cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

btf_dump.c (64046B)


      1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
      2
      3/*
      4 * BTF-to-C type converter.
      5 *
      6 * Copyright (c) 2019 Facebook
      7 */
      8
      9#include <stdbool.h>
     10#include <stddef.h>
     11#include <stdlib.h>
     12#include <string.h>
     13#include <ctype.h>
     14#include <endian.h>
     15#include <errno.h>
     16#include <linux/err.h>
     17#include <linux/btf.h>
     18#include <linux/kernel.h>
     19#include "btf.h"
     20#include "hashmap.h"
     21#include "libbpf.h"
     22#include "libbpf_internal.h"
     23
     24static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
     25static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;
     26
     27static const char *pfx(int lvl)
     28{
     29	return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
     30}
     31
     32enum btf_dump_type_order_state {
     33	NOT_ORDERED,
     34	ORDERING,
     35	ORDERED,
     36};
     37
     38enum btf_dump_type_emit_state {
     39	NOT_EMITTED,
     40	EMITTING,
     41	EMITTED,
     42};
     43
     44/* per-type auxiliary state */
     45struct btf_dump_type_aux_state {
     46	/* topological sorting state */
     47	enum btf_dump_type_order_state order_state: 2;
     48	/* emitting state used to determine the need for forward declaration */
     49	enum btf_dump_type_emit_state emit_state: 2;
     50	/* whether forward declaration was already emitted */
     51	__u8 fwd_emitted: 1;
     52	/* whether unique non-duplicate name was already assigned */
     53	__u8 name_resolved: 1;
     54	/* whether type is referenced from any other type */
     55	__u8 referenced: 1;
     56};
     57
     58/* indent string length; one indent string is added for each indent level */
     59#define BTF_DATA_INDENT_STR_LEN			32
     60
     61/*
     62 * Common internal data for BTF type data dump operations.
     63 */
     64struct btf_dump_data {
     65	const void *data_end;		/* end of valid data to show */
     66	bool compact;
     67	bool skip_names;
     68	bool emit_zeroes;
     69	__u8 indent_lvl;	/* base indent level */
     70	char indent_str[BTF_DATA_INDENT_STR_LEN];
     71	/* below are used during iteration */
     72	int depth;
     73	bool is_array_member;
     74	bool is_array_terminated;
     75	bool is_array_char;
     76};
     77
     78struct btf_dump {
     79	const struct btf *btf;
     80	btf_dump_printf_fn_t printf_fn;
     81	void *cb_ctx;
     82	int ptr_sz;
     83	bool strip_mods;
     84	bool skip_anon_defs;
     85	int last_id;
     86
     87	/* per-type auxiliary state */
     88	struct btf_dump_type_aux_state *type_states;
     89	size_t type_states_cap;
     90	/* per-type optional cached unique name, must be freed, if present */
     91	const char **cached_names;
     92	size_t cached_names_cap;
     93
     94	/* topo-sorted list of dependent type definitions */
     95	__u32 *emit_queue;
     96	int emit_queue_cap;
     97	int emit_queue_cnt;
     98
     99	/*
    100	 * stack of type declarations (e.g., chain of modifiers, arrays,
    101	 * funcs, etc)
    102	 */
    103	__u32 *decl_stack;
    104	int decl_stack_cap;
    105	int decl_stack_cnt;
    106
    107	/* maps struct/union/enum name to a number of name occurrences */
    108	struct hashmap *type_names;
    109	/*
    110	 * maps typedef identifiers and enum value names to a number of such
    111	 * name occurrences
    112	 */
    113	struct hashmap *ident_names;
    114	/*
    115	 * data for typed display; allocated if needed.
