cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

perf_event.h (40828B)


      1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
      2/*
      3 * Performance events:
      4 *
      5 *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
      6 *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
      7 *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
      8 *
      9 * Data type definitions, declarations, prototypes.
     10 *
     11 *    Started by: Thomas Gleixner and Ingo Molnar
     12 *
     13 * For licencing details see kernel-base/COPYING
     14 */
     15#ifndef _UAPI_LINUX_PERF_EVENT_H
     16#define _UAPI_LINUX_PERF_EVENT_H
     17
     18#include <linux/types.h>
     19#include <linux/ioctl.h>
     20#include <asm/byteorder.h>
     21
     22/*
     23 * User-space ABI bits:
     24 */
     25
     26/*
     27 * attr.type
     28 */
     29enum perf_type_id {
     30	PERF_TYPE_HARDWARE			= 0,
     31	PERF_TYPE_SOFTWARE			= 1,
     32	PERF_TYPE_TRACEPOINT			= 2,
     33	PERF_TYPE_HW_CACHE			= 3,
     34	PERF_TYPE_RAW				= 4,
     35	PERF_TYPE_BREAKPOINT			= 5,
     36
     37	PERF_TYPE_MAX,				/* non-ABI */
     38};
     39
     40/*
     41 * attr.config layout for type PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
     42 * PERF_TYPE_HARDWARE:			0xEEEEEEEE000000AA
     43 *					AA: hardware event ID
     44 *					EEEEEEEE: PMU type ID
     45 * PERF_TYPE_HW_CACHE:			0xEEEEEEEE00DDCCBB
     46 *					BB: hardware cache ID
     47 *					CC: hardware cache op ID
     48 *					DD: hardware cache op result ID
     49 *					EEEEEEEE: PMU type ID
     50 * If the PMU type ID is 0, the PERF_TYPE_RAW will be applied.
     51 */
     52#define PERF_PMU_TYPE_SHIFT		32
     53#define PERF_HW_EVENT_MASK		0xffffffff
     54
     55/*
     56 * Generalized performance event event_id types, used by the
     57 * attr.event_id parameter of the sys_perf_event_open()
     58 * syscall:
     59 */
     60enum perf_hw_id {
     61	/*
     62	 * Common hardware events, generalized by the kernel:
     63	 */
     64	PERF_COUNT_HW_CPU_CYCLES		= 0,
     65	PERF_COUNT_HW_INSTRUCTIONS		= 1,
     66	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
     67	PERF_COUNT_HW_CACHE_MISSES		= 3,
     68	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
     69	PERF_COUNT_HW_BRANCH_MISSES		= 5,
     70	PERF_COUNT_HW_BUS_CYCLES		= 6,
     71	PERF_COUNT_HW_STALLED_CYCLES_FRONTEND	= 7,
     72	PERF_COUNT_HW_STALLED_CYCLES_BACKEND	= 8,
     73	PERF_COUNT_HW_REF_CPU_CYCLES		= 9,
     74
     75	PERF_COUNT_HW_MAX,			/* non-ABI */
     76};
     77
     78/*
     79 * Generalized hardware cache events:
     80 *
     81 *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
     82 *       { read, write, prefetch } x
     83 *       { accesses, misses }
     84 */
     85enum perf_hw_cache_id {
     86	PERF_COUNT_HW_CACHE_L1D			= 0,
     87	PERF_COUNT_HW_CACHE_L1I			= 1,
     88	PERF_COUNT_HW_CACHE_LL			= 2,
     89	PERF_COUNT_HW_CACHE_DTLB		= 3,
     90	PERF_COUNT_HW_CACHE_ITLB		= 4,
     91	PERF_COUNT_HW_CACHE_BPU			= 5,
     92	PERF_COUNT_HW_CACHE_NODE		= 6,
     93
     94	PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
     95};
     96
     97enum perf_hw_cache_op_id {
     98	PERF_COUNT_HW_CACHE_OP_READ		= 0,
     99	PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
    100	PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,
    101
    102	PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
    103};
    104
    105enum perf_hw_cache_op_result_id {
    106	PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
    107	PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,
    108
    109	PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
    110};
    111
    112/*
    113 * Special "software" events provided by the kernel, even if the hardware
    114 * does not support performance events. These events measure various
    115 * physical and sw events of the kernel (and allow the profiling of them as
    116 * well):
    117 */
    118enum perf_sw_ids {
    119	PERF_COUNT_SW_CPU_CLOCK			= 0,
    120	PERF_COUNT_SW_TASK_CLOCK		= 1,
    121	PERF_COUNT_SW_PAGE_FAULTS		= 2,
    122	PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
    123	PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
    124	PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
    125	PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
    126	PERF_COUNT_SW_ALIGNMENT_FAULTS		= 7,
    127	PERF_COUNT_SW_EMULATION_FAULTS		= 8,
    128	PERF_COUNT_SW_DUMMY			= 9,
    129	PERF_COUNT_SW_BPF_OUTPUT		= 10,
    130	PERF_COUNT_SW_CGROUP_SWITCHES		= 11,
    131
    132	PERF_COUNT_SW_MAX,			/* non-ABI */
    133};
    134
    135/*
    136 * Bits that can be set in attr.sample_type to request information
    137 * in the overflow packets.
    138 */
    139enum perf_event_sample_format {
    140	PERF_SAMPLE_IP				= 1U << 0,
    141	PERF_SAMPLE_TID				= 1U << 1,
    142	PERF_SAMPLE_TIME			= 1U << 2,
    143	PERF_SAMPLE_ADDR			= 1U << 3,
    144	PERF_SAMPLE_READ			= 1U << 4,
    145	PERF_SAMPLE_CALLCHAIN			= 1U << 5,
    146	PERF_SAMPLE_ID				= 1U << 6,
    147	PERF_SAMPLE_CPU				= 1U << 7,
    148	PERF_SAMPLE_PERIOD			= 1U << 8,
    149	PERF_SAMPLE_STREAM_ID			= 1U << 9,
    150	PERF_SAMPLE_RAW				= 1U << 10,
    151	PERF_SAMPLE_BRANCH_STACK		= 1U << 11,
    152	PERF_SAMPLE_REGS_USER			= 1U << 12,
    153	PERF_SAMPLE_STACK_USER			= 1U << 13,
    154	PERF_SAMPLE_WEIGHT			= 1U << 14,
    155	PERF_SAMPLE_DATA_SRC			= 1U << 15,
    156	PERF_SAMPLE_IDENTIFIER			= 1U << 16,
    157	PERF_SAMPLE_TRANSACTION			= 1U << 17,
    158	PERF_SAMPLE_REGS_INTR			= 1U << 18,
    159	PERF_SAMPLE_PHYS_ADDR			= 1U << 19,
    160	PERF_SAMPLE_AUX				= 1U << 20,
    161	PERF_SAMPLE_CGROUP			= 1U << 21,
    162	PERF_SAMPLE_DATA_PAGE_SIZE		= 1U << 22,
    163	PERF_SAMPLE_CODE_PAGE_SIZE		= 1U << 23,
    164	PERF_SAMPLE_WEIGHT_STRUCT		= 1U << 24,
    165
    166	PERF_SAMPLE_MAX = 1U << 25,		/* non-ABI */
    167
    168	__PERF_SAMPLE_CALLCHAIN_EARLY		= 1ULL << 63, /* non-ABI; internal use */
    169};
    170
    171#define PERF_SAMPLE_WEIGHT_TYPE	(PERF_SAMPLE_WEIGHT | PERF_SAMPLE_WEIGHT_STRUCT)
    172/*
    173 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
    174 *
    175 * If the user does not pass priv level information via branch_sample_type,
    176 * the kernel uses the event's priv level. Branch and event priv levels do
    177 * not have to match. Branch priv level is checked for permissions.
