cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

dbri.c (79744B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Driver for DBRI sound chip found on Sparcs.
      4 * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
      5 *
      6 * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
      7 *
      8 * Based entirely upon drivers/sbus/audio/dbri.c which is:
      9 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
     10 * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
     11 *
     12 * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
     13 * on Sun SPARCStation 10, 20, LX and Voyager models.
     14 *
     15 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
     16 *   data time multiplexer with ISDN support (aka T7259)
     17 *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
     18 *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
     19 *   Documentation:
     20 *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
     21 *     Sparc Technology Business (courtesy of Sun Support)
     22 *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
     23 *     available from the Lucent (formerly AT&T microelectronics) home
     24 *     page.
     25 *   - https://www.freesoft.org/Linux/DBRI/
     26 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
     27 *   Interfaces: CHI, Audio In & Out, 2 bits parallel
     28 *   Documentation: from the Crystal Semiconductor home page.
     29 *
     30 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
     31 * memory and a serial device (long pipes, no. 0-15) or between two serial
     32 * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
     33 * device (short pipes).
     34 * A timeslot defines the bit-offset and no. of bits read from a serial device.
     35 * The timeslots are linked to 6 circular lists, one for each direction for
     36 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
     37 * (the second one is a monitor/tee pipe, valid only for serial input).
     38 *
     39 * The mmcodec is connected via the CHI bus and needs the data & some
     40 * parameters (volume, output selection) time multiplexed in 8 byte
     41 * chunks. It also has a control mode, which serves for audio format setting.
     42 *
     43 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
     44 * the same CHI bus, so I thought perhaps it is possible to use the on-board
     45 * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
     46 * audio devices. But the SUN HW group decided against it, at least on my
     47 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
     48 * connected.
     49 *
     50 * I've tried to stick to the following function naming conventions:
     51 * snd_*	ALSA stuff
     52 * cs4215_*	CS4215 codec specific stuff
     53 * dbri_*	DBRI high-level stuff
     54 * other	DBRI low-level stuff
     55 */
     56
     57#include <linux/interrupt.h>
     58#include <linux/delay.h>
     59#include <linux/irq.h>
     60#include <linux/io.h>
     61#include <linux/dma-mapping.h>
     62#include <linux/gfp.h>
     63
     64#include <sound/core.h>
     65#include <sound/pcm.h>
     66#include <sound/pcm_params.h>
     67#include <sound/info.h>
     68#include <sound/control.h>
     69#include <sound/initval.h>
     70
     71#include <linux/of.h>
     72#include <linux/of_device.h>
     73#include <linux/atomic.h>
     74#include <linux/module.h>
     75
     76MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
     77MODULE_DESCRIPTION("Sun DBRI");
     78MODULE_LICENSE("GPL");
     79
     80static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
     81static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
     82/* Enable this card */
     83static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
     84
     85module_param_array(index, int, NULL, 0444);
     86MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
     87module_param_array(id, charp, NULL, 0444);
     88MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
     89module_param_array(enable, bool, NULL, 0444);
     90MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
     91
     92#undef DBRI_DEBUG
     93
     94#define D_INT	(1<<0)
     95#define D_GEN	(1<<1)
     96#define D_CMD	(1<<2)
     97#define D_MM	(1<<3)
     98#define D_USR	(1<<4)
     99#define D_DESC	(1<<5)
    100
    101static int dbri_debug;
    102module_param(dbri_debug, int, 0644);
    103MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
    104
    105#ifdef DBRI_DEBUG
    106static const char * const cmds[] = {
    107	"WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
    108	"SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
    109};
    110
    111#define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
    112
    113#else
    114#define dprintk(a, x...) do { } while (0)
    115
    116#endif				/* DBRI_DEBUG */
    117
    118#define DBRI_CMD(cmd, intr, value) ((cmd << 28) |	\
    119				    (intr << 27) |	\
    120				    value)
    121
    122/***************************************************************************
    123	CS4215 specific definitions and structures
    124****************************************************************************/
    125
    126struct cs4215 {
    127	__u8 data[4];		/* Data mode: Time slots 5-8 */
    128	__u8 ctrl[4];		/* Ctrl mode: Time slots 1-4 */
    129	__u8 onboard;
    130	__u8 offset;		/* Bit offset from frame sync to time slot 1 */
    131	volatile __u32 status;
    132	volatile __u32 version;
    133	__u8 precision;		/* In bits, either 8 or 16 */
    134	__u8 channels;		/* 1 or 2 */
    135};
    136
    137/*
    138 * Control mode first
    139 */
    140
    141/* Time Slot 1, Status register */
    142#define CS4215_CLB	(1<<2)	/* Control Latch Bit */
    143#define CS4215_OLB	(1<<3)	/* 1: line: 2.0V, speaker 4V */
    144				/* 0: line: 2.8V, speaker 8V */
    145#define CS4215_MLB	(1<<4)	/* 1: Microphone: 20dB gain disabled */
    146#define CS4215_RSRVD_1  (1<<5)
    147
    148/* Time Slot 2, Data Format Register */
    149#define CS4215_DFR_LINEAR16	0
    150#define CS4215_DFR_ULAW		1
    151#define CS4215_DFR_ALAW		2
    152#define CS4215_DFR_LINEAR8	3
    153#define CS4215_DFR_STEREO	(1<<2)
    154static struct {
    155	unsigned short freq;
    156	unsigned char xtal;
    157	unsigned char csval;
    158} CS4215_FREQ[] = {
    159	{  8000, (1 << 4), (0 << 3) },
    160	{ 16000, (1 << 4), (1 << 3) },
    161	{ 27429, (1 << 4), (2 << 3) },	/* Actually 24428.57 */
    162	{ 32000, (1 << 4), (3 << 3) },
    163     /* {    NA, (1 << 4), (4 << 3) }, */
    164     /* {    NA, (1 << 4), (5 << 3) }, */
    165	{ 48000, (1 << 4), (6 << 3) },
    166	{  9600, (1 << 4), (7 << 3) },
    167	{  5512, (2 << 4), (0 << 3) },	/* Actually 5512.5 */
    168	{ 11025, (2 << 4), (1 << 3) },
    169	{ 18900, (2 << 4), (2 << 3) },
    170	{ 22050, (2 << 4), (3 << 3) },
    171	{ 37800, (2 << 4), (4 << 3) },
    172	{ 44100, (2 << 4), (5 << 3) },
    173	{ 33075, (2 << 4), (6 << 3) },
    174	{  6615, (2 << 4), (7 << 3) },
    175	{ 0, 0, 0}
    176};
    177
    178#define CS4215_HPF	(1<<7)	/* High Pass Filter, 1: Enabled */
    179
    180#define CS4215_12_MASK	0xfcbf	/* Mask off reserved bits in slot 1 & 2 */
    181
    182/* Time Slot 3, Serial Port Control register */
    183#define CS4215_XEN	(1<<0)	/* 0: Enable serial output */
    184#define CS4215_XCLK	(1<<1)	/* 1: Master mode: Generate SCLK */
    185#define CS4215_BSEL_64	(0<<2)	/* Bitrate: 64 bits per frame */
    186#define CS4215_BSEL_128	(1<<2)
    187#define CS4215_BSEL_256	(2<<2)
    188#define CS4215_MCK_MAST (0<<4)	/* Master clock */
    189#define CS4215_MCK_XTL1 (1<<4)	/* 24.576 MHz clock source */
    190#define CS4215_MCK_XTL2 (2<<4)	/* 16.9344 MHz clock source */
    191#define CS4215_MCK_CLK1 (3<<4)	/* Clockin, 256 x Fs */
    192#define CS4215_MCK_CLK2 (4<<4)	/* Clockin, see DFR */
    193
    194/* Time Slot 4, Test Register */
    195#define CS4215_DAD	(1<<0)	/* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
    196#define CS4215_ENL	(1<<1)	/* Enable Loopback Testing */
    197
    198/* Time Slot 5, Parallel Port Register */
    199/* Read only here and the same as the in data mode */
    200
    201/* Time Slot 6, Reserved  */
    202
    203/* Time Slot 7, Version Register  */
    204#define CS4215_VERSION_MASK 0xf	/* Known versions 0/C, 1/D, 2/E */
    205
    206/* Time Slot 8, Reserved  */
    207
    208/*
    209 * Data mode
    210 */
    211/* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
    212
    213/* Time Slot 5, Output Setting  */
    214#define CS4215_LO(v)	v	/* Left Output Attenuation 0x3f: -94.5 dB */
    215#define CS4215_LE	(1<<6)	/* Line Out Enable */
    216#define CS4215_HE	(1<<7)	/* Headphone Enable */
    217
    218/* Time Slot 6, Output Setting  */
    219#define CS4215_RO(v)	v	/* Right Output Attenuation 0x3f: -94.5 dB */
    220#define CS4215_SE	(1<<6)	/* Speaker Enable */
    221#define CS4215_ADI	(1<<7)	/* A/D Data Invalid: Busy in calibration */
    222
    223/* Time Slot 7, Input Setting */
    224#define CS4215_LG(v)	v	/* Left Gain Setting 0xf: 22.5 dB */
    225#define CS4215_IS	(1<<4)	/* Input Select: 1=Microphone, 0=Line */
    226#define CS4215_OVR	(1<<5)	/* 1: Over range condition occurred */
    227#define CS4215_PIO0	(1<<6)	/* Parallel I/O 0 */
    228#define CS4215_PIO1	(1<<7)
    229
    230/* Time Slot 8, Input Setting */
    231#define CS4215_RG(v)	v	/* Right Gain Setting 0xf: 22.5 dB */
    232#define CS4215_MA(v)	(v<<4)	/* Monitor Path Attenuation 0xf: mute */
    233
    234/***************************************************************************
    235		DBRI specific definitions and structures
    236****************************************************************************/
    237
    238/* DBRI main registers */
    239#define REG0	0x00		/* Status and Control */
    240#define REG1	0x04		/* Mode and Interrupt */
    241#define REG2	0x08		/* Parallel IO */
    242#define REG3	0x0c		/* Test */
    243#define REG8	0x20		/* Command Queue Pointer */
    244#define REG9	0x24		/* Interrupt Queue Pointer */
    245
    246#define DBRI_NO_CMDS	64
    247#define DBRI_INT_BLK	64
    248#define DBRI_NO_DESCS	64
    249#define DBRI_NO_PIPES	32
    250#define DBRI_MAX_PIPE	(DBRI_NO_PIPES - 1)
    251
    252#define DBRI_REC	0
    253#define DBRI_PLAY	1
    254#define DBRI_NO_STREAMS	2
    255
    256/* One transmit/receive descriptor */
    257/* When ba != 0 descriptor is used */
    258struct dbri_mem {
    259	volatile __u32 word1;
    260	__u32 ba;	/* Transmit/Receive Buffer Address */
    261	__u32 nda;	/* Next Descriptor Address */
    262	volatile __u32 word4;
    263};
    264
    265/* This structure is in a DMA region where it can accessed by both
    266 * the CPU and the DBRI
    267 */
    268struct dbri_dma {
    269	s32 cmd[DBRI_NO_CMDS];			/* Place for commands */
    270	volatile s32 intr[DBRI_INT_BLK];	/* Interrupt field  */
    271	struct dbri_mem desc[DBRI_NO_DESCS];	/* Xmit/receive descriptors */
    272};
    273
    274#define dbri_dma_off(member, elem)	\
    275	((u32)(unsigned long)		\
    276	 (&(((struct dbri_dma *)0)->member[elem])))
    277
    278enum in_or_out { PIPEinput, PIPEoutput };
    279
    280struct dbri_pipe {
    281	u32 sdp;		/* SDP command word */
    282	int nextpipe;		/* Next pipe in linked list */
    283	int length;		/* Length of timeslot (bits) */
    284	int first_desc;		/* Index of first descriptor */
    285	int desc;		/* Index of active descriptor */