    116	 */
    117	struct btf_dump_data *typed_dump;
    118};
    119
    120static size_t str_hash_fn(const void *key, void *ctx)
    121{
    122	return str_hash(key);
    123}
    124
    125static bool str_equal_fn(const void *a, const void *b, void *ctx)
    126{
    127	return strcmp(a, b) == 0;
    128}
    129
    130static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
    131{
    132	return btf__name_by_offset(d->btf, name_off);
    133}
    134
    135static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
    136{
    137	va_list args;
    138
    139	va_start(args, fmt);
    140	d->printf_fn(d->cb_ctx, fmt, args);
    141	va_end(args);
    142}
    143
    144static int btf_dump_mark_referenced(struct btf_dump *d);
    145static int btf_dump_resize(struct btf_dump *d);
    146
    147DEFAULT_VERSION(btf_dump__new_v0_6_0, btf_dump__new, LIBBPF_0.6.0)
    148struct btf_dump *btf_dump__new_v0_6_0(const struct btf *btf,
    149				      btf_dump_printf_fn_t printf_fn,
    150				      void *ctx,
    151				      const struct btf_dump_opts *opts)
    152{
    153	struct btf_dump *d;
    154	int err;
    155
    156	if (!printf_fn)
    157		return libbpf_err_ptr(-EINVAL);
    158
    159	d = calloc(1, sizeof(struct btf_dump));
    160	if (!d)
    161		return libbpf_err_ptr(-ENOMEM);
    162
    163	d->btf = btf;
    164	d->printf_fn = printf_fn;
    165	d->cb_ctx = ctx;
    166	d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *);
    167
    168	d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
    169	if (IS_ERR(d->type_names)) {
    170		err = PTR_ERR(d->type_names);
    171		d->type_names = NULL;
    172		goto err;
    173	}
    174	d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
    175	if (IS_ERR(d->ident_names)) {
    176		err = PTR_ERR(d->ident_names);
    177		d->ident_names = NULL;
    178		goto err;
    179	}
    180
    181	err = btf_dump_resize(d);
    182	if (err)
    183		goto err;
    184
    185	return d;
    186err:
    187	btf_dump__free(d);
    188	return libbpf_err_ptr(err);
    189}
    190
    191COMPAT_VERSION(btf_dump__new_deprecated, btf_dump__new, LIBBPF_0.0.4)
    192struct btf_dump *btf_dump__new_deprecated(const struct btf *btf,
    193					  const struct btf_ext *btf_ext,
    194					  const struct btf_dump_opts *opts,
    195					  btf_dump_printf_fn_t printf_fn)
    196{
    197	if (!printf_fn)
    198		return libbpf_err_ptr(-EINVAL);
    199	return btf_dump__new_v0_6_0(btf, printf_fn, opts ? opts->ctx : NULL, opts);
    200}
    201
    202static int btf_dump_resize(struct btf_dump *d)
    203{
    204	int err, last_id = btf__type_cnt(d->btf) - 1;
    205
    206	if (last_id <= d->last_id)
    207		return 0;
    208
    209	if (libbpf_ensure_mem((void **)&d->type_states, &d->type_states_cap,
    210			      sizeof(*d->type_states), last_id + 1))
    211		return -ENOMEM;
    212	if (libbpf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap,
    213			      sizeof(*d->cached_names), last_id + 1))
    214		return -ENOMEM;
    215
    216	if (d->last_id == 0) {
    217		/* VOID is special */
    218		d->type_states[0].order_state = ORDERED;
    219		d->type_states[0].emit_state = EMITTED;
    220	}
    221
    222	/* eagerly determine referenced types for anon enums */
    223	err = btf_dump_mark_referenced(d);
    224	if (err)
    225		return err;
    226
    227	d->last_id = last_id;
    228	return 0;
    229}
    230
    231void btf_dump__free(struct btf_dump *d)
    232{
    233	int i;
    234
    235	if (IS_ERR_OR_NULL(d))
    236		return;
    237
    238	free(d->type_states);
    239	if (d->cached_names) {
    240		/* any set cached name is owned by us and should be freed */
    241		for (i = 0; i <= d->last_id; i++) {
    242			if (d->cached_names[i])
    243				free((void *)d->cached_names[i]);
    244		}
    245	}
    246	free(d->cached_names);
    247	free(d->emit_queue);
    248	free(d->decl_stack);
    249	hashmap__free(d->type_names);
    250	hashmap__free(d->ident_names);
    251
    252	free(d);
    253}
    254
    255static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
    256static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);
    257
    258/*
    259 * Dump BTF type in a compilable C syntax, including all the necessary
    260 * dependent types, necessary for compilation. If some of the dependent types
    261 * were already emitted as part of previous btf_dump__dump_type() invocation
    262 * for another type, they won't be emitted again. This API allows callers to
    263 * filter out BTF types according to user-defined criterias and emitted only
    264 * minimal subset of types, necessary to compile everything. Full struct/union
    265 * definitions will still be emitted, even if the only usage is through
    266 * pointer and could be satisfied with just a forward declaration.
