cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

rbtree.h (9545B)


      1/* SPDX-License-Identifier: GPL-2.0-or-later */
      2/*
      3  Red Black Trees
      4  (C) 1999  Andrea Arcangeli <andrea@suse.de>
      5
      6
      7  linux/include/linux/rbtree.h
      8
      9  To use rbtrees you'll have to implement your own insert and search cores.
     10  This will avoid us to use callbacks and to drop drammatically performances.
     11  I know it's not the cleaner way,  but in C (not in C++) to get
     12  performances and genericity...
     13
     14  See Documentation/core-api/rbtree.rst for documentation and samples.
     15*/
     16
     17#ifndef __TOOLS_LINUX_PERF_RBTREE_H
     18#define __TOOLS_LINUX_PERF_RBTREE_H
     19
     20#include <linux/kernel.h>
     21#include <linux/stddef.h>
     22
     23struct rb_node {
     24	unsigned long  __rb_parent_color;
     25	struct rb_node *rb_right;
     26	struct rb_node *rb_left;
     27} __attribute__((aligned(sizeof(long))));
     28    /* The alignment might seem pointless, but allegedly CRIS needs it */
     29
     30struct rb_root {
     31	struct rb_node *rb_node;
     32};
     33
     34#define rb_parent(r)   ((struct rb_node *)((r)->__rb_parent_color & ~3))
     35
     36#define RB_ROOT	(struct rb_root) { NULL, }
     37#define	rb_entry(ptr, type, member) container_of(ptr, type, member)
     38
     39#define RB_EMPTY_ROOT(root)  (READ_ONCE((root)->rb_node) == NULL)
     40
     41/* 'empty' nodes are nodes that are known not to be inserted in an rbtree */
     42#define RB_EMPTY_NODE(node)  \
     43	((node)->__rb_parent_color == (unsigned long)(node))
     44#define RB_CLEAR_NODE(node)  \
     45	((node)->__rb_parent_color = (unsigned long)(node))
     46
     47
     48extern void rb_insert_color(struct rb_node *, struct rb_root *);
     49extern void rb_erase(struct rb_node *, struct rb_root *);
     50
     51
     52/* Find logical next and previous nodes in a tree */
     53extern struct rb_node *rb_next(const struct rb_node *);
     54extern struct rb_node *rb_prev(const struct rb_node *);
     55extern struct rb_node *rb_first(const struct rb_root *);
     56extern struct rb_node *rb_last(const struct rb_root *);
     57
     58/* Postorder iteration - always visit the parent after its children */
     59extern struct rb_node *rb_first_postorder(const struct rb_root *);
     60extern struct rb_node *rb_next_postorder(const struct rb_node *);
     61
     62/* Fast replacement of a single node without remove/rebalance/add/rebalance */
     63extern void rb_replace_node(struct rb_node *victim, struct rb_node *new,
     64			    struct rb_root *root);
     65
     66static inline void rb_link_node(struct rb_node *node, struct rb_node *parent,
     67				struct rb_node **rb_link)
     68{
     69	node->__rb_parent_color = (unsigned long)parent;
     70	node->rb_left = node->rb_right = NULL;
     71
     72	*rb_link = node;
     73}
     74
     75#define rb_entry_safe(ptr, type, member) \
     76	({ typeof(ptr) ____ptr = (ptr); \
     77	   ____ptr ? rb_entry(____ptr, type, member) : NULL; \
     78	})
     79
     80/**
     81 * rbtree_postorder_for_each_entry_safe - iterate in post-order over rb_root of
     82 * given type allowing the backing memory of @pos to be invalidated
     83 *
     84 * @pos:	the 'type *' to use as a loop cursor.
     85 * @n:		another 'type *' to use as temporary storage
     86 * @root:	'rb_root *' of the rbtree.
     87 * @field:	the name of the rb_node field within 'type'.
     88 *
     89 * rbtree_postorder_for_each_entry_safe() provides a similar guarantee as
     90 * list_for_each_entry_safe() and allows the iteration to continue independent
     91 * of changes to @pos by the body of the loop.
     92 *
     93 * Note, however, that it cannot handle other modifications that re-order the
     94 * rbtree it is iterating over. This includes calling rb_erase() on @pos, as
     95 * rb_erase() may rebalance the tree, causing us to miss some nodes.