    286	volatile __u32 *recv_fixed_ptr;	/* Ptr to receive fixed data */
    287};
    288
    289/* Per stream (playback or record) information */
    290struct dbri_streaminfo {
    291	struct snd_pcm_substream *substream;
    292	u32 dvma_buffer;	/* Device view of ALSA DMA buffer */
    293	int size;		/* Size of DMA buffer             */
    294	size_t offset;		/* offset in user buffer          */
    295	int pipe;		/* Data pipe used                 */
    296	int left_gain;		/* mixer elements                 */
    297	int right_gain;
    298};
    299
    300/* This structure holds the information for both chips (DBRI & CS4215) */
    301struct snd_dbri {
    302	int regs_size, irq;	/* Needed for unload */
    303	struct platform_device *op;	/* OF device info */
    304	spinlock_t lock;
    305
    306	struct dbri_dma *dma;	/* Pointer to our DMA block */
    307	dma_addr_t dma_dvma;	/* DBRI visible DMA address */
    308
    309	void __iomem *regs;	/* dbri HW regs */
    310	int dbri_irqp;		/* intr queue pointer */
    311
    312	struct dbri_pipe pipes[DBRI_NO_PIPES];	/* DBRI's 32 data pipes */
    313	int next_desc[DBRI_NO_DESCS];		/* Index of next desc, or -1 */
    314	spinlock_t cmdlock;	/* Protects cmd queue accesses */
    315	s32 *cmdptr;		/* Pointer to the last queued cmd */
    316
    317	int chi_bpf;
    318
    319	struct cs4215 mm;	/* mmcodec special info */
    320				/* per stream (playback/record) info */
    321	struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
    322};
    323
    324#define DBRI_MAX_VOLUME		63	/* Output volume */
    325#define DBRI_MAX_GAIN		15	/* Input gain */
    326
    327/* DBRI Reg0 - Status Control Register - defines. (Page 17) */
    328#define D_P		(1<<15)	/* Program command & queue pointer valid */
    329#define D_G		(1<<14)	/* Allow 4-Word SBus Burst */
    330#define D_S		(1<<13)	/* Allow 16-Word SBus Burst */
    331#define D_E		(1<<12)	/* Allow 8-Word SBus Burst */
    332#define D_X		(1<<7)	/* Sanity Timer Disable */
    333#define D_T		(1<<6)	/* Permit activation of the TE interface */
    334#define D_N		(1<<5)	/* Permit activation of the NT interface */
    335#define D_C		(1<<4)	/* Permit activation of the CHI interface */
    336#define D_F		(1<<3)	/* Force Sanity Timer Time-Out */
    337#define D_D		(1<<2)	/* Disable Master Mode */
    338#define D_H		(1<<1)	/* Halt for Analysis */
    339#define D_R		(1<<0)	/* Soft Reset */
    340
    341/* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
    342#define D_LITTLE_END	(1<<8)	/* Byte Order */
    343#define D_BIG_END	(0<<8)	/* Byte Order */
    344#define D_MRR		(1<<4)	/* Multiple Error Ack on SBus (read only) */
    345#define D_MLE		(1<<3)	/* Multiple Late Error on SBus (read only) */
    346#define D_LBG		(1<<2)	/* Lost Bus Grant on SBus (read only) */
    347#define D_MBE		(1<<1)	/* Burst Error on SBus (read only) */
    348#define D_IR		(1<<0)	/* Interrupt Indicator (read only) */
    349
    350/* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
    351#define D_ENPIO3	(1<<7)	/* Enable Pin 3 */
    352#define D_ENPIO2	(1<<6)	/* Enable Pin 2 */
    353#define D_ENPIO1	(1<<5)	/* Enable Pin 1 */
    354#define D_ENPIO0	(1<<4)	/* Enable Pin 0 */
    355#define D_ENPIO		(0xf0)	/* Enable all the pins */
    356#define D_PIO3		(1<<3)	/* Pin 3: 1: Data mode, 0: Ctrl mode */
    357#define D_PIO2		(1<<2)	/* Pin 2: 1: Onboard PDN */
    358#define D_PIO1		(1<<1)	/* Pin 1: 0: Reset */
    359#define D_PIO0		(1<<0)	/* Pin 0: 1: Speakerbox PDN */
    360
    361/* DBRI Commands (Page 20) */
    362#define D_WAIT		0x0	/* Stop execution */
    363#define D_PAUSE		0x1	/* Flush long pipes */
    364#define D_JUMP		0x2	/* New command queue */
    365#define D_IIQ		0x3	/* Initialize Interrupt Queue */
    366#define D_REX		0x4	/* Report command execution via interrupt */
    367#define D_SDP		0x5	/* Setup Data Pipe */
    368#define D_CDP		0x6	/* Continue Data Pipe (reread NULL Pointer) */
    369#define D_DTS		0x7	/* Define Time Slot */
    370#define D_SSP		0x8	/* Set short Data Pipe */
    371#define D_CHI		0x9	/* Set CHI Global Mode */
    372#define D_NT		0xa	/* NT Command */
    373#define D_TE		0xb	/* TE Command */
    374#define D_CDEC		0xc	/* Codec setup */
    375#define D_TEST		0xd	/* No comment */
    376#define D_CDM		0xe	/* CHI Data mode command */
    377
    378/* Special bits for some commands */
    379#define D_PIPE(v)      ((v)<<0)	/* Pipe No.: 0-15 long, 16-21 short */
    380
    381/* Setup Data Pipe */
    382/* IRM */
    383#define D_SDP_2SAME	(1<<18)	/* Report 2nd time in a row value received */
    384#define D_SDP_CHANGE	(2<<18)	/* Report any changes */
    385#define D_SDP_EVERY	(3<<18)	/* Report any changes */
    386#define D_SDP_EOL	(1<<17)	/* EOL interrupt enable */
    387#define D_SDP_IDLE	(1<<16)	/* HDLC idle interrupt enable */
    388
    389/* Pipe data MODE */
    390#define D_SDP_MEM	(0<<13)	/* To/from memory */
    391#define D_SDP_HDLC	(2<<13)
    392#define D_SDP_HDLC_D	(3<<13)	/* D Channel (prio control) */
    393#define D_SDP_SER	(4<<13)	/* Serial to serial */
    394#define D_SDP_FIXED	(6<<13)	/* Short only */
    395#define D_SDP_MODE(v)	((v)&(7<<13))
    396
    397#define D_SDP_TO_SER	(1<<12)	/* Direction */
    398#define D_SDP_FROM_SER	(0<<12)	/* Direction */
    399#define D_SDP_MSB	(1<<11)	/* Bit order within Byte */
    400#define D_SDP_LSB	(0<<11)	/* Bit order within Byte */
    401#define D_SDP_P		(1<<10)	/* Pointer Valid */
    402#define D_SDP_A		(1<<8)	/* Abort */
    403#define D_SDP_C		(1<<7)	/* Clear */
    404
    405/* Define Time Slot */
    406#define D_DTS_VI	(1<<17)	/* Valid Input Time-Slot Descriptor */
    407#define D_DTS_VO	(1<<16)	/* Valid Output Time-Slot Descriptor */
    408#define D_DTS_INS	(1<<15)	/* Insert Time Slot */
    409#define D_DTS_DEL	(0<<15)	/* Delete Time Slot */
    410#define D_DTS_PRVIN(v) ((v)<<10)	/* Previous In Pipe */
    411#define D_DTS_PRVOUT(v)        ((v)<<5)	/* Previous Out Pipe */
    412
    413/* Time Slot defines */
    414#define D_TS_LEN(v)	((v)<<24)	/* Number of bits in this time slot */
    415#define D_TS_CYCLE(v)	((v)<<14)	/* Bit Count at start of TS */
    416#define D_TS_DI		(1<<13)	/* Data Invert */
    417#define D_TS_1CHANNEL	(0<<10)	/* Single Channel / Normal mode */
    418#define D_TS_MONITOR	(2<<10)	/* Monitor pipe */
    419#define D_TS_NONCONTIG	(3<<10)	/* Non contiguous mode */
    420#define D_TS_ANCHOR	(7<<10)	/* Starting short pipes */
    421#define D_TS_MON(v)    ((v)<<5)	/* Monitor Pipe */
    422#define D_TS_NEXT(v)   ((v)<<0)	/* Pipe no.: 0-15 long, 16-21 short */
    423
    424/* Concentration Highway Interface Modes */
    425#define D_CHI_CHICM(v)	((v)<<16)	/* Clock mode */
    426#define D_CHI_IR	(1<<15)	/* Immediate Interrupt Report */
    427#define D_CHI_EN	(1<<14)	/* CHIL Interrupt enabled */
    428#define D_CHI_OD	(1<<13)	/* Open Drain Enable */
    429#define D_CHI_FE	(1<<12)	/* Sample CHIFS on Rising Frame Edge */
    430#define D_CHI_FD	(1<<11)	/* Frame Drive */
    431#define D_CHI_BPF(v)	((v)<<0)	/* Bits per Frame */
    432
    433/* NT: These are here for completeness */
    434#define D_NT_FBIT	(1<<17)	/* Frame Bit */
    435#define D_NT_NBF	(1<<16)	/* Number of bad frames to loose framing */
    436#define D_NT_IRM_IMM	(1<<15)	/* Interrupt Report & Mask: Immediate */
    437#define D_NT_IRM_EN	(1<<14)	/* Interrupt Report & Mask: Enable */
    438#define D_NT_ISNT	(1<<13)	/* Configure interface as NT */
    439#define D_NT_FT		(1<<12)	/* Fixed Timing */
    440#define D_NT_EZ		(1<<11)	/* Echo Channel is Zeros */
    441#define D_NT_IFA	(1<<10)	/* Inhibit Final Activation */
    442#define D_NT_ACT	(1<<9)	/* Activate Interface */
    443#define D_NT_MFE	(1<<8)	/* Multiframe Enable */
    444#define D_NT_RLB(v)	((v)<<5)	/* Remote Loopback */
    445#define D_NT_LLB(v)	((v)<<2)	/* Local Loopback */
    446#define D_NT_FACT	(1<<1)	/* Force Activation */
    447#define D_NT_ABV	(1<<0)	/* Activate Bipolar Violation */
    448
    449/* Codec Setup */
    450#define D_CDEC_CK(v)	((v)<<24)	/* Clock Select */
    451#define D_CDEC_FED(v)	((v)<<12)	/* FSCOD Falling Edge Delay */
    452#define D_CDEC_RED(v)	((v)<<0)	/* FSCOD Rising Edge Delay */
    453
    454/* Test */
    455#define D_TEST_RAM(v)	((v)<<16)	/* RAM Pointer */
    456#define D_TEST_SIZE(v)	((v)<<11)	/* */
    457#define D_TEST_ROMONOFF	0x5	/* Toggle ROM opcode monitor on/off */
    458#define D_TEST_PROC	0x6	/* Microprocessor test */
    459#define D_TEST_SER	0x7	/* Serial-Controller test */
    460#define D_TEST_RAMREAD	0x8	/* Copy from Ram to system memory */
    461#define D_TEST_RAMWRITE	0x9	/* Copy into Ram from system memory */
    462#define D_TEST_RAMBIST	0xa	/* RAM Built-In Self Test */
    463#define D_TEST_MCBIST	0xb	/* Microcontroller Built-In Self Test */
    464#define D_TEST_DUMP	0xe	/* ROM Dump */
    465
    466/* CHI Data Mode */
    467#define D_CDM_THI	(1 << 8)	/* Transmit Data on CHIDR Pin */
    468#define D_CDM_RHI	(1 << 7)	/* Receive Data on CHIDX Pin */
    469#define D_CDM_RCE	(1 << 6)	/* Receive on Rising Edge of CHICK */
    470#define D_CDM_XCE	(1 << 2) /* Transmit Data on Rising Edge of CHICK */
    471#define D_CDM_XEN	(1 << 1)	/* Transmit Highway Enable */
    472#define D_CDM_REN	(1 << 0)	/* Receive Highway Enable */
    473
    474/* The Interrupts */
    475#define D_INTR_BRDY	1	/* Buffer Ready for processing */
    476#define D_INTR_MINT	2	/* Marked Interrupt in RD/TD */
    477#define D_INTR_IBEG	3	/* Flag to idle transition detected (HDLC) */
    478#define D_INTR_IEND	4	/* Idle to flag transition detected (HDLC) */
    479#define D_INTR_EOL	5	/* End of List */
    480#define D_INTR_CMDI	6	/* Command has bean read */
    481#define D_INTR_XCMP	8	/* Transmission of frame complete */
    482#define D_INTR_SBRI	9	/* BRI status change info */
    483#define D_INTR_FXDT	10	/* Fixed data change */
    484#define D_INTR_CHIL	11	/* CHI lost frame sync (channel 36 only) */
    485#define D_INTR_COLL	11	/* Unrecoverable D-Channel collision */
    486#define D_INTR_DBYT	12	/* Dropped by frame slip */
    487#define D_INTR_RBYT	13	/* Repeated by frame slip */
    488#define D_INTR_LINT	14	/* Lost Interrupt */
    489#define D_INTR_UNDR	15	/* DMA underrun */
    490
    491#define D_INTR_TE	32
    492#define D_INTR_NT	34
    493#define D_INTR_CHI	36
    494#define D_INTR_CMD	38
    495
    496#define D_INTR_GETCHAN(v)	(((v) >> 24) & 0x3f)
    497#define D_INTR_GETCODE(v)	(((v) >> 20) & 0xf)
    498#define D_INTR_GETCMD(v)	(((v) >> 16) & 0xf)
    499#define D_INTR_GETVAL(v)	((v) & 0xffff)
    500#define D_INTR_GETRVAL(v)	((v) & 0xfffff)
    501
    502#define D_P_0		0	/* TE receive anchor */
    503#define D_P_1		1	/* TE transmit anchor */
    504#define D_P_2		2	/* NT transmit anchor */
    505#define D_P_3		3	/* NT receive anchor */
    506#define D_P_4		4	/* CHI send data */
    507#define D_P_5		5	/* CHI receive data */
    508#define D_P_6		6	/* */
    509#define D_P_7		7	/* */
    510#define D_P_8		8	/* */
    511#define D_P_9		9	/* */
    512#define D_P_10		10	/* */
    513#define D_P_11		11	/* */
    514#define D_P_12		12	/* */
    515#define D_P_13		13	/* */
    516#define D_P_14		14	/* */
    517#define D_P_15		15	/* */
    518#define D_P_16		16	/* CHI anchor pipe */
    519#define D_P_17		17	/* CHI send */
    520#define D_P_18		18	/* CHI receive */
    521#define D_P_19		19	/* CHI receive */
    522#define D_P_20		20	/* CHI receive */
    523#define D_P_21		21	/* */
    524#define D_P_22		22	/* */
    525#define D_P_23		23	/* */
    526#define D_P_24		24	/* */
