cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

bpf_core_read.h (19115B)


      1/* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */
      2#ifndef __BPF_CORE_READ_H__
      3#define __BPF_CORE_READ_H__
      4
      5/*
      6 * enum bpf_field_info_kind is passed as a second argument into
      7 * __builtin_preserve_field_info() built-in to get a specific aspect of
      8 * a field, captured as a first argument. __builtin_preserve_field_info(field,
      9 * info_kind) returns __u32 integer and produces BTF field relocation, which
     10 * is understood and processed by libbpf during BPF object loading. See
     11 * selftests/bpf for examples.
     12 */
     13enum bpf_field_info_kind {
     14	BPF_FIELD_BYTE_OFFSET = 0,	/* field byte offset */
     15	BPF_FIELD_BYTE_SIZE = 1,
     16	BPF_FIELD_EXISTS = 2,		/* field existence in target kernel */
     17	BPF_FIELD_SIGNED = 3,
     18	BPF_FIELD_LSHIFT_U64 = 4,
     19	BPF_FIELD_RSHIFT_U64 = 5,
     20};
     21
     22/* second argument to __builtin_btf_type_id() built-in */
     23enum bpf_type_id_kind {
     24	BPF_TYPE_ID_LOCAL = 0,		/* BTF type ID in local program */
     25	BPF_TYPE_ID_TARGET = 1,		/* BTF type ID in target kernel */
     26};
     27
     28/* second argument to __builtin_preserve_type_info() built-in */
     29enum bpf_type_info_kind {
     30	BPF_TYPE_EXISTS = 0,		/* type existence in target kernel */
     31	BPF_TYPE_SIZE = 1,		/* type size in target kernel */
     32};
     33
     34/* second argument to __builtin_preserve_enum_value() built-in */
     35enum bpf_enum_value_kind {
     36	BPF_ENUMVAL_EXISTS = 0,		/* enum value existence in kernel */
     37	BPF_ENUMVAL_VALUE = 1,		/* enum value value relocation */
     38};
     39
     40#define __CORE_RELO(src, field, info)					      \
     41	__builtin_preserve_field_info((src)->field, BPF_FIELD_##info)
     42
     43#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
     44#define __CORE_BITFIELD_PROBE_READ(dst, src, fld)			      \
     45	bpf_probe_read_kernel(						      \
     46			(void *)dst,				      \
     47			__CORE_RELO(src, fld, BYTE_SIZE),		      \
     48			(const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET))
     49#else
     50/* semantics of LSHIFT_64 assumes loading values into low-ordered bytes, so
     51 * for big-endian we need to adjust destination pointer accordingly, based on
     52 * field byte size
     53 */
     54#define __CORE_BITFIELD_PROBE_READ(dst, src, fld)			      \
     55	bpf_probe_read_kernel(						      \
     56			(void *)dst + (8 - __CORE_RELO(src, fld, BYTE_SIZE)), \
     57			__CORE_RELO(src, fld, BYTE_SIZE),		      \
     58			(const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET))
     59#endif
     60
     61/*
     62 * Extract bitfield, identified by s->field, and return its value as u64.
     63 * All this is done in relocatable manner, so bitfield changes such as
     64 * signedness, bit size, offset changes, this will be handled automatically.
     65 * This version of macro is using bpf_probe_read_kernel() to read underlying
     66 * integer storage. Macro functions as an expression and its return type is
     67 * bpf_probe_read_kernel()'s return value: 0, on success, <0 on error.
     68 */
     69#define BPF_CORE_READ_BITFIELD_PROBED(s, field) ({			      \
     70	unsigned long long val = 0;					      \
     71									      \
     72	__CORE_BITFIELD_PROBE_READ(&val, s, field);			      \
     73	val <<= __CORE_RELO(s, field, LSHIFT_U64);			      \
     74	if (__CORE_RELO(s, field, SIGNED))				      \
     75		val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64);  \
     76	else								      \
     77		val = val >> __CORE_RELO(s, field, RSHIFT_U64);		      \
     78	val;								      \
     79})
     80
     81/*
     82 * Extract bitfield, identified by s->field, and return its value as u64.