    178 *
    179 * The branch types can be combined, however BRANCH_ANY covers all types
    180 * of branches and therefore it supersedes all the other types.
    181 */
    182enum perf_branch_sample_type_shift {
    183	PERF_SAMPLE_BRANCH_USER_SHIFT		= 0, /* user branches */
    184	PERF_SAMPLE_BRANCH_KERNEL_SHIFT		= 1, /* kernel branches */
    185	PERF_SAMPLE_BRANCH_HV_SHIFT		= 2, /* hypervisor branches */
    186
    187	PERF_SAMPLE_BRANCH_ANY_SHIFT		= 3, /* any branch types */
    188	PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT	= 4, /* any call branch */
    189	PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT	= 5, /* any return branch */
    190	PERF_SAMPLE_BRANCH_IND_CALL_SHIFT	= 6, /* indirect calls */
    191	PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT	= 7, /* transaction aborts */
    192	PERF_SAMPLE_BRANCH_IN_TX_SHIFT		= 8, /* in transaction */
    193	PERF_SAMPLE_BRANCH_NO_TX_SHIFT		= 9, /* not in transaction */
    194	PERF_SAMPLE_BRANCH_COND_SHIFT		= 10, /* conditional branches */
    195
    196	PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT	= 11, /* call/ret stack */
    197	PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT	= 12, /* indirect jumps */
    198	PERF_SAMPLE_BRANCH_CALL_SHIFT		= 13, /* direct call */
    199
    200	PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT	= 14, /* no flags */
    201	PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT	= 15, /* no cycles */
    202
    203	PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT	= 16, /* save branch type */
    204
    205	PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT	= 17, /* save low level index of raw branch records */
    206
    207	PERF_SAMPLE_BRANCH_MAX_SHIFT		/* non-ABI */
    208};
    209
    210enum perf_branch_sample_type {
    211	PERF_SAMPLE_BRANCH_USER		= 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
    212	PERF_SAMPLE_BRANCH_KERNEL	= 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
    213	PERF_SAMPLE_BRANCH_HV		= 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
    214
    215	PERF_SAMPLE_BRANCH_ANY		= 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
    216	PERF_SAMPLE_BRANCH_ANY_CALL	= 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
    217	PERF_SAMPLE_BRANCH_ANY_RETURN	= 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
    218	PERF_SAMPLE_BRANCH_IND_CALL	= 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
    219	PERF_SAMPLE_BRANCH_ABORT_TX	= 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
    220	PERF_SAMPLE_BRANCH_IN_TX	= 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
    221	PERF_SAMPLE_BRANCH_NO_TX	= 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
    222	PERF_SAMPLE_BRANCH_COND		= 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
    223
    224	PERF_SAMPLE_BRANCH_CALL_STACK	= 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
    225	PERF_SAMPLE_BRANCH_IND_JUMP	= 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
    226	PERF_SAMPLE_BRANCH_CALL		= 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
    227
    228	PERF_SAMPLE_BRANCH_NO_FLAGS	= 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
    229	PERF_SAMPLE_BRANCH_NO_CYCLES	= 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
    230
    231	PERF_SAMPLE_BRANCH_TYPE_SAVE	=
    232		1U << PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT,
    233
    234	PERF_SAMPLE_BRANCH_HW_INDEX	= 1U << PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT,
    235
    236	PERF_SAMPLE_BRANCH_MAX		= 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
    237};
    238
    239/*
    240 * Common flow change classification
    241 */
    242enum {
    243	PERF_BR_UNKNOWN		= 0,	/* unknown */
    244	PERF_BR_COND		= 1,	/* conditional */
    245	PERF_BR_UNCOND		= 2,	/* unconditional  */
    246	PERF_BR_IND		= 3,	/* indirect */
    247	PERF_BR_CALL		= 4,	/* function call */
    248	PERF_BR_IND_CALL	= 5,	/* indirect function call */
    249	PERF_BR_RET		= 6,	/* function return */
    250	PERF_BR_SYSCALL		= 7,	/* syscall */
    251	PERF_BR_SYSRET		= 8,	/* syscall return */
    252	PERF_BR_COND_CALL	= 9,	/* conditional function call */
    253	PERF_BR_COND_RET	= 10,	/* conditional function return */
    254	PERF_BR_ERET		= 11,	/* exception return */
    255	PERF_BR_IRQ		= 12,	/* irq */
    256	PERF_BR_MAX,
    257};
    258
    259#define PERF_SAMPLE_BRANCH_PLM_ALL \
    260	(PERF_SAMPLE_BRANCH_USER|\
    261	 PERF_SAMPLE_BRANCH_KERNEL|\
    262	 PERF_SAMPLE_BRANCH_HV)
    263
    264/*
    265 * Values to determine ABI of the registers dump.
    266 */
    267enum perf_sample_regs_abi {
    268	PERF_SAMPLE_REGS_ABI_NONE	= 0,
    269	PERF_SAMPLE_REGS_ABI_32		= 1,
    270	PERF_SAMPLE_REGS_ABI_64		= 2,
    271};
    272
    273/*
    274 * Values for the memory transaction event qualifier, mostly for
    275 * abort events. Multiple bits can be set.
    276 */
    277enum {
    278	PERF_TXN_ELISION        = (1 << 0), /* From elision */
    279	PERF_TXN_TRANSACTION    = (1 << 1), /* From transaction */
    280	PERF_TXN_SYNC           = (1 << 2), /* Instruction is related */
    281	PERF_TXN_ASYNC          = (1 << 3), /* Instruction not related */
    282	PERF_TXN_RETRY          = (1 << 4), /* Retry possible */
    283	PERF_TXN_CONFLICT       = (1 << 5), /* Conflict abort */
    284	PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
    285	PERF_TXN_CAPACITY_READ  = (1 << 7), /* Capacity read abort */
    286
    287	PERF_TXN_MAX	        = (1 << 8), /* non-ABI */
    288
    289	/* bits 32..63 are reserved for the abort code */
    290
    291	PERF_TXN_ABORT_MASK  = (0xffffffffULL << 32),
    292	PERF_TXN_ABORT_SHIFT = 32,
    293};
    294
    295/*
    296 * The format of the data returned by read() on a perf event fd,
    297 * as specified by attr.read_format:
    298 *
    299 * struct read_format {
    300 *	{ u64		value;
    301 *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
    302 *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
    303 *	  { u64		id;           } && PERF_FORMAT_ID
    304 *	} && !PERF_FORMAT_GROUP
    305 *
    306 *	{ u64		nr;
    307 *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
    308 *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
    309 *	  { u64		value;
    310 *	    { u64	id;           } && PERF_FORMAT_ID
    311 *	  }		cntr[nr];
    312 *	} && PERF_FORMAT_GROUP
    313 * };
    314 */
    315enum perf_event_read_format {
    316	PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
    317	PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
    318	PERF_FORMAT_ID				= 1U << 2,
    319	PERF_FORMAT_GROUP			= 1U << 3,
    320
    321	PERF_FORMAT_MAX = 1U << 4,		/* non-ABI */
    322};
    323
    324#define PERF_ATTR_SIZE_VER0	64	/* sizeof first published struct */
    325#define PERF_ATTR_SIZE_VER1	72	/* add: config2 */
    326#define PERF_ATTR_SIZE_VER2	80	/* add: branch_sample_type */
    327#define PERF_ATTR_SIZE_VER3	96	/* add: sample_regs_user */
    328					/* add: sample_stack_user */
    329#define PERF_ATTR_SIZE_VER4	104	/* add: sample_regs_intr */
    330#define PERF_ATTR_SIZE_VER5	112	/* add: aux_watermark */
    331#define PERF_ATTR_SIZE_VER6	120	/* add: aux_sample_size */
    332#define PERF_ATTR_SIZE_VER7	128	/* add: sig_data */
    333
    334/*
    335 * Hardware event_id to monitor via a performance monitoring event:
    336 *
    337 * @sample_max_stack: Max number of frame pointers in a callchain,
    338 *		      should be < /proc/sys/kernel/perf_event_max_stack
    339 */
    340struct perf_event_attr {
    341
    342	/*
    343	 * Major type: hardware/software/tracepoint/etc.