    527#define D_P_25		25	/* */
    528#define D_P_26		26	/* */
    529#define D_P_27		27	/* */
    530#define D_P_28		28	/* */
    531#define D_P_29		29	/* */
    532#define D_P_30		30	/* */
    533#define D_P_31		31	/* */
    534
    535/* Transmit descriptor defines */
    536#define DBRI_TD_F	(1 << 31)	/* End of Frame */
    537#define DBRI_TD_D	(1 << 30)	/* Do not append CRC */
    538#define DBRI_TD_CNT(v)	((v) << 16) /* Number of valid bytes in the buffer */
    539#define DBRI_TD_B	(1 << 15)	/* Final interrupt */
    540#define DBRI_TD_M	(1 << 14)	/* Marker interrupt */
    541#define DBRI_TD_I	(1 << 13)	/* Transmit Idle Characters */
    542#define DBRI_TD_FCNT(v)	(v)		/* Flag Count */
    543#define DBRI_TD_UNR	(1 << 3) /* Underrun: transmitter is out of data */
    544#define DBRI_TD_ABT	(1 << 2)	/* Abort: frame aborted */
    545#define DBRI_TD_TBC	(1 << 0)	/* Transmit buffer Complete */
    546#define DBRI_TD_STATUS(v)       ((v) & 0xff)	/* Transmit status */
    547			/* Maximum buffer size per TD: almost 8KB */
    548#define DBRI_TD_MAXCNT	((1 << 13) - 4)
    549
    550/* Receive descriptor defines */
    551#define DBRI_RD_F	(1 << 31)	/* End of Frame */
    552#define DBRI_RD_C	(1 << 30)	/* Completed buffer */
    553#define DBRI_RD_B	(1 << 15)	/* Final interrupt */
    554#define DBRI_RD_M	(1 << 14)	/* Marker interrupt */
    555#define DBRI_RD_BCNT(v)	(v)		/* Buffer size */
    556#define DBRI_RD_CRC	(1 << 7)	/* 0: CRC is correct */
    557#define DBRI_RD_BBC	(1 << 6)	/* 1: Bad Byte received */
    558#define DBRI_RD_ABT	(1 << 5)	/* Abort: frame aborted */
    559#define DBRI_RD_OVRN	(1 << 3)	/* Overrun: data lost */
    560#define DBRI_RD_STATUS(v)      ((v) & 0xff)	/* Receive status */
    561#define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)	/* Valid bytes in the buffer */
    562
    563/* stream_info[] access */
    564/* Translate the ALSA direction into the array index */
    565#define DBRI_STREAMNO(substream)				\
    566		(substream->stream ==				\
    567		 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
    568
    569/* Return a pointer to dbri_streaminfo */
    570#define DBRI_STREAM(dbri, substream)	\
    571		&dbri->stream_info[DBRI_STREAMNO(substream)]
    572
    573/*
    574 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
    575 * So we have to reverse the bits. Note: not all bit lengths are supported
    576 */
    577static __u32 reverse_bytes(__u32 b, int len)
    578{
    579	switch (len) {
    580	case 32:
    581		b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
    582		fallthrough;
    583	case 16:
    584		b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
    585		fallthrough;
    586	case 8:
    587		b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
    588		fallthrough;
    589	case 4:
    590		b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
    591		fallthrough;
    592	case 2:
    593		b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
    594	case 1:
    595	case 0:
    596		break;
    597	default:
    598		printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
    599	}
    600
    601	return b;
    602}
    603
    604/*
    605****************************************************************************
    606************** DBRI initialization and command synchronization *************
    607****************************************************************************
    608
    609Commands are sent to the DBRI by building a list of them in memory,
    610then writing the address of the first list item to DBRI register 8.
    611The list is terminated with a WAIT command, which generates a
    612CPU interrupt to signal completion.
    613
    614Since the DBRI can run in parallel with the CPU, several means of
    615synchronization present themselves. The method implemented here uses
    616the dbri_cmdwait() to wait for execution of batch of sent commands.
    617
    618A circular command buffer is used here. A new command is being added
    619while another can be executed. The scheme works by adding two WAIT commands
    620after each sent batch of commands. When the next batch is prepared it is
    621added after the WAIT commands then the WAITs are replaced with single JUMP
    622command to the new batch. Then the DBRI is forced to reread the last WAIT
    623command (replaced by the JUMP by then). If the DBRI is still executing
    624previous commands the request to reread the WAIT command is ignored.
    625
    626Every time a routine wants to write commands to the DBRI, it must
    627first call dbri_cmdlock() and get pointer to a free space in
    628dbri->dma->cmd buffer. After this, the commands can be written to
    629the buffer, and dbri_cmdsend() is called with the final pointer value
    630to send them to the DBRI.
    631
    632*/
    633
    634#define MAXLOOPS 20
    635/*
    636 * Wait for the current command string to execute
    637 */
    638static void dbri_cmdwait(struct snd_dbri *dbri)
    639{
    640	int maxloops = MAXLOOPS;
    641	unsigned long flags;
    642
    643	/* Delay if previous commands are still being processed */
    644	spin_lock_irqsave(&dbri->lock, flags);
    645	while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
    646		spin_unlock_irqrestore(&dbri->lock, flags);
    647		msleep_interruptible(1);
    648		spin_lock_irqsave(&dbri->lock, flags);
    649	}
    650	spin_unlock_irqrestore(&dbri->lock, flags);
    651
    652	if (maxloops == 0)
    653		printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
    654	else
    655		dprintk(D_CMD, "Chip completed command buffer (%d)\n",
    656			MAXLOOPS - maxloops - 1);
    657}
    658/*
    659 * Lock the command queue and return pointer to space for len cmd words
    660 * It locks the cmdlock spinlock.
    661 */
    662static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
    663{
    664	u32 dvma_addr = (u32)dbri->dma_dvma;
    665
    666	/* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
    667	len += 2;
    668	spin_lock(&dbri->cmdlock);
    669	if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
    670		return dbri->cmdptr + 2;
    671	else if (len < sbus_readl(dbri->regs + REG8) - dvma_addr)
    672		return dbri->dma->cmd;
    673	else
    674		printk(KERN_ERR "DBRI: no space for commands.");
    675
    676	return NULL;
    677}
    678
    679/*
    680 * Send prepared cmd string. It works by writing a JUMP cmd into
    681 * the last WAIT cmd and force DBRI to reread the cmd.
    682 * The JUMP cmd points to the new cmd string.
    683 * It also releases the cmdlock spinlock.
    684 *
    685 * Lock must be held before calling this.
    686 */
    687static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
    688{
    689	u32 dvma_addr = (u32)dbri->dma_dvma;
    690	s32 tmp, addr;
    691	static int wait_id;
    692
    693	wait_id++;
    694	wait_id &= 0xffff;	/* restrict it to a 16 bit counter. */
    695	*(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
    696	*(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
    697
    698	/* Replace the last command with JUMP */
    699	addr = dvma_addr + (cmd - len - dbri->dma->cmd) * sizeof(s32);
    700	*(dbri->cmdptr+1) = addr;
    701	*(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
    702
    703#ifdef DBRI_DEBUG
    704	if (cmd > dbri->cmdptr) {
    705		s32 *ptr;
    706
    707		for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
    708			dprintk(D_CMD, "cmd: %lx:%08x\n",
    709				(unsigned long)ptr, *ptr);
    710	} else {
    711		s32 *ptr = dbri->cmdptr;
    712
    713		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
    714		ptr++;
    715		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
    716		for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
    717			dprintk(D_CMD, "cmd: %lx:%08x\n",
    718				(unsigned long)ptr, *ptr);
    719	}
    720#endif
    721
    722	/* Reread the last command */
    723	tmp = sbus_readl(dbri->regs + REG0);
    724	tmp |= D_P;
    725	sbus_writel(tmp, dbri->regs + REG0);
    726
    727	dbri->cmdptr = cmd;
    728	spin_unlock(&dbri->cmdlock);
    729}
    730
    731/* Lock must be held when calling this */
    732static void dbri_reset(struct snd_dbri *dbri)
    733{
    734	int i;
    735	u32 tmp;
    736
    737	dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
    738		sbus_readl(dbri->regs + REG0),
    739		sbus_readl(dbri->regs + REG2),
    740		sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
    741
    742	sbus_writel(D_R, dbri->regs + REG0);	/* Soft Reset */
    743	for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
    744		udelay(10);
    745
    746	/* A brute approach - DBRI falls back to working burst size by itself
    747	 * On SS20 D_S does not work, so do not try so high. */
    748	tmp = sbus_readl(dbri->regs + REG0);
    749	tmp |= D_G | D_E;
    750	tmp &= ~D_S;
    751	sbus_writel(tmp, dbri->regs + REG0);
    752}
    753
    754/* Lock must not be held before calling this */
    755static void dbri_initialize(struct snd_dbri *dbri)
    756{
    757	u32 dvma_addr = (u32)dbri->dma_dvma;
    758	s32 *cmd;
    759	u32 dma_addr;
    760	unsigned long flags;
    761	int n;
    762
    763	spin_lock_irqsave(&dbri->lock, flags);
    764
    765	dbri_reset(dbri);
    766
    767	/* Initialize pipes */
    768	for (n = 0; n < DBRI_NO_PIPES; n++)
    769		dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
    770
    771	spin_lock_init(&dbri->cmdlock);
    772	/*
    773	 * Initialize the interrupt ring buffer.
    774	 */
    775	dma_addr = dvma_addr + dbri_dma_off(intr, 0);
    776	dbri->dma->intr[0] = dma_addr;
    777	dbri->dbri_irqp = 1;
    778	/*
    779	 * Set up the interrupt queue
    780	 */
    781	spin_lock(&dbri->cmdlock);
    782	cmd = dbri->cmdptr = dbri->dma->cmd;
    783	*(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
    784	*(cmd++) = dma_addr;
    785	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
    786	dbri->cmdptr = cmd;
    787	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
    788	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
    789	dma_addr = dvma_addr + dbri_dma_off(cmd, 0);
    790	sbus_writel(dma_addr, dbri->regs + REG8);
    791	spin_unlock(&dbri->cmdlock);
    792
    793	spin_unlock_irqrestore(&dbri->lock, flags);
    794	dbri_cmdwait(dbri);
    795}
    796
    797/*
    798****************************************************************************
    799************************** DBRI data pipe management ***********************
    800****************************************************************************
    801
    802While DBRI control functions use the command and interrupt buffers, the
    803main data path takes the form of data pipes, which can be short (command
    804and interrupt driven), or long (attached to DMA buffers).  These functions
    805provide a rudimentary means of setting up and managing the DBRI's pipes,
    806but the calling functions have to make sure they respect the pipes' linked
    807list ordering, among other things.  The transmit and receive functions
    808here interface closely with the transmit and receive interrupt code.
    809
    810*/
    811static inline int pipe_active(struct snd_dbri *dbri, int pipe)
    812{
    813	return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
    814}
    815
    816/* reset_pipe(dbri, pipe)
    817 *
    818 * Called on an in-use pipe to clear anything being transmitted or received
    819 * Lock must be held before calling this.