     83 * This version of macro is using direct memory reads and should be used from
     84 * BPF program types that support such functionality (e.g., typed raw
     85 * tracepoints).
     86 */
     87#define BPF_CORE_READ_BITFIELD(s, field) ({				      \
     88	const void *p = (const void *)s + __CORE_RELO(s, field, BYTE_OFFSET); \
     89	unsigned long long val;						      \
     90									      \
     91	/* This is a so-called barrier_var() operation that makes specified   \
     92	 * variable "a black box" for optimizing compiler.		      \
     93	 * It forces compiler to perform BYTE_OFFSET relocation on p and use  \
     94	 * its calculated value in the switch below, instead of applying      \
     95	 * the same relocation 4 times for each individual memory load.       \
     96	 */								      \
     97	asm volatile("" : "=r"(p) : "0"(p));				      \
     98									      \
     99	switch (__CORE_RELO(s, field, BYTE_SIZE)) {			      \
    100	case 1: val = *(const unsigned char *)p; break;			      \
    101	case 2: val = *(const unsigned short *)p; break;		      \
    102	case 4: val = *(const unsigned int *)p; break;			      \
    103	case 8: val = *(const unsigned long long *)p; break;		      \
    104	}								      \
    105	val <<= __CORE_RELO(s, field, LSHIFT_U64);			      \
    106	if (__CORE_RELO(s, field, SIGNED))				      \
    107		val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64);  \
    108	else								      \
    109		val = val >> __CORE_RELO(s, field, RSHIFT_U64);		      \
    110	val;								      \
    111})
    112
    113#define ___bpf_field_ref1(field)	(field)
    114#define ___bpf_field_ref2(type, field)	(((typeof(type) *)0)->field)
    115#define ___bpf_field_ref(args...)					    \
    116	___bpf_apply(___bpf_field_ref, ___bpf_narg(args))(args)
    117
    118/*
    119 * Convenience macro to check that field actually exists in target kernel's.
    120 * Returns:
    121 *    1, if matching field is present in target kernel;
    122 *    0, if no matching field found.
    123 *
    124 * Supports two forms:
    125 *   - field reference through variable access:
    126 *     bpf_core_field_exists(p->my_field);
    127 *   - field reference through type and field names:
    128 *     bpf_core_field_exists(struct my_type, my_field).
    129 */
    130#define bpf_core_field_exists(field...)					    \
    131	__builtin_preserve_field_info(___bpf_field_ref(field), BPF_FIELD_EXISTS)
    132
    133/*
    134 * Convenience macro to get the byte size of a field. Works for integers,
    135 * struct/unions, pointers, arrays, and enums.
    136 *
    137 * Supports two forms:
    138 *   - field reference through variable access:
    139 *     bpf_core_field_size(p->my_field);
    140 *   - field reference through type and field names:
    141 *     bpf_core_field_size(struct my_type, my_field).
    142 */
    143#define bpf_core_field_size(field...)					    \
    144	__builtin_preserve_field_info(___bpf_field_ref(field), BPF_FIELD_BYTE_SIZE)
    145
    146/*
    147 * Convenience macro to get field's byte offset.
    148 *
    149 * Supports two forms:
    150 *   - field reference through variable access:
    151 *     bpf_core_field_offset(p->my_field);
    152 *   - field reference through type and field names:
    153 *     bpf_core_field_offset(struct my_type, my_field).
    154 */
    155#define bpf_core_field_offset(field...)					    \
    156	__builtin_preserve_field_info(___bpf_field_ref(field), BPF_FIELD_BYTE_OFFSET)
    157
    158/*
    159 * Convenience macro to get BTF type ID of a specified type, using a local BTF
    160 * information. Return 32-bit unsigned integer with type ID from program's own
    161 * BTF. Always succeeds.
    162 */
    163#define bpf_core_type_id_local(type)					    \
    164	__builtin_btf_type_id(*(typeof(type) *)0, BPF_TYPE_ID_LOCAL)
    165
    166/*
    167 * Convenience macro to get BTF type ID of a target kernel's type that matches
    168 * specified local type.
    169 * Returns:
    170 *    - valid 32-bit unsigned type ID in kernel BTF;
    171 *    - 0, if no matching type was found in a target kernel BTF.