    267 *
    268 * Dumping is done in two high-level passes:
    269 *   1. Topologically sort type definitions to satisfy C rules of compilation.
    270 *   2. Emit type definitions in C syntax.
    271 *
    272 * Returns 0 on success; <0, otherwise.
    273 */
    274int btf_dump__dump_type(struct btf_dump *d, __u32 id)
    275{
    276	int err, i;
    277
    278	if (id >= btf__type_cnt(d->btf))
    279		return libbpf_err(-EINVAL);
    280
    281	err = btf_dump_resize(d);
    282	if (err)
    283		return libbpf_err(err);
    284
    285	d->emit_queue_cnt = 0;
    286	err = btf_dump_order_type(d, id, false);
    287	if (err < 0)
    288		return libbpf_err(err);
    289
    290	for (i = 0; i < d->emit_queue_cnt; i++)
    291		btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);
    292
    293	return 0;
    294}
    295
    296/*
    297 * Mark all types that are referenced from any other type. This is used to
    298 * determine top-level anonymous enums that need to be emitted as an
    299 * independent type declarations.
    300 * Anonymous enums come in two flavors: either embedded in a struct's field
    301 * definition, in which case they have to be declared inline as part of field
    302 * type declaration; or as a top-level anonymous enum, typically used for
    303 * declaring global constants. It's impossible to distinguish between two
    304 * without knowning whether given enum type was referenced from other type:
    305 * top-level anonymous enum won't be referenced by anything, while embedded
    306 * one will.
    307 */
    308static int btf_dump_mark_referenced(struct btf_dump *d)
    309{
    310	int i, j, n = btf__type_cnt(d->btf);
    311	const struct btf_type *t;
    312	__u16 vlen;
    313
    314	for (i = d->last_id + 1; i < n; i++) {
    315		t = btf__type_by_id(d->btf, i);
    316		vlen = btf_vlen(t);
    317
    318		switch (btf_kind(t)) {
    319		case BTF_KIND_INT:
    320		case BTF_KIND_ENUM:
    321		case BTF_KIND_FWD:
    322		case BTF_KIND_FLOAT:
    323			break;
    324
    325		case BTF_KIND_VOLATILE:
    326		case BTF_KIND_CONST:
    327		case BTF_KIND_RESTRICT:
    328		case BTF_KIND_PTR:
    329		case BTF_KIND_TYPEDEF:
    330		case BTF_KIND_FUNC:
    331		case BTF_KIND_VAR:
    332		case BTF_KIND_DECL_TAG:
    333		case BTF_KIND_TYPE_TAG:
    334			d->type_states[t->type].referenced = 1;
    335			break;
    336
    337		case BTF_KIND_ARRAY: {
    338			const struct btf_array *a = btf_array(t);
    339
    340			d->type_states[a->index_type].referenced = 1;
    341			d->type_states[a->type].referenced = 1;
    342			break;
    343		}
    344		case BTF_KIND_STRUCT:
    345		case BTF_KIND_UNION: {
    346			const struct btf_member *m = btf_members(t);
    347
    348			for (j = 0; j < vlen; j++, m++)
    349				d->type_states[m->type].referenced = 1;
    350			break;
    351		}
    352		case BTF_KIND_FUNC_PROTO: {
    353			const struct btf_param *p = btf_params(t);
    354
    355			for (j = 0; j < vlen; j++, p++)
    356				d->type_states[p->type].referenced = 1;
    357			break;
    358		}
    359		case BTF_KIND_DATASEC: {
    360			const struct btf_var_secinfo *v = btf_var_secinfos(t);
    361
    362			for (j = 0; j < vlen; j++, v++)
    363				d->type_states[v->type].referenced = 1;
    364			break;
    365		}
    366		default:
    367			return -EINVAL;
    368		}
    369	}
    370	return 0;
    371}
    372
    373static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
    374{
    375	__u32 *new_queue;
    376	size_t new_cap;
    377
    378	if (d->emit_queue_cnt >= d->emit_queue_cap) {
    379		new_cap = max(16, d->emit_queue_cap * 3 / 2);
    380		new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0]));
    381		if (!new_queue)