    820 */
    821static void reset_pipe(struct snd_dbri *dbri, int pipe)
    822{
    823	int sdp;
    824	int desc;
    825	s32 *cmd;
    826
    827	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
    828		printk(KERN_ERR "DBRI: reset_pipe called with "
    829			"illegal pipe number\n");
    830		return;
    831	}
    832
    833	sdp = dbri->pipes[pipe].sdp;
    834	if (sdp == 0) {
    835		printk(KERN_ERR "DBRI: reset_pipe called "
    836			"on uninitialized pipe\n");
    837		return;
    838	}
    839
    840	cmd = dbri_cmdlock(dbri, 3);
    841	*(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
    842	*(cmd++) = 0;
    843	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
    844	dbri_cmdsend(dbri, cmd, 3);
    845
    846	desc = dbri->pipes[pipe].first_desc;
    847	if (desc >= 0)
    848		do {
    849			dbri->dma->desc[desc].ba = 0;
    850			dbri->dma->desc[desc].nda = 0;
    851			desc = dbri->next_desc[desc];
    852		} while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
    853
    854	dbri->pipes[pipe].desc = -1;
    855	dbri->pipes[pipe].first_desc = -1;
    856}
    857
    858/*
    859 * Lock must be held before calling this.
    860 */
    861static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
    862{
    863	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
    864		printk(KERN_ERR "DBRI: setup_pipe called "
    865			"with illegal pipe number\n");
    866		return;
    867	}
    868
    869	if ((sdp & 0xf800) != sdp) {
    870		printk(KERN_ERR "DBRI: setup_pipe called "
    871			"with strange SDP value\n");
    872		/* sdp &= 0xf800; */
    873	}
    874
    875	/* If this is a fixed receive pipe, arrange for an interrupt
    876	 * every time its data changes
    877	 */
    878	if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
    879		sdp |= D_SDP_CHANGE;
    880
    881	sdp |= D_PIPE(pipe);
    882	dbri->pipes[pipe].sdp = sdp;
    883	dbri->pipes[pipe].desc = -1;
    884	dbri->pipes[pipe].first_desc = -1;
    885
    886	reset_pipe(dbri, pipe);
    887}
    888
    889/*
    890 * Lock must be held before calling this.
    891 */
    892static void link_time_slot(struct snd_dbri *dbri, int pipe,
    893			   int prevpipe, int nextpipe,
    894			   int length, int cycle)
    895{
    896	s32 *cmd;
    897	int val;
    898
    899	if (pipe < 0 || pipe > DBRI_MAX_PIPE
    900			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
    901			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
    902		printk(KERN_ERR
    903		    "DBRI: link_time_slot called with illegal pipe number\n");
    904		return;
    905	}
    906
    907	if (dbri->pipes[pipe].sdp == 0
    908			|| dbri->pipes[prevpipe].sdp == 0
    909			|| dbri->pipes[nextpipe].sdp == 0) {
    910		printk(KERN_ERR "DBRI: link_time_slot called "
    911			"on uninitialized pipe\n");
    912		return;
    913	}
    914
    915	dbri->pipes[prevpipe].nextpipe = pipe;
    916	dbri->pipes[pipe].nextpipe = nextpipe;
    917	dbri->pipes[pipe].length = length;
    918
    919	cmd = dbri_cmdlock(dbri, 4);
    920
    921	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
    922		/* Deal with CHI special case:
    923		 * "If transmission on edges 0 or 1 is desired, then cycle n
    924		 *  (where n = # of bit times per frame...) must be used."
    925		 *                  - DBRI data sheet, page 11
    926		 */
    927		if (prevpipe == 16 && cycle == 0)
    928			cycle = dbri->chi_bpf;
    929
    930		val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
    931		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
    932		*(cmd++) = 0;
    933		*(cmd++) =
    934		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
    935	} else {
    936		val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
    937		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
    938		*(cmd++) =
    939		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
    940		*(cmd++) = 0;
    941	}
    942	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
    943
    944	dbri_cmdsend(dbri, cmd, 4);
    945}
    946
    947#if 0
    948/*
    949 * Lock must be held before calling this.
    950 */
    951static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
    952			     enum in_or_out direction, int prevpipe,
    953			     int nextpipe)
    954{
    955	s32 *cmd;
    956	int val;
    957
    958	if (pipe < 0 || pipe > DBRI_MAX_PIPE
    959			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
    960			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
    961		printk(KERN_ERR
    962		    "DBRI: unlink_time_slot called with illegal pipe number\n");
    963		return;
    964	}
    965
    966	cmd = dbri_cmdlock(dbri, 4);
    967
    968	if (direction == PIPEinput) {
    969		val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
    970		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
    971		*(cmd++) = D_TS_NEXT(nextpipe);
    972		*(cmd++) = 0;
    973	} else {
    974		val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
    975		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
    976		*(cmd++) = 0;
    977		*(cmd++) = D_TS_NEXT(nextpipe);
    978	}
    979	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
    980
    981	dbri_cmdsend(dbri, cmd, 4);
    982}
    983#endif
    984
    985/* xmit_fixed() / recv_fixed()
    986 *
    987 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
    988 * expected to change much, and which we don't need to buffer.
    989 * The DBRI only interrupts us when the data changes (receive pipes),
    990 * or only changes the data when this function is called (transmit pipes).
    991 * Only short pipes (numbers 16-31) can be used in fixed data mode.
    992 *
    993 * These function operate on a 32-bit field, no matter how large
    994 * the actual time slot is.  The interrupt handler takes care of bit
    995 * ordering and alignment.  An 8-bit time slot will always end up
    996 * in the low-order 8 bits, filled either MSB-first or LSB-first,
    997 * depending on the settings passed to setup_pipe().
    998 *
    999 * Lock must not be held before calling it.
   1000 */
   1001static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
   1002{
   1003	s32 *cmd;
   1004	unsigned long flags;
   1005
   1006	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
   1007		printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
   1008		return;
   1009	}
   1010
   1011	if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
   1012		printk(KERN_ERR "DBRI: xmit_fixed: "
   1013			"Uninitialized pipe %d\n", pipe);
   1014		return;
   1015	}
   1016
   1017	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
   1018		printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
   1019		return;
   1020	}
   1021
   1022	if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
   1023		printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
   1024			pipe);
   1025		return;
   1026	}
   1027
   1028	/* DBRI short pipes always transmit LSB first */
   1029
   1030	if (dbri->pipes[pipe].sdp & D_SDP_MSB)
   1031		data = reverse_bytes(data, dbri->pipes[pipe].length);
   1032
   1033	cmd = dbri_cmdlock(dbri, 3);
   1034
   1035	*(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
   1036	*(cmd++) = data;
   1037	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
   1038
   1039	spin_lock_irqsave(&dbri->lock, flags);
   1040	dbri_cmdsend(dbri, cmd, 3);
   1041	spin_unlock_irqrestore(&dbri->lock, flags);
   1042	dbri_cmdwait(dbri);
   1043
   1044}
   1045
   1046static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
   1047{
   1048	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
   1049		printk(KERN_ERR "DBRI: recv_fixed called with "
   1050			"illegal pipe number\n");
   1051		return;
   1052	}
   1053
   1054	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
   1055		printk(KERN_ERR "DBRI: recv_fixed called on "
   1056			"non-fixed pipe %d\n", pipe);
   1057		return;
   1058	}
   1059
   1060	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
   1061		printk(KERN_ERR "DBRI: recv_fixed called on "
   1062			"transmit pipe %d\n", pipe);
   1063		return;
   1064	}
   1065
   1066	dbri->pipes[pipe].recv_fixed_ptr = ptr;
   1067}
   1068
   1069/* setup_descs()
   1070 *
   1071 * Setup transmit/receive data on a "long" pipe - i.e, one associated
   1072 * with a DMA buffer.
   1073 *
   1074 * Only pipe numbers 0-15 can be used in this mode.
   1075 *
   1076 * This function takes a stream number pointing to a data buffer,
   1077 * and work by building chains of descriptors which identify the
   1078 * data buffers.  Buffers too large for a single descriptor will
   1079 * be spread across multiple descriptors.
   1080 *
   1081 * All descriptors create a ring buffer.
   1082 *
   1083 * Lock must be held before calling this.
   1084 */
   1085static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
   1086{
   1087	struct dbri_streaminfo *info = &dbri->stream_info[streamno];
   1088	u32 dvma_addr = (u32)dbri->dma_dvma;
   1089	__u32 dvma_buffer;
   1090	int desc;
   1091	int len;
   1092	int first_desc = -1;
   1093	int last_desc = -1;
   1094
   1095	if (info->pipe < 0 || info->pipe > 15) {
   1096		printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
   1097		return -2;
   1098	}
   1099
   1100	if (dbri->pipes[info->pipe].sdp == 0) {
   1101		printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
   1102		       info->pipe);
   1103		return -2;
   1104	}
   1105
   1106	dvma_buffer = info->dvma_buffer;
   1107	len = info->size;
   1108
   1109	if (streamno == DBRI_PLAY) {
   1110		if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
   1111			printk(KERN_ERR "DBRI: setup_descs: "
   1112				"Called on receive pipe %d\n", info->pipe);
   1113			return -2;
   1114		}
   1115	} else {
   1116		if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
   1117			printk(KERN_ERR
   1118			    "DBRI: setup_descs: Called on transmit pipe %d\n",
   1119			     info->pipe);
   1120			return -2;
   1121		}
   1122		/* Should be able to queue multiple buffers
   1123		 * to receive on a pipe
   1124		 */
   1125		if (pipe_active(dbri, info->pipe)) {
   1126			printk(KERN_ERR "DBRI: recv_on_pipe: "
   1127				"Called on active pipe %d\n", info->pipe);
   1128			return -2;
   1129		}
   1130
   1131		/* Make sure buffer size is multiple of four */
   1132		len &= ~3;
   1133	}
   1134
   1135	/* Free descriptors if pipe has any */
   1136	desc = dbri->pipes[info->pipe].first_desc;
   1137	if (desc >= 0)
   1138		do {
   1139			dbri->dma->desc[desc].ba = 0;
   1140			dbri->dma->desc[desc].nda = 0;
   1141			desc = dbri->next_desc[desc];
   1142		} while (desc != -1 &&
   1143			 desc != dbri->pipes[info->pipe].first_desc);
   1144
   1145	dbri->pipes[info->pipe].desc = -1;
   1146	dbri->pipes[info->pipe].first_desc = -1;
   1147
   1148	desc = 0;
   1149	while (len > 0) {
   1150		int mylen;
   1151
   1152		for (; desc < DBRI_NO_DESCS; desc++) {
   1153			if (!dbri->dma->desc[desc].ba)
   1154				break;
   1155		}
   1156
   1157		if (desc == DBRI_NO_DESCS) {
   1158			printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
   1159			return -1;
   1160		}
   1161
   1162		if (len > DBRI_TD_MAXCNT)
   1163			mylen = DBRI_TD_MAXCNT;	/* 8KB - 4 */
   1164		else
   1165			mylen = len;
   1166
   1167		if (mylen > period)
   1168			mylen = period;
   1169
   1170		dbri->next_desc[desc] = -1;
   1171		dbri->dma->desc[desc].ba = dvma_buffer;
   1172		dbri->dma->desc[desc].nda = 0;
   1173
   1174		if (streamno == DBRI_PLAY) {
   1175			dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
   1176			dbri->dma->desc[desc].word4 = 0;
   1177			dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
   1178		} else {
   1179			dbri->dma->desc[desc].word1 = 0;
   1180			dbri->dma->desc[desc].word4 =
   1181			    DBRI_RD_B | DBRI_RD_BCNT(mylen);
   1182		}
   1183
   1184		if (first_desc == -1)
   1185			first_desc = desc;
   1186		else {
   1187			dbri->next_desc[last_desc] = desc;
   1188			dbri->dma->desc[last_desc].nda =
   1189			    dvma_addr + dbri_dma_off(desc, desc);
   1190		}
   1191
   1192		last_desc = desc;
   1193		dvma_buffer += mylen;
   1194		len -= mylen;
   1195	}
   1196
   1197	if (first_desc == -1 || last_desc == -1) {
   1198		printk(KERN_ERR "DBRI: setup_descs: "
   1199			" Not enough descriptors available\n");
   1200		return -1;
   1201	}
   1202
   1203	dbri->dma->desc[last_desc].nda =
   1204	    dvma_addr + dbri_dma_off(desc, first_desc);
   1205	dbri->next_desc[last_desc] = first_desc;
   1206	dbri->pipes[info->pipe].first_desc = first_desc;
   1207	dbri->pipes[info->pipe].desc = first_desc;
   1208
   1209#ifdef DBRI_DEBUG
   1210	for (desc = first_desc; desc != -1;) {
   1211		dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
   1212			desc,
   1213			dbri->dma->desc[desc].word1,
   1214			dbri->dma->desc[desc].ba,
   1215			dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
   1216			desc = dbri->next_desc[desc];
   1217			if (desc == first_desc)
   1218				break;
   1219	}
   1220#endif
   1221	return 0;
   1222}
   1223
   1224/*
   1225****************************************************************************
   1226************************** DBRI - CHI interface ****************************
   1227****************************************************************************
   1228
   1229The CHI is a four-wire (clock, frame sync, data in, data out) time-division
   1230multiplexed serial interface which the DBRI can operate in either master
   1231(give clock/frame sync) or slave (take clock/frame sync) mode.