    172 */
    173#define bpf_core_type_id_kernel(type)					    \
    174	__builtin_btf_type_id(*(typeof(type) *)0, BPF_TYPE_ID_TARGET)
    175
    176/*
    177 * Convenience macro to check that provided named type
    178 * (struct/union/enum/typedef) exists in a target kernel.
    179 * Returns:
    180 *    1, if such type is present in target kernel's BTF;
    181 *    0, if no matching type is found.
    182 */
    183#define bpf_core_type_exists(type)					    \
    184	__builtin_preserve_type_info(*(typeof(type) *)0, BPF_TYPE_EXISTS)
    185
    186/*
    187 * Convenience macro to get the byte size of a provided named type
    188 * (struct/union/enum/typedef) in a target kernel.
    189 * Returns:
    190 *    >= 0 size (in bytes), if type is present in target kernel's BTF;
    191 *    0, if no matching type is found.
    192 */
    193#define bpf_core_type_size(type)					    \
    194	__builtin_preserve_type_info(*(typeof(type) *)0, BPF_TYPE_SIZE)
    195
    196/*
    197 * Convenience macro to check that provided enumerator value is defined in
    198 * a target kernel.
    199 * Returns:
    200 *    1, if specified enum type and its enumerator value are present in target
    201 *    kernel's BTF;
    202 *    0, if no matching enum and/or enum value within that enum is found.
    203 */
    204#define bpf_core_enum_value_exists(enum_type, enum_value)		    \
    205	__builtin_preserve_enum_value(*(typeof(enum_type) *)enum_value, BPF_ENUMVAL_EXISTS)
    206
    207/*
    208 * Convenience macro to get the integer value of an enumerator value in
    209 * a target kernel.
    210 * Returns:
    211 *    64-bit value, if specified enum type and its enumerator value are
    212 *    present in target kernel's BTF;
    213 *    0, if no matching enum and/or enum value within that enum is found.
    214 */
    215#define bpf_core_enum_value(enum_type, enum_value)			    \
    216	__builtin_preserve_enum_value(*(typeof(enum_type) *)enum_value, BPF_ENUMVAL_VALUE)
    217
    218/*
    219 * bpf_core_read() abstracts away bpf_probe_read_kernel() call and captures
    220 * offset relocation for source address using __builtin_preserve_access_index()
    221 * built-in, provided by Clang.
    222 *
    223 * __builtin_preserve_access_index() takes as an argument an expression of
    224 * taking an address of a field within struct/union. It makes compiler emit
    225 * a relocation, which records BTF type ID describing root struct/union and an
    226 * accessor string which describes exact embedded field that was used to take
    227 * an address. See detailed description of this relocation format and
    228 * semantics in comments to struct bpf_field_reloc in libbpf_internal.h.
    229 *
    230 * This relocation allows libbpf to adjust BPF instruction to use correct
    231 * actual field offset, based on target kernel BTF type that matches original
    232 * (local) BTF, used to record relocation.
    233 */
    234#define bpf_core_read(dst, sz, src)					    \
    235	bpf_probe_read_kernel(dst, sz, (const void *)__builtin_preserve_access_index(src))
    236
    237/* NOTE: see comments for BPF_CORE_READ_USER() about the proper types use. */
    238#define bpf_core_read_user(dst, sz, src)				    \
    239	bpf_probe_read_user(dst, sz, (const void *)__builtin_preserve_access_index(src))
    240/*
    241 * bpf_core_read_str() is a thin wrapper around bpf_probe_read_str()
    242 * additionally emitting BPF CO-RE field relocation for specified source
    243 * argument.