    382			return -ENOMEM;
    383		d->emit_queue = new_queue;
    384		d->emit_queue_cap = new_cap;
    385	}
    386
    387	d->emit_queue[d->emit_queue_cnt++] = id;
    388	return 0;
    389}
    390
    391/*
    392 * Determine order of emitting dependent types and specified type to satisfy
    393 * C compilation rules.  This is done through topological sorting with an
    394 * additional complication which comes from C rules. The main idea for C is
    395 * that if some type is "embedded" into a struct/union, it's size needs to be
    396 * known at the time of definition of containing type. E.g., for:
    397 *
    398 *	struct A {};
    399 *	struct B { struct A x; }
    400 *
    401 * struct A *HAS* to be defined before struct B, because it's "embedded",
    402 * i.e., it is part of struct B layout. But in the following case:
    403 *
    404 *	struct A;
    405 *	struct B { struct A *x; }
    406 *	struct A {};
    407 *
    408 * it's enough to just have a forward declaration of struct A at the time of
    409 * struct B definition, as struct B has a pointer to struct A, so the size of
    410 * field x is known without knowing struct A size: it's sizeof(void *).
    411 *
    412 * Unfortunately, there are some trickier cases we need to handle, e.g.:
    413 *
    414 *	struct A {}; // if this was forward-declaration: compilation error
    415 *	struct B {
    416 *		struct { // anonymous struct
    417 *			struct A y;
    418 *		} *x;
    419 *	};
    420 *
    421 * In this case, struct B's field x is a pointer, so it's size is known
    422 * regardless of the size of (anonymous) struct it points to. But because this
    423 * struct is anonymous and thus defined inline inside struct B, *and* it
    424 * embeds struct A, compiler requires full definition of struct A to be known
    425 * before struct B can be defined. This creates a transitive dependency
    426 * between struct A and struct B. If struct A was forward-declared before
    427 * struct B definition and fully defined after struct B definition, that would
    428 * trigger compilation error.
    429 *
    430 * All this means that while we are doing topological sorting on BTF type
    431 * graph, we need to determine relationships between different types (graph
    432 * nodes):
    433 *   - weak link (relationship) between X and Y, if Y *CAN* be
    434 *   forward-declared at the point of X definition;
    435 *   - strong link, if Y *HAS* to be fully-defined before X can be defined.
    436 *
    437 * The rule is as follows. Given a chain of BTF types from X to Y, if there is
    438 * BTF_KIND_PTR type in the chain and at least one non-anonymous type
    439 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
    440 * Weak/strong relationship is determined recursively during DFS traversal and
    441 * is returned as a result from btf_dump_order_type().
    442 *
    443 * btf_dump_order_type() is trying to avoid unnecessary forward declarations,
    444 * but it is not guaranteeing that no extraneous forward declarations will be
    445 * emitted.
    446 *
    447 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when
    448 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
    449 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
    450 * entire graph path, so depending where from one came to that BTF type, it
    451 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
    452 * once they are processed, there is no need to do it again, so they are
    453 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
    454 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
    455 * in any case, once those are processed, no need to do it again, as the
    456 * result won't change.