    344	 */
    345	__u32			type;
    346
    347	/*
    348	 * Size of the attr structure, for fwd/bwd compat.
    349	 */
    350	__u32			size;
    351
    352	/*
    353	 * Type specific configuration information.
    354	 */
    355	__u64			config;
    356
    357	union {
    358		__u64		sample_period;
    359		__u64		sample_freq;
    360	};
    361
    362	__u64			sample_type;
    363	__u64			read_format;
    364
    365	__u64			disabled       :  1, /* off by default        */
    366				inherit	       :  1, /* children inherit it   */
    367				pinned	       :  1, /* must always be on PMU */
    368				exclusive      :  1, /* only group on PMU     */
    369				exclude_user   :  1, /* don't count user      */
    370				exclude_kernel :  1, /* ditto kernel          */
    371				exclude_hv     :  1, /* ditto hypervisor      */
    372				exclude_idle   :  1, /* don't count when idle */
    373				mmap           :  1, /* include mmap data     */
    374				comm	       :  1, /* include comm data     */
    375				freq           :  1, /* use freq, not period  */
    376				inherit_stat   :  1, /* per task counts       */
    377				enable_on_exec :  1, /* next exec enables     */
    378				task           :  1, /* trace fork/exit       */
    379				watermark      :  1, /* wakeup_watermark      */
    380				/*
    381				 * precise_ip:
    382				 *
    383				 *  0 - SAMPLE_IP can have arbitrary skid
    384				 *  1 - SAMPLE_IP must have constant skid
    385				 *  2 - SAMPLE_IP requested to have 0 skid
    386				 *  3 - SAMPLE_IP must have 0 skid
    387				 *
    388				 *  See also PERF_RECORD_MISC_EXACT_IP
    389				 */
    390				precise_ip     :  2, /* skid constraint       */
    391				mmap_data      :  1, /* non-exec mmap data    */
    392				sample_id_all  :  1, /* sample_type all events */
    393
    394				exclude_host   :  1, /* don't count in host   */
    395				exclude_guest  :  1, /* don't count in guest  */
    396
    397				exclude_callchain_kernel : 1, /* exclude kernel callchains */
    398				exclude_callchain_user   : 1, /* exclude user callchains */
    399				mmap2          :  1, /* include mmap with inode data     */
    400				comm_exec      :  1, /* flag comm events that are due to an exec */
    401				use_clockid    :  1, /* use @clockid for time fields */
    402				context_switch :  1, /* context switch data */
    403				write_backward :  1, /* Write ring buffer from end to beginning */
    404				namespaces     :  1, /* include namespaces data */
    405				ksymbol        :  1, /* include ksymbol events */
    406				bpf_event      :  1, /* include bpf events */
    407				aux_output     :  1, /* generate AUX records instead of events */
    408				cgroup         :  1, /* include cgroup events */
    409				text_poke      :  1, /* include text poke events */
    410				build_id       :  1, /* use build id in mmap2 events */
    411				inherit_thread :  1, /* children only inherit if cloned with CLONE_THREAD */
    412				remove_on_exec :  1, /* event is removed from task on exec */
    413				sigtrap        :  1, /* send synchronous SIGTRAP on event */
    414				__reserved_1   : 26;
    415
    416	union {
    417		__u32		wakeup_events;	  /* wakeup every n events */
    418		__u32		wakeup_watermark; /* bytes before wakeup   */
    419	};
    420
    421	__u32			bp_type;
    422	union {
    423		__u64		bp_addr;
    424		__u64		kprobe_func; /* for perf_kprobe */
    425		__u64		uprobe_path; /* for perf_uprobe */
    426		__u64		config1; /* extension of config */
    427	};
    428	union {
    429		__u64		bp_len;
    430		__u64		kprobe_addr; /* when kprobe_func == NULL */
    431		__u64		probe_offset; /* for perf_[k,u]probe */
    432		__u64		config2; /* extension of config1 */
    433	};
    434	__u64	branch_sample_type; /* enum perf_branch_sample_type */
    435
    436	/*
    437	 * Defines set of user regs to dump on samples.
    438	 * See asm/perf_regs.h for details.
    439	 */
    440	__u64	sample_regs_user;
    441
    442	/*
    443	 * Defines size of the user stack to dump on samples.
    444	 */
    445	__u32	sample_stack_user;
    446
    447	__s32	clockid;
    448	/*
    449	 * Defines set of regs to dump for each sample
    450	 * state captured on:
    451	 *  - precise = 0: PMU interrupt
    452	 *  - precise > 0: sampled instruction
    453	 *
    454	 * See asm/perf_regs.h for details.
    455	 */
    456	__u64	sample_regs_intr;
    457
    458	/*
    459	 * Wakeup watermark for AUX area
    460	 */
    461	__u32	aux_watermark;
    462	__u16	sample_max_stack;
    463	__u16	__reserved_2;
    464	__u32	aux_sample_size;
    465	__u32	__reserved_3;
    466
    467	/*
    468	 * User provided data if sigtrap=1, passed back to user via
    469	 * siginfo_t::si_perf_data, e.g. to permit user to identify the event.
    470	 * Note, siginfo_t::si_perf_data is long-sized, and sig_data will be
    471	 * truncated accordingly on 32 bit architectures.
    472	 */
    473	__u64	sig_data;
    474};
    475
    476/*
    477 * Structure used by below PERF_EVENT_IOC_QUERY_BPF command
    478 * to query bpf programs attached to the same perf tracepoint
    479 * as the given perf event.
    480 */
    481struct perf_event_query_bpf {
    482	/*
    483	 * The below ids array length
    484	 */
    485	__u32	ids_len;
    486	/*
    487	 * Set by the kernel to indicate the number of
    488	 * available programs
    489	 */
    490	__u32	prog_cnt;
    491	/*
    492	 * User provided buffer to store program ids
    493	 */
    494	__u32	ids[0];
    495};
    496
    497/*
    498 * Ioctls that can be done on a perf event fd:
    499 */
    500#define PERF_EVENT_IOC_ENABLE			_IO ('$', 0)
    501#define PERF_EVENT_IOC_DISABLE			_IO ('$', 1)
    502#define PERF_EVENT_IOC_REFRESH			_IO ('$', 2)
    503#define PERF_EVENT_IOC_RESET			_IO ('$', 3)
    504#define PERF_EVENT_IOC_PERIOD			_IOW('$', 4, __u64)
    505#define PERF_EVENT_IOC_SET_OUTPUT		_IO ('$', 5)
    506#define PERF_EVENT_IOC_SET_FILTER		_IOW('$', 6, char *)
    507#define PERF_EVENT_IOC_ID			_IOR('$', 7, __u64 *)
    508#define PERF_EVENT_IOC_SET_BPF			_IOW('$', 8, __u32)
    509#define PERF_EVENT_IOC_PAUSE_OUTPUT		_IOW('$', 9, __u32)
    510#define PERF_EVENT_IOC_QUERY_BPF		_IOWR('$', 10, struct perf_event_query_bpf *)
    511#define PERF_EVENT_IOC_MODIFY_ATTRIBUTES	_IOW('$', 11, struct perf_event_attr *)
    512
    513enum perf_event_ioc_flags {
    514	PERF_IOC_FLAG_GROUP		= 1U << 0,
    515};
    516
    517/*
    518 * Structure of the page that can be mapped via mmap
    519 */
    520struct perf_event_mmap_page {
    521	__u32	version;		/* version number of this structure */
    522	__u32	compat_version;		/* lowest version this is compat with */
    523
    524	/*
    525	 * Bits needed to read the hw events in user-space.