    244 */
    245#define bpf_core_read_str(dst, sz, src)					    \
    246	bpf_probe_read_kernel_str(dst, sz, (const void *)__builtin_preserve_access_index(src))
    247
    248/* NOTE: see comments for BPF_CORE_READ_USER() about the proper types use. */
    249#define bpf_core_read_user_str(dst, sz, src)				    \
    250	bpf_probe_read_user_str(dst, sz, (const void *)__builtin_preserve_access_index(src))
    251
    252#define ___concat(a, b) a ## b
    253#define ___apply(fn, n) ___concat(fn, n)
    254#define ___nth(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, __11, N, ...) N
    255
    256/*
    257 * return number of provided arguments; used for switch-based variadic macro
    258 * definitions (see ___last, ___arrow, etc below)
    259 */
    260#define ___narg(...) ___nth(_, ##__VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
    261/*
    262 * return 0 if no arguments are passed, N - otherwise; used for
    263 * recursively-defined macros to specify termination (0) case, and generic
    264 * (N) case (e.g., ___read_ptrs, ___core_read)
    265 */
    266#define ___empty(...) ___nth(_, ##__VA_ARGS__, N, N, N, N, N, N, N, N, N, N, 0)
    267
    268#define ___last1(x) x
    269#define ___last2(a, x) x
    270#define ___last3(a, b, x) x
    271#define ___last4(a, b, c, x) x
    272#define ___last5(a, b, c, d, x) x
    273#define ___last6(a, b, c, d, e, x) x
    274#define ___last7(a, b, c, d, e, f, x) x
    275#define ___last8(a, b, c, d, e, f, g, x) x
    276#define ___last9(a, b, c, d, e, f, g, h, x) x
    277#define ___last10(a, b, c, d, e, f, g, h, i, x) x
    278#define ___last(...) ___apply(___last, ___narg(__VA_ARGS__))(__VA_ARGS__)
    279
    280#define ___nolast2(a, _) a
    281#define ___nolast3(a, b, _) a, b
    282#define ___nolast4(a, b, c, _) a, b, c
    283#define ___nolast5(a, b, c, d, _) a, b, c, d
    284#define ___nolast6(a, b, c, d, e, _) a, b, c, d, e
    285#define ___nolast7(a, b, c, d, e, f, _) a, b, c, d, e, f
    286#define ___nolast8(a, b, c, d, e, f, g, _) a, b, c, d, e, f, g
    287#define ___nolast9(a, b, c, d, e, f, g, h, _) a, b, c, d, e, f, g, h
    288#define ___nolast10(a, b, c, d, e, f, g, h, i, _) a, b, c, d, e, f, g, h, i
    289#define ___nolast(...) ___apply(___nolast, ___narg(__VA_ARGS__))(__VA_ARGS__)
    290
    291#define ___arrow1(a) a
    292#define ___arrow2(a, b) a->b
    293#define ___arrow3(a, b, c) a->b->c
    294#define ___arrow4(a, b, c, d) a->b->c->d
    295#define ___arrow5(a, b, c, d, e) a->b->c->d->e
    296#define ___arrow6(a, b, c, d, e, f) a->b->c->d->e->f
    297#define ___arrow7(a, b, c, d, e, f, g) a->b->c->d->e->f->g
    298#define ___arrow8(a, b, c, d, e, f, g, h) a->b->c->d->e->f->g->h
    299#define ___arrow9(a, b, c, d, e, f, g, h, i) a->b->c->d->e->f->g->h->i
    300#define ___arrow10(a, b, c, d, e, f, g, h, i, j) a->b->c->d->e->f->g->h->i->j
    301#define ___arrow(...) ___apply(___arrow, ___narg(__VA_ARGS__))(__VA_ARGS__)
    302
    303#define ___type(...) typeof(___arrow(__VA_ARGS__))
    304
    305#define ___read(read_fn, dst, src_type, src, accessor)			    \
    306	read_fn((void *)(dst), sizeof(*(dst)), &((src_type)(src))->accessor)
    307
    308/* "recursively" read a sequence of inner pointers using local __t var */
    309#define ___rd_first(fn, src, a) ___read(fn, &__t, ___type(src), src, a);
    310#define ___rd_last(fn, ...)						    \
    311	___read(fn, &__t, ___type(___nolast(__VA_ARGS__)), __t, ___last(__VA_ARGS__));
    312#define ___rd_p1(fn, ...) const void *__t; ___rd_first(fn, __VA_ARGS__)