   1232
   1233*/
   1234
   1235enum master_or_slave { CHImaster, CHIslave };
   1236
   1237/*
   1238 * Lock must not be held before calling it.
   1239 */
   1240static void reset_chi(struct snd_dbri *dbri,
   1241		      enum master_or_slave master_or_slave,
   1242		      int bits_per_frame)
   1243{
   1244	s32 *cmd;
   1245	int val;
   1246
   1247	/* Set CHI Anchor: Pipe 16 */
   1248
   1249	cmd = dbri_cmdlock(dbri, 4);
   1250	val = D_DTS_VO | D_DTS_VI | D_DTS_INS
   1251		| D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
   1252	*(cmd++) = DBRI_CMD(D_DTS, 0, val);
   1253	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
   1254	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
   1255	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
   1256	dbri_cmdsend(dbri, cmd, 4);
   1257
   1258	dbri->pipes[16].sdp = 1;
   1259	dbri->pipes[16].nextpipe = 16;
   1260
   1261	cmd = dbri_cmdlock(dbri, 4);
   1262
   1263	if (master_or_slave == CHIslave) {
   1264		/* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
   1265		 *
   1266		 * CHICM  = 0 (slave mode, 8 kHz frame rate)
   1267		 * IR     = give immediate CHI status interrupt
   1268		 * EN     = give CHI status interrupt upon change
   1269		 */
   1270		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
   1271	} else {
   1272		/* Setup DBRI for CHI Master - generate clock, FS
   1273		 *
   1274		 * BPF				=  bits per 8 kHz frame
   1275		 * 12.288 MHz / CHICM_divisor	= clock rate
   1276		 * FD = 1 - drive CHIFS on rising edge of CHICK
   1277		 */
   1278		int clockrate = bits_per_frame * 8;
   1279		int divisor = 12288 / clockrate;
   1280
   1281		if (divisor > 255 || divisor * clockrate != 12288)
   1282			printk(KERN_ERR "DBRI: illegal bits_per_frame "
   1283				"in setup_chi\n");
   1284
   1285		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
   1286				    | D_CHI_BPF(bits_per_frame));
   1287	}
   1288
   1289	dbri->chi_bpf = bits_per_frame;
   1290
   1291	/* CHI Data Mode
   1292	 *
   1293	 * RCE   =  0 - receive on falling edge of CHICK
   1294	 * XCE   =  1 - transmit on rising edge of CHICK
   1295	 * XEN   =  1 - enable transmitter
   1296	 * REN   =  1 - enable receiver
   1297	 */
   1298
   1299	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
   1300	*(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
   1301	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
   1302
   1303	dbri_cmdsend(dbri, cmd, 4);
   1304}
   1305
   1306/*
   1307****************************************************************************
   1308*********************** CS4215 audio codec management **********************
   1309****************************************************************************
   1310
   1311In the standard SPARC audio configuration, the CS4215 codec is attached
   1312to the DBRI via the CHI interface and few of the DBRI's PIO pins.
   1313
   1314 * Lock must not be held before calling it.
   1315
   1316*/
   1317static void cs4215_setup_pipes(struct snd_dbri *dbri)
   1318{
   1319	unsigned long flags;
   1320
   1321	spin_lock_irqsave(&dbri->lock, flags);
   1322	/*
   1323	 * Data mode:
   1324	 * Pipe  4: Send timeslots 1-4 (audio data)
   1325	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
   1326	 * Pipe  6: Receive timeslots 1-4 (audio data)
   1327	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
   1328	 *          interrupt, and the rest of the data (slot 5 and 8) is
   1329	 *          not relevant for us (only for doublechecking).
   1330	 *
   1331	 * Control mode:
   1332	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
   1333	 * Pipe 18: Receive timeslot 1 (clb).
   1334	 * Pipe 19: Receive timeslot 7 (version).
   1335	 */
   1336
   1337	setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
   1338	setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
   1339	setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
   1340	setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
   1341
   1342	setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
   1343	setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
   1344	setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
   1345	spin_unlock_irqrestore(&dbri->lock, flags);
   1346
   1347	dbri_cmdwait(dbri);
   1348}
   1349
   1350static int cs4215_init_data(struct cs4215 *mm)
   1351{
   1352	/*
   1353	 * No action, memory resetting only.
   1354	 *
   1355	 * Data Time Slot 5-8
   1356	 * Speaker,Line and Headphone enable. Gain set to the half.
   1357	 * Input is mike.
   1358	 */
   1359	mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
   1360	mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
   1361	mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
   1362	mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
   1363
   1364	/*
   1365	 * Control Time Slot 1-4
   1366	 * 0: Default I/O voltage scale
   1367	 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
   1368	 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
   1369	 * 3: Tests disabled
   1370	 */
   1371	mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
   1372	mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
   1373	mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
   1374	mm->ctrl[3] = 0;
   1375
   1376	mm->status = 0;
   1377	mm->version = 0xff;
   1378	mm->precision = 8;	/* For ULAW */
   1379	mm->channels = 1;
   1380
   1381	return 0;
   1382}
   1383
   1384static void cs4215_setdata(struct snd_dbri *dbri, int muted)
   1385{
   1386	if (muted) {
   1387		dbri->mm.data[0] |= 63;
   1388		dbri->mm.data[1] |= 63;
   1389		dbri->mm.data[2] &= ~15;
   1390		dbri->mm.data[3] &= ~15;
   1391	} else {
   1392		/* Start by setting the playback attenuation. */
   1393		struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
   1394		int left_gain = info->left_gain & 0x3f;
   1395		int right_gain = info->right_gain & 0x3f;
   1396
   1397		dbri->mm.data[0] &= ~0x3f;	/* Reset the volume bits */
   1398		dbri->mm.data[1] &= ~0x3f;
   1399		dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
   1400		dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
   1401
   1402		/* Now set the recording gain. */
   1403		info = &dbri->stream_info[DBRI_REC];
   1404		left_gain = info->left_gain & 0xf;
   1405		right_gain = info->right_gain & 0xf;
   1406		dbri->mm.data[2] |= CS4215_LG(left_gain);
   1407		dbri->mm.data[3] |= CS4215_RG(right_gain);
   1408	}
   1409
   1410	xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
   1411}
   1412
   1413/*
   1414 * Set the CS4215 to data mode.
   1415 */
   1416static void cs4215_open(struct snd_dbri *dbri)
   1417{
   1418	int data_width;
   1419	u32 tmp;
   1420	unsigned long flags;
   1421
   1422	dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
   1423		dbri->mm.channels, dbri->mm.precision);
   1424
   1425	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
   1426	 * to make sure this takes.  This avoids clicking noises.
   1427	 */
   1428
   1429	cs4215_setdata(dbri, 1);
   1430	udelay(125);
   1431
   1432	/*
   1433	 * Data mode:
   1434	 * Pipe  4: Send timeslots 1-4 (audio data)
   1435	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
   1436	 * Pipe  6: Receive timeslots 1-4 (audio data)
   1437	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
   1438	 *          interrupt, and the rest of the data (slot 5 and 8) is
   1439	 *          not relevant for us (only for doublechecking).
   1440	 *
   1441	 * Just like in control mode, the time slots are all offset by eight
   1442	 * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
   1443	 * even if it's the CHI master.  Don't ask me...
   1444	 */
   1445	spin_lock_irqsave(&dbri->lock, flags);
   1446	tmp = sbus_readl(dbri->regs + REG0);
   1447	tmp &= ~(D_C);		/* Disable CHI */
   1448	sbus_writel(tmp, dbri->regs + REG0);
   1449
   1450	/* Switch CS4215 to data mode - set PIO3 to 1 */
   1451	sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
   1452		    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
   1453
   1454	reset_chi(dbri, CHIslave, 128);
   1455
   1456	/* Note: this next doesn't work for 8-bit stereo, because the two
   1457	 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
   1458	 * (See CS4215 datasheet Fig 15)
   1459	 *
   1460	 * DBRI non-contiguous mode would be required to make this work.
   1461	 */
   1462	data_width = dbri->mm.channels * dbri->mm.precision;
   1463
   1464	link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
   1465	link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
   1466	link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
   1467	link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
   1468
   1469	/* FIXME: enable CHI after _setdata? */
   1470	tmp = sbus_readl(dbri->regs + REG0);
   1471	tmp |= D_C;		/* Enable CHI */
   1472	sbus_writel(tmp, dbri->regs + REG0);
   1473	spin_unlock_irqrestore(&dbri->lock, flags);
   1474
   1475	cs4215_setdata(dbri, 0);
   1476}
   1477
   1478/*
   1479 * Send the control information (i.e. audio format)
   1480 */
   1481static int cs4215_setctrl(struct snd_dbri *dbri)
   1482{
   1483	int i, val;
   1484	u32 tmp;
   1485	unsigned long flags;
   1486
   1487	/* FIXME - let the CPU do something useful during these delays */
   1488
   1489	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
   1490	 * to make sure this takes.  This avoids clicking noises.
   1491	 */
   1492	cs4215_setdata(dbri, 1);
   1493	udelay(125);
   1494
   1495	/*
   1496	 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
   1497	 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
   1498	 */
   1499	val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
   1500	sbus_writel(val, dbri->regs + REG2);
   1501	dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
   1502	udelay(34);
   1503
   1504	/* In Control mode, the CS4215 is a slave device, so the DBRI must
   1505	 * operate as CHI master, supplying clocking and frame synchronization.
   1506	 *
   1507	 * In Data mode, however, the CS4215 must be CHI master to insure
   1508	 * that its data stream is synchronous with its codec.
   1509	 *
   1510	 * The upshot of all this?  We start by putting the DBRI into master
   1511	 * mode, program the CS4215 in Control mode, then switch the CS4215
   1512	 * into Data mode and put the DBRI into slave mode.  Various timing
   1513	 * requirements must be observed along the way.
   1514	 *
   1515	 * Oh, and one more thing, on a SPARCStation 20 (and maybe
   1516	 * others?), the addressing of the CS4215's time slots is
   1517	 * offset by eight bits, so we add eight to all the "cycle"
   1518	 * values in the Define Time Slot (DTS) commands.  This is
   1519	 * done in hardware by a TI 248 that delays the DBRI->4215
   1520	 * frame sync signal by eight clock cycles.  Anybody know why?
   1521	 */
   1522	spin_lock_irqsave(&dbri->lock, flags);
   1523	tmp = sbus_readl(dbri->regs + REG0);
   1524	tmp &= ~D_C;		/* Disable CHI */
   1525	sbus_writel(tmp, dbri->regs + REG0);
   1526
   1527	reset_chi(dbri, CHImaster, 128);
   1528
   1529	/*
   1530	 * Control mode:
   1531	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
   1532	 * Pipe 18: Receive timeslot 1 (clb).
   1533	 * Pipe 19: Receive timeslot 7 (version).
   1534	 */
   1535
   1536	link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
   1537	link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
   1538	link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
   1539	spin_unlock_irqrestore(&dbri->lock, flags);
   1540
   1541	/* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
   1542	dbri->mm.ctrl[0] &= ~CS4215_CLB;
   1543	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
   1544
   1545	spin_lock_irqsave(&dbri->lock, flags);
   1546	tmp = sbus_readl(dbri->regs + REG0);
   1547	tmp |= D_C;		/* Enable CHI */
   1548	sbus_writel(tmp, dbri->regs + REG0);
   1549	spin_unlock_irqrestore(&dbri->lock, flags);
   1550
   1551	for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
   1552		msleep_interruptible(1);
   1553
   1554	if (i == 0) {
   1555		dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
   1556			dbri->mm.status);
   1557		return -1;
   1558	}
   1559
   1560	/* Disable changes to our copy of the version number, as we are about
   1561	 * to leave control mode.
   1562	 */
   1563	recv_fixed(dbri, 19, NULL);
   1564
   1565	/* Terminate CS4215 control mode - data sheet says
   1566	 * "Set CLB=1 and send two more frames of valid control info"
   1567	 */
   1568	dbri->mm.ctrl[0] |= CS4215_CLB;
   1569	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
   1570
   1571	/* Two frames of control info @ 8kHz frame rate = 250 us delay */
   1572	udelay(250);
   1573
   1574	cs4215_setdata(dbri, 0);
   1575
   1576	return 0;
   1577}
   1578
   1579/*
   1580 * Setup the codec with the sampling rate, audio format and number of
   1581 * channels.