    526	 *
    527	 *   u32 seq, time_mult, time_shift, index, width;
    528	 *   u64 count, enabled, running;
    529	 *   u64 cyc, time_offset;
    530	 *   s64 pmc = 0;
    531	 *
    532	 *   do {
    533	 *     seq = pc->lock;
    534	 *     barrier()
    535	 *
    536	 *     enabled = pc->time_enabled;
    537	 *     running = pc->time_running;
    538	 *
    539	 *     if (pc->cap_usr_time && enabled != running) {
    540	 *       cyc = rdtsc();
    541	 *       time_offset = pc->time_offset;
    542	 *       time_mult   = pc->time_mult;
    543	 *       time_shift  = pc->time_shift;
    544	 *     }
    545	 *
    546	 *     index = pc->index;
    547	 *     count = pc->offset;
    548	 *     if (pc->cap_user_rdpmc && index) {
    549	 *       width = pc->pmc_width;
    550	 *       pmc = rdpmc(index - 1);
    551	 *     }
    552	 *
    553	 *     barrier();
    554	 *   } while (pc->lock != seq);
    555	 *
    556	 * NOTE: for obvious reason this only works on self-monitoring
    557	 *       processes.
    558	 */
    559	__u32	lock;			/* seqlock for synchronization */
    560	__u32	index;			/* hardware event identifier */
    561	__s64	offset;			/* add to hardware event value */
    562	__u64	time_enabled;		/* time event active */
    563	__u64	time_running;		/* time event on cpu */
    564	union {
    565		__u64	capabilities;
    566		struct {
    567			__u64	cap_bit0		: 1, /* Always 0, deprecated, see commit 860f085b74e9 */
    568				cap_bit0_is_deprecated	: 1, /* Always 1, signals that bit 0 is zero */
    569
    570				cap_user_rdpmc		: 1, /* The RDPMC instruction can be used to read counts */
    571				cap_user_time		: 1, /* The time_{shift,mult,offset} fields are used */
    572				cap_user_time_zero	: 1, /* The time_zero field is used */
    573				cap_user_time_short	: 1, /* the time_{cycle,mask} fields are used */
    574				cap_____res		: 58;
    575		};
    576	};
    577
    578	/*
    579	 * If cap_user_rdpmc this field provides the bit-width of the value
    580	 * read using the rdpmc() or equivalent instruction. This can be used
    581	 * to sign extend the result like:
    582	 *
    583	 *   pmc <<= 64 - width;
    584	 *   pmc >>= 64 - width; // signed shift right
    585	 *   count += pmc;
    586	 */
    587	__u16	pmc_width;
    588
    589	/*
    590	 * If cap_usr_time the below fields can be used to compute the time
    591	 * delta since time_enabled (in ns) using rdtsc or similar.
    592	 *
    593	 *   u64 quot, rem;
    594	 *   u64 delta;
    595	 *
    596	 *   quot = (cyc >> time_shift);
    597	 *   rem = cyc & (((u64)1 << time_shift) - 1);
    598	 *   delta = time_offset + quot * time_mult +
    599	 *              ((rem * time_mult) >> time_shift);
    600	 *
    601	 * Where time_offset,time_mult,time_shift and cyc are read in the
    602	 * seqcount loop described above. This delta can then be added to
    603	 * enabled and possible running (if index), improving the scaling:
    604	 *
    605	 *   enabled += delta;
    606	 *   if (index)
    607	 *     running += delta;
    608	 *
    609	 *   quot = count / running;
    610	 *   rem  = count % running;
    611	 *   count = quot * enabled + (rem * enabled) / running;
    612	 */
    613	__u16	time_shift;
    614	__u32	time_mult;
    615	__u64	time_offset;
    616	/*
    617	 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
    618	 * from sample timestamps.
    619	 *
    620	 *   time = timestamp - time_zero;
    621	 *   quot = time / time_mult;
    622	 *   rem  = time % time_mult;
    623	 *   cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
    624	 *
    625	 * And vice versa:
    626	 *
    627	 *   quot = cyc >> time_shift;
    628	 *   rem  = cyc & (((u64)1 << time_shift) - 1);
    629	 *   timestamp = time_zero + quot * time_mult +
    630	 *               ((rem * time_mult) >> time_shift);
    631	 */
    632	__u64	time_zero;
    633
    634	__u32	size;			/* Header size up to __reserved[] fields. */
    635	__u32	__reserved_1;
    636
    637	/*
    638	 * If cap_usr_time_short, the hardware clock is less than 64bit wide
    639	 * and we must compute the 'cyc' value, as used by cap_usr_time, as:
    640	 *
    641	 *   cyc = time_cycles + ((cyc - time_cycles) & time_mask)
    642	 *
    643	 * NOTE: this form is explicitly chosen such that cap_usr_time_short
    644	 *       is a correction on top of cap_usr_time, and code that doesn't
    645	 *       know about cap_usr_time_short still works under the assumption
    646	 *       the counter doesn't wrap.
    647	 */
    648	__u64	time_cycles;
    649	__u64	time_mask;
    650
    651		/*
    652		 * Hole for extension of the self monitor capabilities
    653		 */
    654
    655	__u8	__reserved[116*8];	/* align to 1k. */
    656
    657	/*
    658	 * Control data for the mmap() data buffer.
    659	 *
    660	 * User-space reading the @data_head value should issue an smp_rmb(),
    661	 * after reading this value.
    662	 *
    663	 * When the mapping is PROT_WRITE the @data_tail value should be
    664	 * written by userspace to reflect the last read data, after issueing
    665	 * an smp_mb() to separate the data read from the ->data_tail store.
    666	 * In this case the kernel will not over-write unread data.
    667	 *
    668	 * See perf_output_put_handle() for the data ordering.
    669	 *
    670	 * data_{offset,size} indicate the location and size of the perf record
    671	 * buffer within the mmapped area.
    672	 */
    673	__u64   data_head;		/* head in the data section */
    674	__u64	data_tail;		/* user-space written tail */
    675	__u64	data_offset;		/* where the buffer starts */
    676	__u64	data_size;		/* data buffer size */
    677
    678	/*
    679	 * AUX area is defined by aux_{offset,size} fields that should be set
    680	 * by the userspace, so that
    681	 *
    682	 *   aux_offset >= data_offset + data_size
    683	 *
    684	 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
    685	 *
    686	 * Ring buffer pointers aux_{head,tail} have the same semantics as
    687	 * data_{head,tail} and same ordering rules apply.
