643				upper_32_bits(ssi_sxx_phys));
    644		} else {
    645			link->source_addr = cpu_to_be32(ssi_sxx_phys);
    646			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
    647				upper_32_bits(ssi_sxx_phys));
    648
    649			link->dest_addr = cpu_to_be32(temp_addr);
    650			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
    651				upper_32_bits(temp_addr));
    652		}
    653
    654		temp_addr += period_size;
    655	}
    656
    657	return 0;
    658}
    659
    660/**
    661 * fsl_dma_pointer: determine the current position of the DMA transfer
    662 *
    663 * This function is called by ALSA when ALSA wants to know where in the
    664 * stream buffer the hardware currently is.
    665 *
    666 * For playback, the SAR register contains the physical address of the most
    667 * recent DMA transfer.  For capture, the value is in the DAR register.
    668 *
    669 * The base address of the buffer is stored in the source_addr field of the
    670 * first link descriptor.
    671 */
    672static snd_pcm_uframes_t fsl_dma_pointer(struct snd_soc_component *component,
    673					 struct snd_pcm_substream *substream)
    674{
    675	struct snd_pcm_runtime *runtime = substream->runtime;
    676	struct fsl_dma_private *dma_private = runtime->private_data;
    677	struct device *dev = component->dev;
    678	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
    679	dma_addr_t position;
    680	snd_pcm_uframes_t frames;
    681
    682	/* Obtain the current DMA pointer, but don't read the ESAD bits if we
    683	 * only have 32-bit DMA addresses.  This function is typically called
    684	 * in interrupt context, so we need to optimize it.
    685	 */
    686	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
    687		position = in_be32(&dma_channel->sar);
    688#ifdef CONFIG_PHYS_64BIT
    689		position |= (u64)(in_be32(&dma_channel->satr) &
    690				  CCSR_DMA_ATR_ESAD_MASK) << 32;
    691#endif
    692	} else {
    693		position = in_be32(&dma_channel->dar);
    694#ifdef CONFIG_PHYS_64BIT
    695		position |= (u64)(in_be32(&dma_channel->datr) &
    696				  CCSR_DMA_ATR_ESAD_MASK) << 32;
    697#endif
    698	}
    699
    700	/*
    701	 * When capture is started, the SSI immediately starts to fill its FIFO.
    702	 * This means that the DMA controller is not started until the FIFO is
    703	 * full.  However, ALSA calls this function before that happens, when
    704	 * MR.DAR is still zero.  In this case, just return zero to indicate
    705	 * that nothing has been received yet.
    706	 */
    707	if (!position)
    708		return 0;
    709
    710	if ((position < dma_private->dma_buf_phys) ||
    711	    (position > dma_private->dma_buf_end)) {
    712		dev_err(dev, "dma pointer is out of range, halting stream\n");
    713		return SNDRV_PCM_POS_XRUN;
    714	}
    715
    716	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
    717
    718	/*
    719	 * If the current address is just past the end of the buffer, wrap it
    720	 * around.
    721	 */
    722	if (frames == runtime->buffer_size)
    723		frames = 0;
    724
    725	return frames;
    726}
    727
    728/**
    729 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
    730 *
    731 * Release the resources allocated in fsl_dma_hw_params() and de-program the
    732 * registers.
    733 *
    734 * This function can be called multiple times.
    735 */
    736static int fsl_dma_hw_free(struct snd_soc_component *component,
    737			   struct snd_pcm_substream *substream)
    738{
    739	struct snd_pcm_runtime *runtime = substream->runtime;
    740	struct fsl_dma_private *dma_private = runtime->private_data;
    741
    742	if (dma_private) {
    743		struct ccsr_dma_channel __iomem *dma_channel;
    744
    745		dma_channel = dma_private->dma_channel;
    746
    747		/* Stop the DMA */
    748		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
    749		out_be32(&dma_channel->mr, 0);
    750
    751		/* Reset all the other registers */
    752		out_be32(&dma_channel->sr, -1);
    753		out_be32(&dma_channel->clndar, 0);
    754		out_be32(&dma_channel->eclndar, 0);
    755		out_be32(&dma_channel->satr, 0);
    756		out_be32(&dma_channel->sar, 0);
    757		out_be32(&dma_channel->datr, 0);
    758		out_be32(&dma_channel->dar, 0);
    759		out_be32(&dma_channel->bcr, 0);
    760		out_be32(&dma_channel->nlndar, 0);
    761		out_be32(&dma_channel->enlndar, 0);
    762	}
    763
    764	return 0;
    765}
    766
    767/**
    768 * fsl_dma_close: close the stream.