   1582 * As part of the process we resend the settings for the data
   1583 * timeslots as well.
   1584 */
   1585static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
   1586			  snd_pcm_format_t format, unsigned int channels)
   1587{
   1588	int freq_idx;
   1589	int ret = 0;
   1590
   1591	/* Lookup index for this rate */
   1592	for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
   1593		if (CS4215_FREQ[freq_idx].freq == rate)
   1594			break;
   1595	}
   1596	if (CS4215_FREQ[freq_idx].freq != rate) {
   1597		printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
   1598		return -1;
   1599	}
   1600
   1601	switch (format) {
   1602	case SNDRV_PCM_FORMAT_MU_LAW:
   1603		dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
   1604		dbri->mm.precision = 8;
   1605		break;
   1606	case SNDRV_PCM_FORMAT_A_LAW:
   1607		dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
   1608		dbri->mm.precision = 8;
   1609		break;
   1610	case SNDRV_PCM_FORMAT_U8:
   1611		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
   1612		dbri->mm.precision = 8;
   1613		break;
   1614	case SNDRV_PCM_FORMAT_S16_BE:
   1615		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
   1616		dbri->mm.precision = 16;
   1617		break;
   1618	default:
   1619		printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
   1620		return -1;
   1621	}
   1622
   1623	/* Add rate parameters */
   1624	dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
   1625	dbri->mm.ctrl[2] = CS4215_XCLK |
   1626	    CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
   1627
   1628	dbri->mm.channels = channels;
   1629	if (channels == 2)
   1630		dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
   1631
   1632	ret = cs4215_setctrl(dbri);
   1633	if (ret == 0)
   1634		cs4215_open(dbri);	/* set codec to data mode */
   1635
   1636	return ret;
   1637}
   1638
   1639/*
   1640 *
   1641 */
   1642static int cs4215_init(struct snd_dbri *dbri)
   1643{
   1644	u32 reg2 = sbus_readl(dbri->regs + REG2);
   1645	dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
   1646
   1647	/* Look for the cs4215 chips */
   1648	if (reg2 & D_PIO2) {
   1649		dprintk(D_MM, "Onboard CS4215 detected\n");
   1650		dbri->mm.onboard = 1;
   1651	}
   1652	if (reg2 & D_PIO0) {
   1653		dprintk(D_MM, "Speakerbox detected\n");
   1654		dbri->mm.onboard = 0;
   1655
   1656		if (reg2 & D_PIO2) {
   1657			printk(KERN_INFO "DBRI: Using speakerbox / "
   1658			       "ignoring onboard mmcodec.\n");
   1659			sbus_writel(D_ENPIO2, dbri->regs + REG2);
   1660		}
   1661	}
   1662
   1663	if (!(reg2 & (D_PIO0 | D_PIO2))) {
   1664		printk(KERN_ERR "DBRI: no mmcodec found.\n");
   1665		return -EIO;
   1666	}
   1667
   1668	cs4215_setup_pipes(dbri);
   1669	cs4215_init_data(&dbri->mm);
   1670
   1671	/* Enable capture of the status & version timeslots. */
   1672	recv_fixed(dbri, 18, &dbri->mm.status);
   1673	recv_fixed(dbri, 19, &dbri->mm.version);
   1674
   1675	dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
   1676	if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
   1677		dprintk(D_MM, "CS4215 failed probe at offset %d\n",
   1678			dbri->mm.offset);
   1679		return -EIO;
   1680	}
   1681	dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
   1682
   1683	return 0;
   1684}
   1685
   1686/*
   1687****************************************************************************
   1688*************************** DBRI interrupt handler *************************
   1689****************************************************************************
   1690
   1691The DBRI communicates with the CPU mainly via a circular interrupt
   1692buffer.  When an interrupt is signaled, the CPU walks through the
   1693buffer and calls dbri_process_one_interrupt() for each interrupt word.
   1694Complicated interrupts are handled by dedicated functions (which
   1695appear first in this file).  Any pending interrupts can be serviced by
   1696calling dbri_process_interrupt_buffer(), which works even if the CPU's
   1697interrupts are disabled.
   1698
   1699*/
   1700
   1701/* xmit_descs()
   1702 *
   1703 * Starts transmitting the current TD's for recording/playing.
   1704 * For playback, ALSA has filled the DMA memory with new data (we hope).
   1705 */
   1706static void xmit_descs(struct snd_dbri *dbri)
   1707{
   1708	struct dbri_streaminfo *info;
   1709	u32 dvma_addr;
   1710	s32 *cmd;
   1711	unsigned long flags;
   1712	int first_td;
   1713
   1714	if (dbri == NULL)
   1715		return;		/* Disabled */
   1716
   1717	dvma_addr = (u32)dbri->dma_dvma;
   1718	info = &dbri->stream_info[DBRI_REC];
   1719	spin_lock_irqsave(&dbri->lock, flags);
   1720
   1721	if (info->pipe >= 0) {
   1722		first_td = dbri->pipes[info->pipe].first_desc;
   1723
   1724		dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
   1725
   1726		/* Stream could be closed by the time we run. */
   1727		if (first_td >= 0) {
   1728			cmd = dbri_cmdlock(dbri, 2);
   1729			*(cmd++) = DBRI_CMD(D_SDP, 0,
   1730					    dbri->pipes[info->pipe].sdp
   1731					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
   1732			*(cmd++) = dvma_addr +
   1733				   dbri_dma_off(desc, first_td);
   1734			dbri_cmdsend(dbri, cmd, 2);
   1735
   1736			/* Reset our admin of the pipe. */
   1737			dbri->pipes[info->pipe].desc = first_td;
   1738		}
   1739	}
   1740
   1741	info = &dbri->stream_info[DBRI_PLAY];
   1742
   1743	if (info->pipe >= 0) {
   1744		first_td = dbri->pipes[info->pipe].first_desc;
   1745
   1746		dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
   1747
   1748		/* Stream could be closed by the time we run. */
   1749		if (first_td >= 0) {
   1750			cmd = dbri_cmdlock(dbri, 2);
   1751			*(cmd++) = DBRI_CMD(D_SDP, 0,
   1752					    dbri->pipes[info->pipe].sdp
   1753					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
   1754			*(cmd++) = dvma_addr +
   1755				   dbri_dma_off(desc, first_td);
   1756			dbri_cmdsend(dbri, cmd, 2);
   1757
   1758			/* Reset our admin of the pipe. */
   1759			dbri->pipes[info->pipe].desc = first_td;
   1760		}
   1761	}
   1762
   1763	spin_unlock_irqrestore(&dbri->lock, flags);
   1764}
   1765
   1766/* transmission_complete_intr()
   1767 *
   1768 * Called by main interrupt handler when DBRI signals transmission complete
   1769 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
   1770 *
   1771 * Walks through the pipe's list of transmit buffer descriptors and marks
   1772 * them as available. Stops when the first descriptor is found without
   1773 * TBC (Transmit Buffer Complete) set, or we've run through them all.
   1774 *
   1775 * The DMA buffers are not released. They form a ring buffer and
   1776 * they are filled by ALSA while others are transmitted by DMA.
   1777 *
   1778 */
   1779
   1780static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
   1781{
   1782	struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
   1783	int td = dbri->pipes[pipe].desc;
   1784	int status;
   1785
   1786	while (td >= 0) {
   1787		if (td >= DBRI_NO_DESCS) {
   1788			printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
   1789			return;
   1790		}
   1791
   1792		status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
   1793		if (!(status & DBRI_TD_TBC))
   1794			break;
   1795
   1796		dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
   1797
   1798		dbri->dma->desc[td].word4 = 0;	/* Reset it for next time. */
   1799		info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
   1800
   1801		td = dbri->next_desc[td];
   1802		dbri->pipes[pipe].desc = td;
   1803	}
   1804
   1805	/* Notify ALSA */
   1806	spin_unlock(&dbri->lock);
   1807	snd_pcm_period_elapsed(info->substream);
   1808	spin_lock(&dbri->lock);
   1809}
   1810
   1811static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
   1812{
   1813	struct dbri_streaminfo *info;
   1814	int rd = dbri->pipes[pipe].desc;
   1815	s32 status;
   1816
   1817	if (rd < 0 || rd >= DBRI_NO_DESCS) {
   1818		printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
   1819		return;
   1820	}
   1821
   1822	dbri->pipes[pipe].desc = dbri->next_desc[rd];
   1823	status = dbri->dma->desc[rd].word1;
   1824	dbri->dma->desc[rd].word1 = 0;	/* Reset it for next time. */
   1825
   1826	info = &dbri->stream_info[DBRI_REC];
   1827	info->offset += DBRI_RD_CNT(status);
   1828
   1829	/* FIXME: Check status */
   1830
   1831	dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
   1832		rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
   1833
   1834	/* Notify ALSA */
   1835	spin_unlock(&dbri->lock);
   1836	snd_pcm_period_elapsed(info->substream);
   1837	spin_lock(&dbri->lock);
   1838}
   1839
   1840static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
   1841{
   1842	int val = D_INTR_GETVAL(x);
   1843	int channel = D_INTR_GETCHAN(x);
   1844	int command = D_INTR_GETCMD(x);
   1845	int code = D_INTR_GETCODE(x);
   1846#ifdef DBRI_DEBUG
   1847	int rval = D_INTR_GETRVAL(x);
   1848#endif
   1849
   1850	if (channel == D_INTR_CMD) {
   1851		dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
   1852			cmds[command], val);
   1853	} else {
   1854		dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
   1855			channel, code, rval);
   1856	}
   1857
   1858	switch (code) {
   1859	case D_INTR_CMDI:
   1860		if (command != D_WAIT)
   1861			printk(KERN_ERR "DBRI: Command read interrupt\n");
   1862		break;
   1863	case D_INTR_BRDY:
   1864		reception_complete_intr(dbri, channel);
   1865		break;
   1866	case D_INTR_XCMP:
   1867	case D_INTR_MINT:
   1868		transmission_complete_intr(dbri, channel);
   1869		break;
   1870	case D_INTR_UNDR:
   1871		/* UNDR - Transmission underrun
   1872		 * resend SDP command with clear pipe bit (C) set
   1873		 */
   1874		{
   1875	/* FIXME: do something useful in case of underrun */
   1876			printk(KERN_ERR "DBRI: Underrun error\n");
   1877#if 0
   1878			s32 *cmd;
   1879			int pipe = channel;
   1880			int td = dbri->pipes[pipe].desc;
   1881
   1882			dbri->dma->desc[td].word4 = 0;
   1883			cmd = dbri_cmdlock(dbri, NoGetLock);
   1884			*(cmd++) = DBRI_CMD(D_SDP, 0,
   1885					    dbri->pipes[pipe].sdp
   1886					    | D_SDP_P | D_SDP_C | D_SDP_2SAME);
   1887			*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
   1888			dbri_cmdsend(dbri, cmd);
   1889#endif
   1890		}
   1891		break;
   1892	case D_INTR_FXDT:
   1893		/* FXDT - Fixed data change */
   1894		if (dbri->pipes[channel].sdp & D_SDP_MSB)
   1895			val = reverse_bytes(val, dbri->pipes[channel].length);
   1896
   1897		if (dbri->pipes[channel].recv_fixed_ptr)
   1898			*(dbri->pipes[channel].recv_fixed_ptr) = val;
   1899		break;
   1900	default:
   1901		if (channel != D_INTR_CMD)
   1902			printk(KERN_WARNING
   1903			       "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
   1904	}
   1905}
   1906
   1907/* dbri_process_interrupt_buffer advances through the DBRI's interrupt
   1908 * buffer until it finds a zero word (indicating nothing more to do
   1909 * right now).  Non-zero words require processing and are handed off
   1910 * to dbri_process_one_interrupt AFTER advancing the pointer.
   1911 */
   1912static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
   1913{
   1914	s32 x;
   1915
   1916	while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
   1917		dbri->dma->intr[dbri->dbri_irqp] = 0;
   1918		dbri->dbri_irqp++;
   1919		if (dbri->dbri_irqp == DBRI_INT_BLK)
   1920			dbri->dbri_irqp = 1;
   1921
   1922		dbri_process_one_interrupt(dbri, x);
   1923	}
   1924}
   1925
   1926static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
   1927{
   1928	struct snd_dbri *dbri = dev_id;
   1929	static int errcnt;
   1930	int x;
   1931
   1932	if (dbri == NULL)
   1933		return IRQ_NONE;
   1934	spin_lock(&dbri->lock);
   1935
   1936	/*
   1937	 * Read it, so the interrupt goes away.