    313#define ___rd_p2(fn, ...) ___rd_p1(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
    314#define ___rd_p3(fn, ...) ___rd_p2(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
    315#define ___rd_p4(fn, ...) ___rd_p3(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
    316#define ___rd_p5(fn, ...) ___rd_p4(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
    317#define ___rd_p6(fn, ...) ___rd_p5(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
    318#define ___rd_p7(fn, ...) ___rd_p6(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
    319#define ___rd_p8(fn, ...) ___rd_p7(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
    320#define ___rd_p9(fn, ...) ___rd_p8(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
    321#define ___read_ptrs(fn, src, ...)					    \
    322	___apply(___rd_p, ___narg(__VA_ARGS__))(fn, src, __VA_ARGS__)
    323
    324#define ___core_read0(fn, fn_ptr, dst, src, a)				    \
    325	___read(fn, dst, ___type(src), src, a);
    326#define ___core_readN(fn, fn_ptr, dst, src, ...)			    \
    327	___read_ptrs(fn_ptr, src, ___nolast(__VA_ARGS__))		    \
    328	___read(fn, dst, ___type(src, ___nolast(__VA_ARGS__)), __t,	    \
    329		___last(__VA_ARGS__));
    330#define ___core_read(fn, fn_ptr, dst, src, a, ...)			    \
    331	___apply(___core_read, ___empty(__VA_ARGS__))(fn, fn_ptr, dst,	    \
    332						      src, a, ##__VA_ARGS__)
    333
    334/*
    335 * BPF_CORE_READ_INTO() is a more performance-conscious variant of
    336 * BPF_CORE_READ(), in which final field is read into user-provided storage.
    337 * See BPF_CORE_READ() below for more details on general usage.
    338 */
    339#define BPF_CORE_READ_INTO(dst, src, a, ...) ({				    \
    340	___core_read(bpf_core_read, bpf_core_read,			    \
    341		     dst, (src), a, ##__VA_ARGS__)			    \
    342})
    343
    344/*
    345 * Variant of BPF_CORE_READ_INTO() for reading from user-space memory.
    346 *
    347 * NOTE: see comments for BPF_CORE_READ_USER() about the proper types use.
    348 */
    349#define BPF_CORE_READ_USER_INTO(dst, src, a, ...) ({			    \
    350	___core_read(bpf_core_read_user, bpf_core_read_user,		    \
    351		     dst, (src), a, ##__VA_ARGS__)			    \
    352})
    353
    354/* Non-CO-RE variant of BPF_CORE_READ_INTO() */
    355#define BPF_PROBE_READ_INTO(dst, src, a, ...) ({			    \
    356	___core_read(bpf_probe_read, bpf_probe_read,			    \
    357		     dst, (src), a, ##__VA_ARGS__)			    \
    358})
    359
    360/* Non-CO-RE variant of BPF_CORE_READ_USER_INTO().
    361 *
    362 * As no CO-RE relocations are emitted, source types can be arbitrary and are
    363 * not restricted to kernel types only.
    364 */
    365#define BPF_PROBE_READ_USER_INTO(dst, src, a, ...) ({			    \
    366	___core_read(bpf_probe_read_user, bpf_probe_read_user,		    \
    367		     dst, (src), a, ##__VA_ARGS__)			    \
    368})
    369
    370/*
    371 * BPF_CORE_READ_STR_INTO() does same "pointer chasing" as
    372 * BPF_CORE_READ() for intermediate pointers, but then executes (and returns
    373 * corresponding error code) bpf_core_read_str() for final string read.
    374 */
    375#define BPF_CORE_READ_STR_INTO(dst, src, a, ...) ({			    \
    376	___core_read(bpf_core_read_str, bpf_core_read,			    \
    377		     dst, (src), a, ##__VA_ARGS__)			    \
    378})
    379
    380/*
    381 * Variant of BPF_CORE_READ_STR_INTO() for reading from user-space memory.
    382 *
    383 * NOTE: see comments for BPF_CORE_READ_USER() about the proper types use.