    688	 */
    689	__u64	aux_head;
    690	__u64	aux_tail;
    691	__u64	aux_offset;
    692	__u64	aux_size;
    693};
    694
    695/*
    696 * The current state of perf_event_header::misc bits usage:
    697 * ('|' used bit, '-' unused bit)
    698 *
    699 *  012         CDEF
    700 *  |||---------||||
    701 *
    702 *  Where:
    703 *    0-2     CPUMODE_MASK
    704 *
    705 *    C       PROC_MAP_PARSE_TIMEOUT
    706 *    D       MMAP_DATA / COMM_EXEC / FORK_EXEC / SWITCH_OUT
    707 *    E       MMAP_BUILD_ID / EXACT_IP / SCHED_OUT_PREEMPT
    708 *    F       (reserved)
    709 */
    710
    711#define PERF_RECORD_MISC_CPUMODE_MASK		(7 << 0)
    712#define PERF_RECORD_MISC_CPUMODE_UNKNOWN	(0 << 0)
    713#define PERF_RECORD_MISC_KERNEL			(1 << 0)
    714#define PERF_RECORD_MISC_USER			(2 << 0)
    715#define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)
    716#define PERF_RECORD_MISC_GUEST_KERNEL		(4 << 0)
    717#define PERF_RECORD_MISC_GUEST_USER		(5 << 0)
    718
    719/*
    720 * Indicates that /proc/PID/maps parsing are truncated by time out.
    721 */
    722#define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT	(1 << 12)
    723/*
    724 * Following PERF_RECORD_MISC_* are used on different
    725 * events, so can reuse the same bit position:
    726 *
    727 *   PERF_RECORD_MISC_MMAP_DATA  - PERF_RECORD_MMAP* events
    728 *   PERF_RECORD_MISC_COMM_EXEC  - PERF_RECORD_COMM event
    729 *   PERF_RECORD_MISC_FORK_EXEC  - PERF_RECORD_FORK event (perf internal)
    730 *   PERF_RECORD_MISC_SWITCH_OUT - PERF_RECORD_SWITCH* events
    731 */
    732#define PERF_RECORD_MISC_MMAP_DATA		(1 << 13)
    733#define PERF_RECORD_MISC_COMM_EXEC		(1 << 13)
    734#define PERF_RECORD_MISC_FORK_EXEC		(1 << 13)
    735#define PERF_RECORD_MISC_SWITCH_OUT		(1 << 13)
    736/*
    737 * These PERF_RECORD_MISC_* flags below are safely reused
    738 * for the following events:
    739 *
    740 *   PERF_RECORD_MISC_EXACT_IP           - PERF_RECORD_SAMPLE of precise events
    741 *   PERF_RECORD_MISC_SWITCH_OUT_PREEMPT - PERF_RECORD_SWITCH* events
    742 *   PERF_RECORD_MISC_MMAP_BUILD_ID      - PERF_RECORD_MMAP2 event
    743 *
    744 *
    745 * PERF_RECORD_MISC_EXACT_IP:
    746 *   Indicates that the content of PERF_SAMPLE_IP points to
    747 *   the actual instruction that triggered the event. See also
    748 *   perf_event_attr::precise_ip.
    749 *
    750 * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT:
    751 *   Indicates that thread was preempted in TASK_RUNNING state.
    752 *
    753 * PERF_RECORD_MISC_MMAP_BUILD_ID:
    754 *   Indicates that mmap2 event carries build id data.
    755 */
    756#define PERF_RECORD_MISC_EXACT_IP		(1 << 14)
    757#define PERF_RECORD_MISC_SWITCH_OUT_PREEMPT	(1 << 14)
    758#define PERF_RECORD_MISC_MMAP_BUILD_ID		(1 << 14)
    759/*
    760 * Reserve the last bit to indicate some extended misc field
    761 */
    762#define PERF_RECORD_MISC_EXT_RESERVED		(1 << 15)
    763
    764struct perf_event_header {
    765	__u32	type;
    766	__u16	misc;
    767	__u16	size;
    768};
    769
    770struct perf_ns_link_info {
    771	__u64	dev;
    772	__u64	ino;
    773};
    774
    775enum {
    776	NET_NS_INDEX		= 0,
    777	UTS_NS_INDEX		= 1,
    778	IPC_NS_INDEX		= 2,
    779	PID_NS_INDEX		= 3,
    780	USER_NS_INDEX		= 4,
    781	MNT_NS_INDEX		= 5,
    782	CGROUP_NS_INDEX		= 6,
    783
    784	NR_NAMESPACES,		/* number of available namespaces */
    785};
    786
    787enum perf_event_type {
    788
    789	/*
    790	 * If perf_event_attr.sample_id_all is set then all event types will
    791	 * have the sample_type selected fields related to where/when
    792	 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
    793	 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
    794	 * just after the perf_event_header and the fields already present for
    795	 * the existing fields, i.e. at the end of the payload. That way a newer
    796	 * perf.data file will be supported by older perf tools, with these new
    797	 * optional fields being ignored.
    798	 *
    799	 * struct sample_id {
    800	 * 	{ u32			pid, tid; } && PERF_SAMPLE_TID
    801	 * 	{ u64			time;     } && PERF_SAMPLE_TIME
    802	 * 	{ u64			id;       } && PERF_SAMPLE_ID
    803	 * 	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
    804	 * 	{ u32			cpu, res; } && PERF_SAMPLE_CPU
    805	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
    806	 * } && perf_event_attr::sample_id_all
    807	 *
    808	 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.  The
    809	 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
    810	 * relative to header.size.
    811	 */
    812
    813	/*
    814	 * The MMAP events record the PROT_EXEC mappings so that we can
    815	 * correlate userspace IPs to code. They have the following structure:
    816	 *
    817	 * struct {
    818	 *	struct perf_event_header	header;
    819	 *
    820	 *	u32				pid, tid;
    821	 *	u64				addr;
    822	 *	u64				len;
    823	 *	u64				pgoff;
    824	 *	char				filename[];
    825	 * 	struct sample_id		sample_id;
    826	 * };
    827	 */
    828	PERF_RECORD_MMAP			= 1,
    829
    830	/*
    831	 * struct {
    832	 *	struct perf_event_header	header;
    833	 *	u64				id;
    834	 *	u64				lost;
    835	 * 	struct sample_id		sample_id;
    836	 * };
    837	 */
    838	PERF_RECORD_LOST			= 2,
    839
    840	/*
    841	 * struct {
    842	 *	struct perf_event_header	header;
    843	 *
    844	 *	u32				pid, tid;
    845	 *	char				comm[];
    846	 * 	struct sample_id		sample_id;
    847	 * };
    848	 */
    849	PERF_RECORD_COMM			= 3,
    850
    851	/*
    852	 * struct {
    853	 *	struct perf_event_header	header;
    854	 *	u32				pid, ppid;
    855	 *	u32				tid, ptid;
    856	 *	u64				time;
    857	 * 	struct sample_id		sample_id;
    858	 * };
    859	 */
    860	PERF_RECORD_EXIT			= 4,
    861
    862	/*
    863	 * struct {
    864	 *	struct perf_event_header	header;
    865	 *	u64				time;
    866	 *	u64				id;
    867	 *	u64				stream_id;
    868	 * 	struct sample_id		sample_id;
    869	 * };
    870	 */
    871	PERF_RECORD_THROTTLE			= 5,
    872	PERF_RECORD_UNTHROTTLE			= 6,
    873
    874	/*
    875	 * struct {
    876	 *	struct perf_event_header	header;
    877	 *	u32				pid, ppid;
    878	 *	u32				tid, ptid;
    879	 *	u64				time;
    880	 * 	struct sample_id		sample_id;
    881	 * };
    882	 */
    883	PERF_RECORD_FORK			= 7,
    884
    885	/*
    886	 * struct {
    887	 *	struct perf_event_header	header;
    888	 *	u32				pid, tid;
    889	 *
    890	 *	struct read_format		values;
    891	 * 	struct sample_id		sample_id;
    892	 * };
    893	 */
    894	PERF_RECORD_READ			= 8,
    895
    896	/*
    897	 * struct {
    898	 *	struct perf_event_header	header;
    899	 *
    900	 *	#
    901	 *	# Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
    902	 *	# The advantage of PERF_SAMPLE_IDENTIFIER is that its position
    903	 *	# is fixed relative to header.