   1938	 */
   1939	x = sbus_readl(dbri->regs + REG1);
   1940
   1941	if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
   1942		u32 tmp;
   1943
   1944		if (x & D_MRR)
   1945			printk(KERN_ERR
   1946			       "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
   1947			       x);
   1948		if (x & D_MLE)
   1949			printk(KERN_ERR
   1950			       "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
   1951			       x);
   1952		if (x & D_LBG)
   1953			printk(KERN_ERR
   1954			       "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
   1955		if (x & D_MBE)
   1956			printk(KERN_ERR
   1957			       "DBRI: Burst Error on SBus reg1=0x%x\n", x);
   1958
   1959		/* Some of these SBus errors cause the chip's SBus circuitry
   1960		 * to be disabled, so just re-enable and try to keep going.
   1961		 *
   1962		 * The only one I've seen is MRR, which will be triggered
   1963		 * if you let a transmit pipe underrun, then try to CDP it.
   1964		 *
   1965		 * If these things persist, we reset the chip.
   1966		 */
   1967		if ((++errcnt) % 10 == 0) {
   1968			dprintk(D_INT, "Interrupt errors exceeded.\n");
   1969			dbri_reset(dbri);
   1970		} else {
   1971			tmp = sbus_readl(dbri->regs + REG0);
   1972			tmp &= ~(D_D);
   1973			sbus_writel(tmp, dbri->regs + REG0);
   1974		}
   1975	}
   1976
   1977	dbri_process_interrupt_buffer(dbri);
   1978
   1979	spin_unlock(&dbri->lock);
   1980
   1981	return IRQ_HANDLED;
   1982}
   1983
   1984/****************************************************************************
   1985		PCM Interface
   1986****************************************************************************/
   1987static const struct snd_pcm_hardware snd_dbri_pcm_hw = {
   1988	.info		= SNDRV_PCM_INFO_MMAP |
   1989			  SNDRV_PCM_INFO_INTERLEAVED |
   1990			  SNDRV_PCM_INFO_BLOCK_TRANSFER |
   1991			  SNDRV_PCM_INFO_MMAP_VALID |
   1992			  SNDRV_PCM_INFO_BATCH,
   1993	.formats	= SNDRV_PCM_FMTBIT_MU_LAW |
   1994			  SNDRV_PCM_FMTBIT_A_LAW |
   1995			  SNDRV_PCM_FMTBIT_U8 |
   1996			  SNDRV_PCM_FMTBIT_S16_BE,
   1997	.rates		= SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
   1998	.rate_min		= 5512,
   1999	.rate_max		= 48000,
   2000	.channels_min		= 1,
   2001	.channels_max		= 2,
   2002	.buffer_bytes_max	= 64 * 1024,
   2003	.period_bytes_min	= 1,
   2004	.period_bytes_max	= DBRI_TD_MAXCNT,
   2005	.periods_min		= 1,
   2006	.periods_max		= 1024,
   2007};
   2008
   2009static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
   2010			      struct snd_pcm_hw_rule *rule)
   2011{
   2012	struct snd_interval *c = hw_param_interval(params,
   2013				SNDRV_PCM_HW_PARAM_CHANNELS);
   2014	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
   2015	struct snd_mask fmt;
   2016
   2017	snd_mask_any(&fmt);
   2018	if (c->min > 1) {
   2019		fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
   2020		return snd_mask_refine(f, &fmt);
   2021	}
   2022	return 0;
   2023}
   2024
   2025static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
   2026				struct snd_pcm_hw_rule *rule)
   2027{
   2028	struct snd_interval *c = hw_param_interval(params,
   2029				SNDRV_PCM_HW_PARAM_CHANNELS);
   2030	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
   2031	struct snd_interval ch;
   2032
   2033	snd_interval_any(&ch);
   2034	if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
   2035		ch.min = 1;
   2036		ch.max = 1;
   2037		ch.integer = 1;
   2038		return snd_interval_refine(c, &ch);
   2039	}
   2040	return 0;
   2041}
   2042
   2043static int snd_dbri_open(struct snd_pcm_substream *substream)
   2044{
   2045	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
   2046	struct snd_pcm_runtime *runtime = substream->runtime;
   2047	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
   2048	unsigned long flags;
   2049
   2050	dprintk(D_USR, "open audio output.\n");
   2051	runtime->hw = snd_dbri_pcm_hw;
   2052
   2053	spin_lock_irqsave(&dbri->lock, flags);
   2054	info->substream = substream;
   2055	info->offset = 0;
   2056	info->dvma_buffer = 0;
   2057	info->pipe = -1;
   2058	spin_unlock_irqrestore(&dbri->lock, flags);
   2059
   2060	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
   2061			    snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
   2062			    -1);
   2063	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
   2064			    snd_hw_rule_channels, NULL,
   2065			    SNDRV_PCM_HW_PARAM_CHANNELS,
   2066			    -1);
   2067
   2068	cs4215_open(dbri);
   2069
   2070	return 0;
   2071}
   2072
   2073static int snd_dbri_close(struct snd_pcm_substream *substream)
   2074{
   2075	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
   2076	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
   2077
   2078	dprintk(D_USR, "close audio output.\n");
   2079	info->substream = NULL;
   2080	info->offset = 0;
   2081
   2082	return 0;
   2083}
   2084
   2085static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
   2086			      struct snd_pcm_hw_params *hw_params)
   2087{
   2088	struct snd_pcm_runtime *runtime = substream->runtime;
   2089	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
   2090	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
   2091	int direction;
   2092	int ret;
   2093
   2094	/* set sampling rate, audio format and number of channels */
   2095	ret = cs4215_prepare(dbri, params_rate(hw_params),
   2096			     params_format(hw_params),
   2097			     params_channels(hw_params));
   2098	if (ret != 0)
   2099		return ret;
   2100
   2101	/* hw_params can get called multiple times. Only map the DMA once.
   2102	 */
   2103	if (info->dvma_buffer == 0) {
   2104		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
   2105			direction = DMA_TO_DEVICE;
   2106		else
   2107			direction = DMA_FROM_DEVICE;
   2108
   2109		info->dvma_buffer =
   2110			dma_map_single(&dbri->op->dev,
   2111				       runtime->dma_area,
   2112				       params_buffer_bytes(hw_params),
   2113				       direction);
   2114	}
   2115
   2116	direction = params_buffer_bytes(hw_params);
   2117	dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
   2118		direction, info->dvma_buffer);
   2119	return 0;
   2120}
   2121
   2122static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
   2123{
   2124	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
   2125	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
   2126	int direction;
   2127
   2128	dprintk(D_USR, "hw_free.\n");
   2129
   2130	/* hw_free can get called multiple times. Only unmap the DMA once.
   2131	 */
   2132	if (info->dvma_buffer) {
   2133		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
   2134			direction = DMA_TO_DEVICE;
   2135		else
   2136			direction = DMA_FROM_DEVICE;
   2137
   2138		dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
   2139				 substream->runtime->buffer_size, direction);
   2140		info->dvma_buffer = 0;
   2141	}
   2142	if (info->pipe != -1) {
   2143		reset_pipe(dbri, info->pipe);
   2144		info->pipe = -1;
   2145	}
   2146
   2147	return 0;
   2148}
   2149
   2150static int snd_dbri_prepare(struct snd_pcm_substream *substream)
   2151{
   2152	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
   2153	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
   2154	int ret;
   2155
   2156	info->size = snd_pcm_lib_buffer_bytes(substream);
   2157	if (DBRI_STREAMNO(substream) == DBRI_PLAY)
   2158		info->pipe = 4;	/* Send pipe */
   2159	else
   2160		info->pipe = 6;	/* Receive pipe */
   2161
   2162	spin_lock_irq(&dbri->lock);
   2163	info->offset = 0;
   2164
   2165	/* Setup the all the transmit/receive descriptors to cover the
   2166	 * whole DMA buffer.
   2167	 */
   2168	ret = setup_descs(dbri, DBRI_STREAMNO(substream),
   2169			  snd_pcm_lib_period_bytes(substream));
   2170
   2171	spin_unlock_irq(&dbri->lock);
   2172
   2173	dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
   2174	return ret;
   2175}
   2176
   2177static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
   2178{
   2179	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
   2180	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
   2181	int ret = 0;
   2182
   2183	switch (cmd) {
   2184	case SNDRV_PCM_TRIGGER_START:
   2185		dprintk(D_USR, "start audio, period is %d bytes\n",
   2186			(int)snd_pcm_lib_period_bytes(substream));
   2187		/* Re-submit the TDs. */
   2188		xmit_descs(dbri);
   2189		break;
   2190	case SNDRV_PCM_TRIGGER_STOP:
   2191		dprintk(D_USR, "stop audio.\n");
   2192		reset_pipe(dbri, info->pipe);
   2193		break;
   2194	default:
   2195		ret = -EINVAL;
   2196	}
   2197
   2198	return ret;
   2199}
   2200
   2201static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
   2202{
   2203	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
   2204	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
   2205	snd_pcm_uframes_t ret;
   2206
   2207	ret = bytes_to_frames(substream->runtime, info->offset)
   2208		% substream->runtime->buffer_size;
   2209	dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
   2210		ret, substream->runtime->buffer_size);
   2211	return ret;
   2212}
   2213
   2214static const struct snd_pcm_ops snd_dbri_ops = {
   2215	.open = snd_dbri_open,
   2216	.close = snd_dbri_close,
   2217	.hw_params = snd_dbri_hw_params,
   2218	.hw_free = snd_dbri_hw_free,
   2219	.prepare = snd_dbri_prepare,
   2220	.trigger = snd_dbri_trigger,
   2221	.pointer = snd_dbri_pointer,
   2222};
   2223
   2224static int snd_dbri_pcm(struct snd_card *card)
   2225{
   2226	struct snd_pcm *pcm;
   2227	int err;
   2228
   2229	err = snd_pcm_new(card,
   2230			  /* ID */	    "sun_dbri",
   2231			  /* device */	    0,
   2232			  /* playback count */ 1,
   2233			  /* capture count */  1, &pcm);
   2234	if (err < 0)
   2235		return err;
   2236
   2237	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
   2238	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
   2239
   2240	pcm->private_data = card->private_data;
   2241	pcm->info_flags = 0;
   2242	strcpy(pcm->name, card->shortname);
   2243
   2244	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
   2245				       NULL, 64 * 1024, 64 * 1024);
   2246	return 0;
   2247}
   2248
   2249/*****************************************************************************
   2250			Mixer interface
   2251*****************************************************************************/
   2252
   2253static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
   2254				  struct snd_ctl_elem_info *uinfo)
   2255{
   2256	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
   2257	uinfo->count = 2;
   2258	uinfo->value.integer.min = 0;
   2259	if (kcontrol->private_value == DBRI_PLAY)
   2260		uinfo->value.integer.max = DBRI_MAX_VOLUME;
   2261	else
   2262		uinfo->value.integer.max = DBRI_MAX_GAIN;
   2263	return 0;
   2264}
   2265
   2266static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
   2267				 struct snd_ctl_elem_value *ucontrol)
   2268{
   2269	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
   2270	struct dbri_streaminfo *info;
   2271
   2272	if (snd_BUG_ON(!dbri))
   2273		return -EINVAL;
   2274	info = &dbri->stream_info[kcontrol->private_value];
   2275
   2276	ucontrol->value.integer.value[0] = info->left_gain;
   2277	ucontrol->value.integer.value[1] = info->right_gain;
   2278	return 0;
   2279}
   2280
   2281static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
   2282				 struct snd_ctl_elem_value *ucontrol)
   2283{
   2284	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
   2285	struct dbri_streaminfo *info =
   2286				&dbri->stream_info[kcontrol->private_value];
   2287	unsigned int vol[2];
   2288	int changed = 0;
   2289
   2290	vol[0] = ucontrol->value.integer.value[0];
   2291	vol[1] = ucontrol->value.integer.value[1];
   2292	if (kcontrol->private_value == DBRI_PLAY) {
   2293		if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
   2294			return -EINVAL;
   2295	} else {
   2296		if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
   2297			return -EINVAL;
   2298	}
   2299
   2300	if (info->left_gain != vol[0]) {
   2301		info->left_gain = vol[0];
   2302		changed = 1;
   2303	}
   2304	if (info->right_gain != vol[1]) {
   2305		info->right_gain = vol[1];
   2306		changed = 1;
   2307	}
   2308	if (changed) {
   2309		/* First mute outputs, and wait 1/8000 sec (125 us)
   2310		 * to make sure this takes.  This avoids clicking noises.