    384 */
    385#define BPF_CORE_READ_USER_STR_INTO(dst, src, a, ...) ({		    \
    386	___core_read(bpf_core_read_user_str, bpf_core_read_user,	    \
    387		     dst, (src), a, ##__VA_ARGS__)			    \
    388})
    389
    390/* Non-CO-RE variant of BPF_CORE_READ_STR_INTO() */
    391#define BPF_PROBE_READ_STR_INTO(dst, src, a, ...) ({			    \
    392	___core_read(bpf_probe_read_str, bpf_probe_read,		    \
    393		     dst, (src), a, ##__VA_ARGS__)			    \
    394})
    395
    396/*
    397 * Non-CO-RE variant of BPF_CORE_READ_USER_STR_INTO().
    398 *
    399 * As no CO-RE relocations are emitted, source types can be arbitrary and are
    400 * not restricted to kernel types only.
    401 */
    402#define BPF_PROBE_READ_USER_STR_INTO(dst, src, a, ...) ({		    \
    403	___core_read(bpf_probe_read_user_str, bpf_probe_read_user,	    \
    404		     dst, (src), a, ##__VA_ARGS__)			    \
    405})
    406
    407/*
    408 * BPF_CORE_READ() is used to simplify BPF CO-RE relocatable read, especially
    409 * when there are few pointer chasing steps.
    410 * E.g., what in non-BPF world (or in BPF w/ BCC) would be something like:
    411 *	int x = s->a.b.c->d.e->f->g;
    412 * can be succinctly achieved using BPF_CORE_READ as:
    413 *	int x = BPF_CORE_READ(s, a.b.c, d.e, f, g);
    414 *
    415 * BPF_CORE_READ will decompose above statement into 4 bpf_core_read (BPF
    416 * CO-RE relocatable bpf_probe_read_kernel() wrapper) calls, logically
    417 * equivalent to:
    418 * 1. const void *__t = s->a.b.c;
    419 * 2. __t = __t->d.e;
    420 * 3. __t = __t->f;
    421 * 4. return __t->g;
    422 *
    423 * Equivalence is logical, because there is a heavy type casting/preservation
    424 * involved, as well as all the reads are happening through
    425 * bpf_probe_read_kernel() calls using __builtin_preserve_access_index() to
    426 * emit CO-RE relocations.
    427 *
    428 * N.B. Only up to 9 "field accessors" are supported, which should be more
    429 * than enough for any practical purpose.
    430 */
    431#define BPF_CORE_READ(src, a, ...) ({					    \
    432	___type((src), a, ##__VA_ARGS__) __r;				    \
    433	BPF_CORE_READ_INTO(&__r, (src), a, ##__VA_ARGS__);		    \
    434	__r;								    \
    435})
    436
    437/*
    438 * Variant of BPF_CORE_READ() for reading from user-space memory.
    439 *
    440 * NOTE: all the source types involved are still *kernel types* and need to
    441 * exist in kernel (or kernel module) BTF, otherwise CO-RE relocation will
    442 * fail. Custom user types are not relocatable with CO-RE.
    443 * The typical situation in which BPF_CORE_READ_USER() might be used is to
    444 * read kernel UAPI types from the user-space memory passed in as a syscall
    445 * input argument.
    446 */
    447#define BPF_CORE_READ_USER(src, a, ...) ({				    \
    448	___type((src), a, ##__VA_ARGS__) __r;				    \
    449	BPF_CORE_READ_USER_INTO(&__r, (src), a, ##__VA_ARGS__);		    \
    450	__r;								    \
    451})
    452
    453/* Non-CO-RE variant of BPF_CORE_READ() */
    454#define BPF_PROBE_READ(src, a, ...) ({					    \
    455	___type((src), a, ##__VA_ARGS__) __r;				    \
    456	BPF_PROBE_READ_INTO(&__r, (src), a, ##__VA_ARGS__);		    \
    457	__r;								    \
    458})
    459
    460/*
    461 * Non-CO-RE variant of BPF_CORE_READ_USER().
    462 *
    463 * As no CO-RE relocations are emitted, source types can be arbitrary and are
    464 * not restricted to kernel types only.
    465 */
    466#define BPF_PROBE_READ_USER(src, a, ...) ({				    \
    467	___type((src), a, ##__VA_ARGS__) __r;				    \
    468	BPF_PROBE_READ_USER_INTO(&__r, (src), a, ##__VA_ARGS__);	    \
    469	__r;								    \
    470})
    471
    472#endif
    473