    904	 *	#
    905	 *
    906	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
    907	 *	{ u64			ip;	  } && PERF_SAMPLE_IP
    908	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
    909	 *	{ u64			time;     } && PERF_SAMPLE_TIME
    910	 *	{ u64			addr;     } && PERF_SAMPLE_ADDR
    911	 *	{ u64			id;	  } && PERF_SAMPLE_ID
    912	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
    913	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
    914	 *	{ u64			period;   } && PERF_SAMPLE_PERIOD
    915	 *
    916	 *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
    917	 *
    918	 *	{ u64			nr,
    919	 *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
    920	 *
    921	 *	#
    922	 *	# The RAW record below is opaque data wrt the ABI
    923	 *	#
    924	 *	# That is, the ABI doesn't make any promises wrt to
    925	 *	# the stability of its content, it may vary depending
    926	 *	# on event, hardware, kernel version and phase of
    927	 *	# the moon.
    928	 *	#
    929	 *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
    930	 *	#
    931	 *
    932	 *	{ u32			size;
    933	 *	  char                  data[size];}&& PERF_SAMPLE_RAW
    934	 *
    935	 *	{ u64                   nr;
    936	 *	  { u64	hw_idx; } && PERF_SAMPLE_BRANCH_HW_INDEX
    937	 *        { u64 from, to, flags } lbr[nr];
    938	 *      } && PERF_SAMPLE_BRANCH_STACK
    939	 *
    940	 * 	{ u64			abi; # enum perf_sample_regs_abi
    941	 * 	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
    942	 *
    943	 * 	{ u64			size;
    944	 * 	  char			data[size];
    945	 * 	  u64			dyn_size; } && PERF_SAMPLE_STACK_USER
    946	 *
    947	 *	{ union perf_sample_weight
    948	 *	 {
    949	 *		u64		full; && PERF_SAMPLE_WEIGHT
    950	 *	#if defined(__LITTLE_ENDIAN_BITFIELD)
    951	 *		struct {
    952	 *			u32	var1_dw;
    953	 *			u16	var2_w;
    954	 *			u16	var3_w;
    955	 *		} && PERF_SAMPLE_WEIGHT_STRUCT
    956	 *	#elif defined(__BIG_ENDIAN_BITFIELD)
    957	 *		struct {
    958	 *			u16	var3_w;
    959	 *			u16	var2_w;
    960	 *			u32	var1_dw;
    961	 *		} && PERF_SAMPLE_WEIGHT_STRUCT
    962	 *	#endif
    963	 *	 }
    964	 *	}
    965	 *	{ u64			data_src; } && PERF_SAMPLE_DATA_SRC
    966	 *	{ u64			transaction; } && PERF_SAMPLE_TRANSACTION
    967	 *	{ u64			abi; # enum perf_sample_regs_abi
    968	 *	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
    969	 *	{ u64			phys_addr;} && PERF_SAMPLE_PHYS_ADDR
    970	 *	{ u64			size;
    971	 *	  char			data[size]; } && PERF_SAMPLE_AUX
    972	 *	{ u64			data_page_size;} && PERF_SAMPLE_DATA_PAGE_SIZE
    973	 *	{ u64			code_page_size;} && PERF_SAMPLE_CODE_PAGE_SIZE
    974	 * };
    975	 */
    976	PERF_RECORD_SAMPLE			= 9,
    977
    978	/*
    979	 * The MMAP2 records are an augmented version of MMAP, they add
    980	 * maj, min, ino numbers to be used to uniquely identify each mapping
    981	 *
    982	 * struct {
    983	 *	struct perf_event_header	header;
    984	 *
    985	 *	u32				pid, tid;
    986	 *	u64				addr;
    987	 *	u64				len;
    988	 *	u64				pgoff;
    989	 *	union {
    990	 *		struct {
    991	 *			u32		maj;
    992	 *			u32		min;
    993	 *			u64		ino;
    994	 *			u64		ino_generation;
    995	 *		};
    996	 *		struct {
    997	 *			u8		build_id_size;
    998	 *			u8		__reserved_1;
    999	 *			u16		__reserved_2;
   1000	 *			u8		build_id[20];
   1001	 *		};
   1002	 *	};
   1003	 *	u32				prot, flags;
   1004	 *	char				filename[];
   1005	 * 	struct sample_id		sample_id;
   1006	 * };
   1007	 */
   1008	PERF_RECORD_MMAP2			= 10,
   1009
   1010	/*
   1011	 * Records that new data landed in the AUX buffer part.
   1012	 *
   1013	 * struct {
   1014	 * 	struct perf_event_header	header;
   1015	 *
   1016	 * 	u64				aux_offset;
   1017	 * 	u64				aux_size;
   1018	 *	u64				flags;
   1019	 * 	struct sample_id		sample_id;
   1020	 * };
   1021	 */
   1022	PERF_RECORD_AUX				= 11,
   1023
   1024	/*
   1025	 * Indicates that instruction trace has started
   1026	 *
   1027	 * struct {
   1028	 *	struct perf_event_header	header;
   1029	 *	u32				pid;
   1030	 *	u32				tid;
   1031	 *	struct sample_id		sample_id;
   1032	 * };
   1033	 */
   1034	PERF_RECORD_ITRACE_START		= 12,
   1035
   1036	/*
   1037	 * Records the dropped/lost sample number.
   1038	 *
   1039	 * struct {
   1040	 *	struct perf_event_header	header;
   1041	 *
   1042	 *	u64				lost;
   1043	 *	struct sample_id		sample_id;
   1044	 * };
   1045	 */
   1046	PERF_RECORD_LOST_SAMPLES		= 13,
   1047
   1048	/*
   1049	 * Records a context switch in or out (flagged by
   1050	 * PERF_RECORD_MISC_SWITCH_OUT). See also
   1051	 * PERF_RECORD_SWITCH_CPU_WIDE.
   1052	 *
   1053	 * struct {
   1054	 *	struct perf_event_header	header;
   1055	 *	struct sample_id		sample_id;
   1056	 * };
   1057	 */
   1058	PERF_RECORD_SWITCH			= 14,
   1059
   1060	/*
   1061	 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
   1062	 * next_prev_tid that are the next (switching out) or previous
   1063	 * (switching in) pid/tid.