   2311		 */
   2312		cs4215_setdata(dbri, 1);
   2313		udelay(125);
   2314		cs4215_setdata(dbri, 0);
   2315	}
   2316	return changed;
   2317}
   2318
   2319static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
   2320				  struct snd_ctl_elem_info *uinfo)
   2321{
   2322	int mask = (kcontrol->private_value >> 16) & 0xff;
   2323
   2324	uinfo->type = (mask == 1) ?
   2325	    SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
   2326	uinfo->count = 1;
   2327	uinfo->value.integer.min = 0;
   2328	uinfo->value.integer.max = mask;
   2329	return 0;
   2330}
   2331
   2332static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
   2333				 struct snd_ctl_elem_value *ucontrol)
   2334{
   2335	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
   2336	int elem = kcontrol->private_value & 0xff;
   2337	int shift = (kcontrol->private_value >> 8) & 0xff;
   2338	int mask = (kcontrol->private_value >> 16) & 0xff;
   2339	int invert = (kcontrol->private_value >> 24) & 1;
   2340
   2341	if (snd_BUG_ON(!dbri))
   2342		return -EINVAL;
   2343
   2344	if (elem < 4)
   2345		ucontrol->value.integer.value[0] =
   2346		    (dbri->mm.data[elem] >> shift) & mask;
   2347	else
   2348		ucontrol->value.integer.value[0] =
   2349		    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
   2350
   2351	if (invert == 1)
   2352		ucontrol->value.integer.value[0] =
   2353		    mask - ucontrol->value.integer.value[0];
   2354	return 0;
   2355}
   2356
   2357static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
   2358				 struct snd_ctl_elem_value *ucontrol)
   2359{
   2360	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
   2361	int elem = kcontrol->private_value & 0xff;
   2362	int shift = (kcontrol->private_value >> 8) & 0xff;
   2363	int mask = (kcontrol->private_value >> 16) & 0xff;
   2364	int invert = (kcontrol->private_value >> 24) & 1;
   2365	int changed = 0;
   2366	unsigned short val;
   2367
   2368	if (snd_BUG_ON(!dbri))
   2369		return -EINVAL;
   2370
   2371	val = (ucontrol->value.integer.value[0] & mask);
   2372	if (invert == 1)
   2373		val = mask - val;
   2374	val <<= shift;
   2375
   2376	if (elem < 4) {
   2377		dbri->mm.data[elem] = (dbri->mm.data[elem] &
   2378				       ~(mask << shift)) | val;
   2379		changed = (val != dbri->mm.data[elem]);
   2380	} else {
   2381		dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
   2382					   ~(mask << shift)) | val;
   2383		changed = (val != dbri->mm.ctrl[elem - 4]);
   2384	}
   2385
   2386	dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
   2387		"mixer-value=%ld, mm-value=0x%x\n",
   2388		mask, changed, ucontrol->value.integer.value[0],
   2389		dbri->mm.data[elem & 3]);
   2390
   2391	if (changed) {
   2392		/* First mute outputs, and wait 1/8000 sec (125 us)
   2393		 * to make sure this takes.  This avoids clicking noises.
   2394		 */
   2395		cs4215_setdata(dbri, 1);
   2396		udelay(125);
   2397		cs4215_setdata(dbri, 0);
   2398	}
   2399	return changed;
   2400}
   2401
   2402/* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
   2403   timeslots. Shift is the bit offset in the timeslot, mask defines the
   2404   number of bits. invert is a boolean for use with attenuation.
   2405 */
   2406#define CS4215_SINGLE(xname, entry, shift, mask, invert)	\
   2407{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),		\
   2408  .info = snd_cs4215_info_single,				\
   2409  .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,	\
   2410  .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |	\
   2411			((invert) << 24) },
   2412
   2413static const struct snd_kcontrol_new dbri_controls[] = {
   2414	{
   2415	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
   2416	 .name  = "Playback Volume",
   2417	 .info  = snd_cs4215_info_volume,
   2418	 .get   = snd_cs4215_get_volume,
   2419	 .put   = snd_cs4215_put_volume,
   2420	 .private_value = DBRI_PLAY,
   2421	 },
   2422	CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
   2423	CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
   2424	CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
   2425	{
   2426	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
   2427	 .name  = "Capture Volume",
   2428	 .info  = snd_cs4215_info_volume,
   2429	 .get   = snd_cs4215_get_volume,
   2430	 .put   = snd_cs4215_put_volume,
   2431	 .private_value = DBRI_REC,
   2432	 },
   2433	/* FIXME: mic/line switch */
   2434	CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
   2435	CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
   2436	CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
   2437	CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
   2438};
   2439
   2440static int snd_dbri_mixer(struct snd_card *card)
   2441{
   2442	int idx, err;
   2443	struct snd_dbri *dbri;
   2444
   2445	if (snd_BUG_ON(!card || !card->private_data))
   2446		return -EINVAL;
   2447	dbri = card->private_data;
   2448
   2449	strcpy(card->mixername, card->shortname);
   2450
   2451	for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
   2452		err = snd_ctl_add(card,
   2453				snd_ctl_new1(&dbri_controls[idx], dbri));
   2454		if (err < 0)
   2455			return err;
   2456	}
   2457
   2458	for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
   2459		dbri->stream_info[idx].left_gain = 0;
   2460		dbri->stream_info[idx].right_gain = 0;
   2461	}
   2462
   2463	return 0;
   2464}
   2465
   2466/****************************************************************************
   2467			/proc interface
   2468****************************************************************************/
   2469static void dbri_regs_read(struct snd_info_entry *entry,
   2470			   struct snd_info_buffer *buffer)
   2471{
   2472	struct snd_dbri *dbri = entry->private_data;
   2473
   2474	snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
   2475	snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
   2476	snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
   2477	snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
   2478}
   2479
   2480#ifdef DBRI_DEBUG
   2481static void dbri_debug_read(struct snd_info_entry *entry,
   2482			    struct snd_info_buffer *buffer)
   2483{
   2484	struct snd_dbri *dbri = entry->private_data;
   2485	int pipe;
   2486	snd_iprintf(buffer, "debug=%d\n", dbri_debug);
   2487
   2488	for (pipe = 0; pipe < 32; pipe++) {
   2489		if (pipe_active(dbri, pipe)) {
   2490			struct dbri_pipe *pptr = &dbri->pipes[pipe];
   2491			snd_iprintf(buffer,
   2492				    "Pipe %d: %s SDP=0x%x desc=%d, "
   2493				    "len=%d next %d\n",
   2494				    pipe,
   2495				   (pptr->sdp & D_SDP_TO_SER) ? "output" :
   2496								 "input",
   2497				    pptr->sdp, pptr->desc,
   2498				    pptr->length, pptr->nextpipe);
   2499		}
   2500	}
   2501}
   2502#endif
   2503
   2504static void snd_dbri_proc(struct snd_card *card)
   2505{
   2506	struct snd_dbri *dbri = card->private_data;
   2507
   2508	snd_card_ro_proc_new(card, "regs", dbri, dbri_regs_read);
   2509#ifdef DBRI_DEBUG
   2510	snd_card_ro_proc_new(card, "debug", dbri, dbri_debug_read);
   2511#endif
   2512}
   2513
   2514/*
   2515****************************************************************************
   2516**************************** Initialization ********************************
   2517****************************************************************************
   2518*/
   2519static void snd_dbri_free(struct snd_dbri *dbri);
   2520
   2521static int snd_dbri_create(struct snd_card *card,
   2522			   struct platform_device *op,
   2523			   int irq, int dev)
   2524{
   2525	struct snd_dbri *dbri = card->private_data;
   2526	int err;
   2527
   2528	spin_lock_init(&dbri->lock);
   2529	dbri->op = op;
   2530	dbri->irq = irq;
   2531
   2532	dbri->dma = dma_alloc_coherent(&op->dev, sizeof(struct dbri_dma),
   2533				       &dbri->dma_dvma, GFP_KERNEL);
   2534	if (!dbri->dma)
   2535		return -ENOMEM;
   2536
   2537	dprintk(D_GEN, "DMA Cmd Block 0x%p (%pad)\n",
   2538		dbri->dma, dbri->dma_dvma);
   2539
   2540	/* Map the registers into memory. */
   2541	dbri->regs_size = resource_size(&op->resource[0]);
   2542	dbri->regs = of_ioremap(&op->resource[0], 0,
   2543				dbri->regs_size, "DBRI Registers");
   2544	if (!dbri->regs) {
   2545		printk(KERN_ERR "DBRI: could not allocate registers\n");
   2546		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
   2547				  (void *)dbri->dma, dbri->dma_dvma);
   2548		return -EIO;
   2549	}
   2550
   2551	err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
   2552			  "DBRI audio", dbri);
   2553	if (err) {
   2554		printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
   2555		of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
   2556		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
   2557				  (void *)dbri->dma, dbri->dma_dvma);
   2558		return err;
   2559	}
   2560
   2561	/* Do low level initialization of the DBRI and CS4215 chips */
   2562	dbri_initialize(dbri);
   2563	err = cs4215_init(dbri);
   2564	if (err) {
   2565		snd_dbri_free(dbri);
   2566		return err;
   2567	}
   2568
   2569	return 0;
   2570}
   2571
   2572static void snd_dbri_free(struct snd_dbri *dbri)
   2573{
   2574	dprintk(D_GEN, "snd_dbri_free\n");
   2575	dbri_reset(dbri);
   2576
   2577	if (dbri->irq)
   2578		free_irq(dbri->irq, dbri);
   2579
   2580	if (dbri->regs)
   2581		of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
   2582
   2583	if (dbri->dma)
   2584		dma_free_coherent(&dbri->op->dev,
   2585				  sizeof(struct dbri_dma),
   2586				  (void *)dbri->dma, dbri->dma_dvma);
   2587}
   2588
   2589static int dbri_probe(struct platform_device *op)
   2590{
   2591	struct snd_dbri *dbri;
   2592	struct resource *rp;
   2593	struct snd_card *card;
   2594	static int dev;
   2595	int irq;
   2596	int err;
   2597
   2598	if (dev >= SNDRV_CARDS)
   2599		return -ENODEV;
   2600	if (!enable[dev]) {
   2601		dev++;
   2602		return -ENOENT;
   2603	}
   2604
   2605	irq = op->archdata.irqs[0];
   2606	if (irq <= 0) {
   2607		printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
   2608		return -ENODEV;
   2609	}
   2610
   2611	err = snd_card_new(&op->dev, index[dev], id[dev], THIS_MODULE,
   2612			   sizeof(struct snd_dbri), &card);
   2613	if (err < 0)
   2614		return err;
   2615
   2616	strcpy(card->driver, "DBRI");
   2617	strcpy(card->shortname, "Sun DBRI");
   2618	rp = &op->resource[0];
   2619	sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
   2620		card->shortname,
   2621		rp->flags & 0xffL, (unsigned long long)rp->start, irq);
   2622
   2623	err = snd_dbri_create(card, op, irq, dev);
   2624	if (err < 0) {
   2625		snd_card_free(card);
   2626		return err;
   2627	}
   2628
   2629	dbri = card->private_data;
   2630	err = snd_dbri_pcm(card);
   2631	if (err < 0)
   2632		goto _err;
   2633
   2634	err = snd_dbri_mixer(card);
   2635	if (err < 0)
   2636		goto _err;
   2637
   2638	/* /proc file handling */
   2639	snd_dbri_proc(card);
   2640	dev_set_drvdata(&op->dev, card);
   2641
   2642	err = snd_card_register(card);
   2643	if (err < 0)
   2644		goto _err;
   2645
   2646	printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
   2647	       dev, dbri->regs,
   2648	       dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
   2649	dev++;
   2650
   2651	return 0;
   2652
   2653_err:
   2654	snd_dbri_free(dbri);
   2655	snd_card_free(card);
   2656	return err;
   2657}
   2658
   2659static int dbri_remove(struct platform_device *op)
   2660{
   2661	struct snd_card *card = dev_get_drvdata(&op->dev);
   2662
   2663	snd_dbri_free(card->private_data);
   2664	snd_card_free(card);
   2665
   2666	return 0;
   2667}
   2668
   2669static const struct of_device_id dbri_match[] = {
   2670	{
   2671		.name = "SUNW,DBRIe",
   2672	},
   2673	{
   2674		.name = "SUNW,DBRIf",
   2675	},
   2676	{},
   2677};
   2678
   2679MODULE_DEVICE_TABLE(of, dbri_match);
   2680
   2681static struct platform_driver dbri_sbus_driver = {
   2682	.driver = {
   2683		.name = "dbri",
   2684		.of_match_table = dbri_match,
   2685	},
   2686	.probe		= dbri_probe,
   2687	.remove		= dbri_remove,
   2688};
   2689
   2690module_platform_driver(dbri_sbus_driver);