     96 */
     97#define rbtree_postorder_for_each_entry_safe(pos, n, root, field) \
     98	for (pos = rb_entry_safe(rb_first_postorder(root), typeof(*pos), field); \
     99	     pos && ({ n = rb_entry_safe(rb_next_postorder(&pos->field), \
    100			typeof(*pos), field); 1; }); \
    101	     pos = n)
    102
    103static inline void rb_erase_init(struct rb_node *n, struct rb_root *root)
    104{
    105	rb_erase(n, root);
    106	RB_CLEAR_NODE(n);
    107}
    108
    109/*
    110 * Leftmost-cached rbtrees.
    111 *
    112 * We do not cache the rightmost node based on footprint
    113 * size vs number of potential users that could benefit
    114 * from O(1) rb_last(). Just not worth it, users that want
    115 * this feature can always implement the logic explicitly.
    116 * Furthermore, users that want to cache both pointers may
    117 * find it a bit asymmetric, but that's ok.
    118 */
    119struct rb_root_cached {
    120	struct rb_root rb_root;
    121	struct rb_node *rb_leftmost;
    122};
    123
    124#define RB_ROOT_CACHED (struct rb_root_cached) { {NULL, }, NULL }
    125
    126/* Same as rb_first(), but O(1) */
    127#define rb_first_cached(root) (root)->rb_leftmost
    128
    129static inline void rb_insert_color_cached(struct rb_node *node,
    130					  struct rb_root_cached *root,
    131					  bool leftmost)
    132{
    133	if (leftmost)
    134		root->rb_leftmost = node;
    135	rb_insert_color(node, &root->rb_root);
    136}
    137
    138static inline void rb_erase_cached(struct rb_node *node,
    139				   struct rb_root_cached *root)
    140{
    141	if (root->rb_leftmost == node)
    142		root->rb_leftmost = rb_next(node);
    143	rb_erase(node, &root->rb_root);
    144}
    145
    146static inline void rb_replace_node_cached(struct rb_node *victim,
    147					  struct rb_node *new,
    148					  struct rb_root_cached *root)
    149{
    150	if (root->rb_leftmost == victim)
    151		root->rb_leftmost = new;
    152	rb_replace_node(victim, new, &root->rb_root);
    153}
    154
    155/*
    156 * The below helper functions use 2 operators with 3 different
    157 * calling conventions. The operators are related like:
    158 *
    159 *	comp(a->key,b) < 0  := less(a,b)
    160 *	comp(a->key,b) > 0  := less(b,a)
    161 *	comp(a->key,b) == 0 := !less(a,b) && !less(b,a)
    162 *
    163 * If these operators define a partial order on the elements we make no
    164 * guarantee on which of the elements matching the key is found. See
    165 * rb_find().
    166 *
    167 * The reason for this is to allow the find() interface without requiring an
    168 * on-stack dummy object, which might not be feasible due to object size.
    169 */
    170
    171/**
    172 * rb_add_cached() - insert @node into the leftmost cached tree @tree
    173 * @node: node to insert
    174 * @tree: leftmost cached tree to insert @node into
    175 * @less: operator defining the (partial) node order
    176 */
    177static __always_inline void
    178rb_add_cached(struct rb_node *node, struct rb_root_cached *tree,
    179	      bool (*less)(struct rb_node *, const struct rb_node *))
    180{
    181	struct rb_node **link = &tree->rb_root.rb_node;
    182	struct rb_node *parent = NULL;
    183	bool leftmost = true;
    184
    185	while (*link) {
    186		parent = *link;
    187		if (less(node, parent)) {
    188			link = &parent->rb_left;
    189		} else {
    190			link = &parent->rb_right;
    191			leftmost = false;
    192		}
    193	}
    194
    195	rb_link_node(node, parent, link);
    196	rb_insert_color_cached(node, tree, leftmost);
    197}
    198
    199/**
    200 * rb_add() - insert @node into @tree
    201 * @node: node to insert
    202 * @tree: tree to insert @node into
    203 * @less: operator defining the (partial) node order
    204 */
    205static __always_inline void
    206rb_add(struct rb_node *node, struct rb_root *tree,
    207       bool (*less)(struct rb_node *, const struct rb_node *))
    208{
    209	struct rb_node **link = &tree->rb_node;
    210	struct rb_node *parent = NULL;
    211
    212	while (*link) {
    213		parent = *link;
    214		if (less(node, parent))
    215			link = &parent->rb_left;
    216		else
    217			link = &parent->rb_right;
    218	}
    219
    220	rb_link_node(node, parent, link);
    221	rb_insert_color(node, tree);
    222}
    223
    224/**
    225 * rb_find_add() - find equivalent @node in @tree, or add @node
    226 * @node: node to look-for / insert
    227 * @tree: tree to search / modify
    228 * @cmp: operator defining the node order
    229 *
    230 * Returns the rb_node matching @node, or NULL when no match is found and @node
    231 * is inserted.