   1064	 *
   1065	 * struct {
   1066	 *	struct perf_event_header	header;
   1067	 *	u32				next_prev_pid;
   1068	 *	u32				next_prev_tid;
   1069	 *	struct sample_id		sample_id;
   1070	 * };
   1071	 */
   1072	PERF_RECORD_SWITCH_CPU_WIDE		= 15,
   1073
   1074	/*
   1075	 * struct {
   1076	 *	struct perf_event_header	header;
   1077	 *	u32				pid;
   1078	 *	u32				tid;
   1079	 *	u64				nr_namespaces;
   1080	 *	{ u64				dev, inode; } [nr_namespaces];
   1081	 *	struct sample_id		sample_id;
   1082	 * };
   1083	 */
   1084	PERF_RECORD_NAMESPACES			= 16,
   1085
   1086	/*
   1087	 * Record ksymbol register/unregister events:
   1088	 *
   1089	 * struct {
   1090	 *	struct perf_event_header	header;
   1091	 *	u64				addr;
   1092	 *	u32				len;
   1093	 *	u16				ksym_type;
   1094	 *	u16				flags;
   1095	 *	char				name[];
   1096	 *	struct sample_id		sample_id;
   1097	 * };
   1098	 */
   1099	PERF_RECORD_KSYMBOL			= 17,
   1100
   1101	/*
   1102	 * Record bpf events:
   1103	 *  enum perf_bpf_event_type {
   1104	 *	PERF_BPF_EVENT_UNKNOWN		= 0,
   1105	 *	PERF_BPF_EVENT_PROG_LOAD	= 1,
   1106	 *	PERF_BPF_EVENT_PROG_UNLOAD	= 2,
   1107	 *  };
   1108	 *
   1109	 * struct {
   1110	 *	struct perf_event_header	header;
   1111	 *	u16				type;
   1112	 *	u16				flags;
   1113	 *	u32				id;
   1114	 *	u8				tag[BPF_TAG_SIZE];
   1115	 *	struct sample_id		sample_id;
   1116	 * };
   1117	 */
   1118	PERF_RECORD_BPF_EVENT			= 18,
   1119
   1120	/*
   1121	 * struct {
   1122	 *	struct perf_event_header	header;
   1123	 *	u64				id;
   1124	 *	char				path[];
   1125	 *	struct sample_id		sample_id;
   1126	 * };
   1127	 */
   1128	PERF_RECORD_CGROUP			= 19,
   1129
   1130	/*
   1131	 * Records changes to kernel text i.e. self-modified code. 'old_len' is
   1132	 * the number of old bytes, 'new_len' is the number of new bytes. Either
   1133	 * 'old_len' or 'new_len' may be zero to indicate, for example, the
   1134	 * addition or removal of a trampoline. 'bytes' contains the old bytes
   1135	 * followed immediately by the new bytes.
   1136	 *
   1137	 * struct {
   1138	 *	struct perf_event_header	header;
   1139	 *	u64				addr;
   1140	 *	u16				old_len;
   1141	 *	u16				new_len;
   1142	 *	u8				bytes[];
   1143	 *	struct sample_id		sample_id;
   1144	 * };
   1145	 */
   1146	PERF_RECORD_TEXT_POKE			= 20,
   1147
   1148	/*
   1149	 * Data written to the AUX area by hardware due to aux_output, may need
   1150	 * to be matched to the event by an architecture-specific hardware ID.
   1151	 * This records the hardware ID, but requires sample_id to provide the
   1152	 * event ID. e.g. Intel PT uses this record to disambiguate PEBS-via-PT
   1153	 * records from multiple events.
   1154	 *
   1155	 * struct {
   1156	 *	struct perf_event_header	header;
   1157	 *	u64				hw_id;
   1158	 *	struct sample_id		sample_id;
   1159	 * };
   1160	 */
   1161	PERF_RECORD_AUX_OUTPUT_HW_ID		= 21,
   1162
   1163	PERF_RECORD_MAX,			/* non-ABI */
   1164};
   1165
   1166enum perf_record_ksymbol_type {
   1167	PERF_RECORD_KSYMBOL_TYPE_UNKNOWN	= 0,
   1168	PERF_RECORD_KSYMBOL_TYPE_BPF		= 1,
   1169	/*
   1170	 * Out of line code such as kprobe-replaced instructions or optimized
   1171	 * kprobes or ftrace trampolines.
   1172	 */
   1173	PERF_RECORD_KSYMBOL_TYPE_OOL		= 2,
   1174	PERF_RECORD_KSYMBOL_TYPE_MAX		/* non-ABI */
   1175};
   1176
   1177#define PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER	(1 << 0)
   1178
   1179enum perf_bpf_event_type {
   1180	PERF_BPF_EVENT_UNKNOWN		= 0,
   1181	PERF_BPF_EVENT_PROG_LOAD	= 1,
   1182	PERF_BPF_EVENT_PROG_UNLOAD	= 2,
   1183	PERF_BPF_EVENT_MAX,		/* non-ABI */
   1184};
   1185
   1186#define PERF_MAX_STACK_DEPTH		127
   1187#define PERF_MAX_CONTEXTS_PER_STACK	  8
   1188
   1189enum perf_callchain_context {
   1190	PERF_CONTEXT_HV			= (__u64)-32,
   1191	PERF_CONTEXT_KERNEL		= (__u64)-128,
   1192	PERF_CONTEXT_USER		= (__u64)-512,
   1193
   1194	PERF_CONTEXT_GUEST		= (__u64)-2048,
   1195	PERF_CONTEXT_GUEST_KERNEL	= (__u64)-2176,
   1196	PERF_CONTEXT_GUEST_USER		= (__u64)-2560,
   1197
   1198	PERF_CONTEXT_MAX		= (__u64)-4095,
   1199};
   1200
   1201/**
   1202 * PERF_RECORD_AUX::flags bits
   1203 */
   1204#define PERF_AUX_FLAG_TRUNCATED			0x01	/* record was truncated to fit */
   1205#define PERF_AUX_FLAG_OVERWRITE			0x02	/* snapshot from overwrite mode */
   1206#define PERF_AUX_FLAG_PARTIAL			0x04	/* record contains gaps */
   1207#define PERF_AUX_FLAG_COLLISION			0x08	/* sample collided with another */
   1208#define PERF_AUX_FLAG_PMU_FORMAT_TYPE_MASK	0xff00	/* PMU specific trace format type */
   1209
   1210/* CoreSight PMU AUX buffer formats */
   1211#define PERF_AUX_FLAG_CORESIGHT_FORMAT_CORESIGHT	0x0000 /* Default for backward compatibility */
   1212#define PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW		0x0100 /* Raw format of the source */
   1213
   1214#define PERF_FLAG_FD_NO_GROUP		(1UL << 0)
   1215#define PERF_FLAG_FD_OUTPUT		(1UL << 1)
   1216#define PERF_FLAG_PID_CGROUP		(1UL << 2) /* pid=cgroup id, per-cpu mode only */
   1217#define PERF_FLAG_FD_CLOEXEC		(1UL << 3) /* O_CLOEXEC */
   1218
   1219#if defined(__LITTLE_ENDIAN_BITFIELD)
   1220union perf_mem_data_src {
   1221	__u64 val;
   1222	struct {
   1223		__u64   mem_op:5,	/* type of opcode */
   1224			mem_lvl:14,	/* memory hierarchy level */
   1225			mem_snoop:5,	/* snoop mode */
   1226			mem_lock:2,	/* lock instr */
   1227			mem_dtlb:7,	/* tlb access */
   1228			mem_lvl_num:4,	/* memory hierarchy level number */
   1229			mem_remote:1,   /* remote */
   1230			mem_snoopx:2,	/* snoop mode, ext */
   1231			mem_blk:3,	/* access blocked */
   1232			mem_hops:3,	/* hop level */
   1233			mem_rsvd:18;
   1234	};
   1235};
   1236#elif defined(__BIG_ENDIAN_BITFIELD)
   1237union perf_mem_data_src {
   1238	__u64 val;
   1239	struct {
   1240		__u64	mem_rsvd:18,
   1241			mem_hops:3,	/* hop level */
   1242			mem_blk:3,	/* access blocked */
   1243			mem_snoopx:2,	/* snoop mode, ext */
   1244			mem_remote:1,   /* remote */
   1245			mem_lvl_num:4,	/* memory hierarchy level number */
   1246			mem_dtlb:7,	/* tlb access */
   1247			mem_lock:2,	/* lock instr */
   1248			mem_snoop:5,	/* snoop mode */
   1249			mem_lvl:14,	/* memory hierarchy level */
   1250			mem_op:5;	/* type of opcode */
   1251	};
   1252};
   1253#else
   1254#error "Unknown endianness"
   1255#endif
   1256
   1257/* type of opcode (load/store/prefetch,code) */
   1258#define PERF_MEM_OP_NA		0x01 /* not available */
   1259#define PERF_MEM_OP_LOAD	0x02 /* load instruction */
   1260#define PERF_MEM_OP_STORE	0x04 /* store instruction */
   1261#define PERF_MEM_OP_PFETCH	0x08 /* prefetch */
   1262#define PERF_MEM_OP_EXEC	0x10 /* code (execution) */
   1263#define PERF_MEM_OP_SHIFT	0
   1264
   1265/*
   1266 * PERF_MEM_LVL_* namespace being depricated to some extent in the
   1267 * favour of newer composite PERF_MEM_{LVLNUM_,REMOTE_,SNOOPX_} fields.