    769 */
    770static int fsl_dma_close(struct snd_soc_component *component,
    771			 struct snd_pcm_substream *substream)
    772{
    773	struct snd_pcm_runtime *runtime = substream->runtime;
    774	struct fsl_dma_private *dma_private = runtime->private_data;
    775	struct device *dev = component->dev;
    776	struct dma_object *dma =
    777		container_of(component->driver, struct dma_object, dai);
    778
    779	if (dma_private) {
    780		if (dma_private->irq)
    781			free_irq(dma_private->irq, dma_private);
    782
    783		/* Deallocate the fsl_dma_private structure */
    784		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
    785				  dma_private, dma_private->ld_buf_phys);
    786		substream->runtime->private_data = NULL;
    787	}
    788
    789	dma->assigned = false;
    790
    791	return 0;
    792}
    793
    794/**
    795 * find_ssi_node -- returns the SSI node that points to its DMA channel node
    796 *
    797 * Although this DMA driver attempts to operate independently of the other
    798 * devices, it still needs to determine some information about the SSI device
    799 * that it's working with.  Unfortunately, the device tree does not contain
    800 * a pointer from the DMA channel node to the SSI node -- the pointer goes the
    801 * other way.  So we need to scan the device tree for SSI nodes until we find
    802 * the one that points to the given DMA channel node.  It's ugly, but at least
    803 * it's contained in this one function.
    804 */
    805static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
    806{
    807	struct device_node *ssi_np, *np;
    808
    809	for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
    810		/* Check each DMA phandle to see if it points to us.  We
    811		 * assume that device_node pointers are a valid comparison.
    812		 */
    813		np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
    814		of_node_put(np);
    815		if (np == dma_channel_np)
    816			return ssi_np;
    817
    818		np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
    819		of_node_put(np);
    820		if (np == dma_channel_np)
    821			return ssi_np;
    822	}
    823
    824	return NULL;
    825}
    826
    827static int fsl_soc_dma_probe(struct platform_device *pdev)
    828{
    829	struct dma_object *dma;
    830	struct device_node *np = pdev->dev.of_node;
    831	struct device_node *ssi_np;
    832	struct resource res;
    833	const uint32_t *iprop;
    834	int ret;
    835
    836	/* Find the SSI node that points to us. */
    837	ssi_np = find_ssi_node(np);
    838	if (!ssi_np) {
    839		dev_err(&pdev->dev, "cannot find parent SSI node\n");
    840		return -ENODEV;
    841	}
    842
    843	ret = of_address_to_resource(ssi_np, 0, &res);
    844	if (ret) {
    845		dev_err(&pdev->dev, "could not determine resources for %pOF\n",
    846			ssi_np);
    847		of_node_put(ssi_np);
    848		return ret;
    849	}
    850
    851	dma = kzalloc(sizeof(*dma), GFP_KERNEL);
    852	if (!dma) {
    853		of_node_put(ssi_np);
    854		return -ENOMEM;
    855	}
    856
    857	dma->dai.name = DRV_NAME;
    858	dma->dai.open = fsl_dma_open;
    859	dma->dai.close = fsl_dma_close;
    860	dma->dai.hw_params = fsl_dma_hw_params;
    861	dma->dai.hw_free = fsl_dma_hw_free;
    862	dma->dai.pointer = fsl_dma_pointer;
    863	dma->dai.pcm_construct = fsl_dma_new;
    864
    865	/* Store the SSI-specific information that we need */
    866	dma->ssi_stx_phys = res.start + REG_SSI_STX0;
    867	dma->ssi_srx_phys = res.start + REG_SSI_SRX0;
    868
    869	iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
    870	if (iprop)
    871		dma->ssi_fifo_depth = be32_to_cpup(iprop);
    872	else
    873                /* Older 8610 DTs didn't have the fifo-depth property */
    874		dma->ssi_fifo_depth = 8;
    875
    876	of_node_put(ssi_np);
    877
    878	ret = devm_snd_soc_register_component(&pdev->dev, &dma->dai, NULL, 0);
    879	if (ret) {
    880		dev_err(&pdev->dev, "could not register platform\n");
    881		kfree(dma);
    882		return ret;
    883	}
    884
    885	dma->channel = of_iomap(np, 0);
    886	dma->irq = irq_of_parse_and_map(np, 0);
    887
    888	dev_set_drvdata(&pdev->dev, dma);
    889
    890	return 0;
    891}
    892
    893static int fsl_soc_dma_remove(struct platform_device *pdev)
    894{
    895	struct dma_object *dma = dev_get_drvdata(&pdev->dev);
    896
    897	iounmap(dma->channel);
    898	irq_dispose_mapping(dma->irq);
    899	kfree(dma);
    900
    901	return 0;
    902}
    903
    904static const struct of_device_id fsl_soc_dma_ids[] = {
    905	{ .compatible = "fsl,ssi-dma-channel", },
    906	{}
    907};
    908MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
    909
    910static struct platform_driver fsl_soc_dma_driver = {
    911	.driver = {
    912		.name = "fsl-pcm-audio",
    913		.of_match_table = fsl_soc_dma_ids,
    914	},
    915	.probe = fsl_soc_dma_probe,
    916	.remove = fsl_soc_dma_remove,
    917};
    918
    919module_platform_driver(fsl_soc_dma_driver);
    920
    921MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
    922MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
    923MODULE_LICENSE("GPL v2");