    232 */
    233static __always_inline struct rb_node *
    234rb_find_add(struct rb_node *node, struct rb_root *tree,
    235	    int (*cmp)(struct rb_node *, const struct rb_node *))
    236{
    237	struct rb_node **link = &tree->rb_node;
    238	struct rb_node *parent = NULL;
    239	int c;
    240
    241	while (*link) {
    242		parent = *link;
    243		c = cmp(node, parent);
    244
    245		if (c < 0)
    246			link = &parent->rb_left;
    247		else if (c > 0)
    248			link = &parent->rb_right;
    249		else
    250			return parent;
    251	}
    252
    253	rb_link_node(node, parent, link);
    254	rb_insert_color(node, tree);
    255	return NULL;
    256}
    257
    258/**
    259 * rb_find() - find @key in tree @tree
    260 * @key: key to match
    261 * @tree: tree to search
    262 * @cmp: operator defining the node order
    263 *
    264 * Returns the rb_node matching @key or NULL.
    265 */
    266static __always_inline struct rb_node *
    267rb_find(const void *key, const struct rb_root *tree,
    268	int (*cmp)(const void *key, const struct rb_node *))
    269{
    270	struct rb_node *node = tree->rb_node;
    271
    272	while (node) {
    273		int c = cmp(key, node);
    274
    275		if (c < 0)
    276			node = node->rb_left;
    277		else if (c > 0)
    278			node = node->rb_right;
    279		else
    280			return node;
    281	}
    282
    283	return NULL;
    284}
    285
    286/**
    287 * rb_find_first() - find the first @key in @tree
    288 * @key: key to match
    289 * @tree: tree to search
    290 * @cmp: operator defining node order
    291 *
    292 * Returns the leftmost node matching @key, or NULL.
    293 */
    294static __always_inline struct rb_node *
    295rb_find_first(const void *key, const struct rb_root *tree,
    296	      int (*cmp)(const void *key, const struct rb_node *))
    297{
    298	struct rb_node *node = tree->rb_node;
    299	struct rb_node *match = NULL;
    300
    301	while (node) {
    302		int c = cmp(key, node);
    303
    304		if (c <= 0) {
    305			if (!c)
    306				match = node;
    307			node = node->rb_left;
    308		} else if (c > 0) {
    309			node = node->rb_right;
    310		}
    311	}
    312
    313	return match;
    314}
    315
    316/**
    317 * rb_next_match() - find the next @key in @tree
    318 * @key: key to match
    319 * @tree: tree to search
    320 * @cmp: operator defining node order
    321 *
    322 * Returns the next node matching @key, or NULL.
    323 */
    324static __always_inline struct rb_node *
    325rb_next_match(const void *key, struct rb_node *node,
    326	      int (*cmp)(const void *key, const struct rb_node *))
    327{
    328	node = rb_next(node);
    329	if (node && cmp(key, node))
    330		node = NULL;
    331	return node;
    332}
    333
    334/**
    335 * rb_for_each() - iterates a subtree matching @key
    336 * @node: iterator
    337 * @key: key to match
    338 * @tree: tree to search
    339 * @cmp: operator defining node order
    340 */
    341#define rb_for_each(node, key, tree, cmp) \
    342	for ((node) = rb_find_first((key), (tree), (cmp)); \
    343	     (node); (node) = rb_next_match((key), (node), (cmp)))
    344
    345#endif	/* __TOOLS_LINUX_PERF_RBTREE_H */