   1268 * Supporting this namespace inorder to not break defined ABIs.
   1269 *
   1270 * memory hierarchy (memory level, hit or miss)
   1271 */
   1272#define PERF_MEM_LVL_NA		0x01  /* not available */
   1273#define PERF_MEM_LVL_HIT	0x02  /* hit level */
   1274#define PERF_MEM_LVL_MISS	0x04  /* miss level  */
   1275#define PERF_MEM_LVL_L1		0x08  /* L1 */
   1276#define PERF_MEM_LVL_LFB	0x10  /* Line Fill Buffer */
   1277#define PERF_MEM_LVL_L2		0x20  /* L2 */
   1278#define PERF_MEM_LVL_L3		0x40  /* L3 */
   1279#define PERF_MEM_LVL_LOC_RAM	0x80  /* Local DRAM */
   1280#define PERF_MEM_LVL_REM_RAM1	0x100 /* Remote DRAM (1 hop) */
   1281#define PERF_MEM_LVL_REM_RAM2	0x200 /* Remote DRAM (2 hops) */
   1282#define PERF_MEM_LVL_REM_CCE1	0x400 /* Remote Cache (1 hop) */
   1283#define PERF_MEM_LVL_REM_CCE2	0x800 /* Remote Cache (2 hops) */
   1284#define PERF_MEM_LVL_IO		0x1000 /* I/O memory */
   1285#define PERF_MEM_LVL_UNC	0x2000 /* Uncached memory */
   1286#define PERF_MEM_LVL_SHIFT	5
   1287
   1288#define PERF_MEM_REMOTE_REMOTE	0x01  /* Remote */
   1289#define PERF_MEM_REMOTE_SHIFT	37
   1290
   1291#define PERF_MEM_LVLNUM_L1	0x01 /* L1 */
   1292#define PERF_MEM_LVLNUM_L2	0x02 /* L2 */
   1293#define PERF_MEM_LVLNUM_L3	0x03 /* L3 */
   1294#define PERF_MEM_LVLNUM_L4	0x04 /* L4 */
   1295/* 5-0xa available */
   1296#define PERF_MEM_LVLNUM_ANY_CACHE 0x0b /* Any cache */
   1297#define PERF_MEM_LVLNUM_LFB	0x0c /* LFB */
   1298#define PERF_MEM_LVLNUM_RAM	0x0d /* RAM */
   1299#define PERF_MEM_LVLNUM_PMEM	0x0e /* PMEM */
   1300#define PERF_MEM_LVLNUM_NA	0x0f /* N/A */
   1301
   1302#define PERF_MEM_LVLNUM_SHIFT	33
   1303
   1304/* snoop mode */
   1305#define PERF_MEM_SNOOP_NA	0x01 /* not available */
   1306#define PERF_MEM_SNOOP_NONE	0x02 /* no snoop */
   1307#define PERF_MEM_SNOOP_HIT	0x04 /* snoop hit */
   1308#define PERF_MEM_SNOOP_MISS	0x08 /* snoop miss */
   1309#define PERF_MEM_SNOOP_HITM	0x10 /* snoop hit modified */
   1310#define PERF_MEM_SNOOP_SHIFT	19
   1311
   1312#define PERF_MEM_SNOOPX_FWD	0x01 /* forward */
   1313/* 1 free */
   1314#define PERF_MEM_SNOOPX_SHIFT  38
   1315
   1316/* locked instruction */
   1317#define PERF_MEM_LOCK_NA	0x01 /* not available */
   1318#define PERF_MEM_LOCK_LOCKED	0x02 /* locked transaction */
   1319#define PERF_MEM_LOCK_SHIFT	24
   1320
   1321/* TLB access */
   1322#define PERF_MEM_TLB_NA		0x01 /* not available */
   1323#define PERF_MEM_TLB_HIT	0x02 /* hit level */
   1324#define PERF_MEM_TLB_MISS	0x04 /* miss level */
   1325#define PERF_MEM_TLB_L1		0x08 /* L1 */
   1326#define PERF_MEM_TLB_L2		0x10 /* L2 */
   1327#define PERF_MEM_TLB_WK		0x20 /* Hardware Walker*/
   1328#define PERF_MEM_TLB_OS		0x40 /* OS fault handler */
   1329#define PERF_MEM_TLB_SHIFT	26
   1330
   1331/* Access blocked */
   1332#define PERF_MEM_BLK_NA		0x01 /* not available */
   1333#define PERF_MEM_BLK_DATA	0x02 /* data could not be forwarded */
   1334#define PERF_MEM_BLK_ADDR	0x04 /* address conflict */
   1335#define PERF_MEM_BLK_SHIFT	40
   1336
   1337/* hop level */
   1338#define PERF_MEM_HOPS_0		0x01 /* remote core, same node */
   1339#define PERF_MEM_HOPS_1		0x02 /* remote node, same socket */
   1340#define PERF_MEM_HOPS_2		0x03 /* remote socket, same board */
   1341#define PERF_MEM_HOPS_3		0x04 /* remote board */
   1342/* 5-7 available */
   1343#define PERF_MEM_HOPS_SHIFT	43
   1344
   1345#define PERF_MEM_S(a, s) \
   1346	(((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
   1347
   1348/*
   1349 * single taken branch record layout:
   1350 *
   1351 *      from: source instruction (may not always be a branch insn)
   1352 *        to: branch target
   1353 *   mispred: branch target was mispredicted
   1354 * predicted: branch target was predicted
   1355 *
   1356 * support for mispred, predicted is optional. In case it
   1357 * is not supported mispred = predicted = 0.
   1358 *
   1359 *     in_tx: running in a hardware transaction
   1360 *     abort: aborting a hardware transaction
   1361 *    cycles: cycles from last branch (or 0 if not supported)
   1362 *      type: branch type
   1363 */
   1364struct perf_branch_entry {
   1365	__u64	from;
   1366	__u64	to;
   1367	__u64	mispred:1,  /* target mispredicted */
   1368		predicted:1,/* target predicted */
   1369		in_tx:1,    /* in transaction */
   1370		abort:1,    /* transaction abort */
   1371		cycles:16,  /* cycle count to last branch */
   1372		type:4,     /* branch type */
   1373		reserved:40;
   1374};
   1375
   1376union perf_sample_weight {
   1377	__u64		full;
   1378#if defined(__LITTLE_ENDIAN_BITFIELD)
   1379	struct {
   1380		__u32	var1_dw;
   1381		__u16	var2_w;
   1382		__u16	var3_w;
   1383	};
   1384#elif defined(__BIG_ENDIAN_BITFIELD)
   1385	struct {
   1386		__u16	var3_w;
   1387		__u16	var2_w;
   1388		__u32	var1_dw;
   1389	};
   1390#else
   1391#error "Unknown endianness"
   1392#endif
   1393};
   1394
   1395#endif /* _UAPI_LINUX_PERF_EVENT_H */