    457 *
    458 * Returns:
    459 *   - 1, if type is part of strong link (so there is strong topological
    460 *   ordering requirements);
    461 *   - 0, if type is part of weak link (so can be satisfied through forward
    462 *   declaration);
    463 *   - <0, on error (e.g., unsatisfiable type loop detected).
    464 */
    465static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
    466{
    467	/*
    468	 * Order state is used to detect strong link cycles, but only for BTF
    469	 * kinds that are or could be an independent definition (i.e.,
    470	 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
    471	 * func_protos, modifiers are just means to get to these definitions.
    472	 * Int/void don't need definitions, they are assumed to be always
    473	 * properly defined.  We also ignore datasec, var, and funcs for now.
    474	 * So for all non-defining kinds, we never even set ordering state,
    475	 * for defining kinds we set ORDERING and subsequently ORDERED if it
    476	 * forms a strong link.
    477	 */
    478	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
    479	const struct btf_type *t;
    480	__u16 vlen;
    481	int err, i;
    482
    483	/* return true, letting typedefs know that it's ok to be emitted */
    484	if (tstate->order_state == ORDERED)
    485		return 1;
    486
    487	t = btf__type_by_id(d->btf, id);
    488
    489	if (tstate->order_state == ORDERING) {
    490		/* type loop, but resolvable through fwd declaration */
    491		if (btf_is_composite(t) && through_ptr && t->name_off != 0)
    492			return 0;
    493		pr_warn("unsatisfiable type cycle, id:[%u]\n", id);
    494		return -ELOOP;
    495	}
    496
    497	switch (btf_kind(t)) {
    498	case BTF_KIND_INT:
    499	case BTF_KIND_FLOAT:
    500		tstate->order_state = ORDERED;
    501		return 0;
    502
    503	case BTF_KIND_PTR:
    504		err = btf_dump_order_type(d, t->type, true);
    505		tstate->order_state = ORDERED;
    506		return err;
    507
    508	case BTF_KIND_ARRAY:
    509		return btf_dump_order_type(d, btf_array(t)->type, false);
    510
    511	case BTF_KIND_STRUCT:
    512	case BTF_KIND_UNION: {
    513		const struct btf_member *m = btf_members(t);
    514		/*
    515		 * struct/union is part of strong link, only if it's embedded
    516		 * (so no ptr in a path) or it's anonymous (so has to be
    517		 * defined inline, even if declared through ptr)
    518		 */
    519		if (through_ptr && t->name_off != 0)
    520			return 0;
    521
    522		tstate->order_state = ORDERING;
    523
    524		vlen = btf_vlen(t);
    525		for (i = 0; i < vlen; i++, m++) {
    526			err = btf_dump_order_type(d, m->type, false);
    527			if (err < 0)
    528				return err;
    529		}
    530
    531		if (t->name_off != 0) {
    532			err = btf_dump_add_emit_queue_id(d, id);
    533			if (err < 0)
    534				return err;
    535		}
    536
    537		tstate->order_state = ORDERED;
    538		return 1;
    539	}
    540	case BTF_KIND_ENUM:
    541	case BTF_KIND_FWD:
    542		/*
    543		 * non-anonymous or non-referenced enums are top-level
    544		 * declarations and should be emitted. Same logic can be
    545		 * applied to FWDs, it won't hurt anyways.
    546		 */
    547		if (t->name_off != 0 || !tstate->referenced) {
    548			err = btf_dump_add_emit_queue_id(d, id);
    549			if (err)
    550				return err;
    551		}
    552		tstate->order_state = ORDERED;
    553		return 1;
    554
    555	case BTF_KIND_TYPEDEF: {
    556		int is_strong;
    557
    558		is_strong = btf_dump_order_type(d, t->type, through_ptr);
    559		if (is_strong < 0)
    560			return is_strong;
    561
    562		/* typedef is similar to struct/union w.r.t. fwd-decls */
    563		if (through_ptr && !is_strong)
    564			return 0;
    565
    566		/* typedef is always a named definition */
    567		err = btf_dump_add_emit_queue_id(d, id);
    568		if (err)
    569			return err;
    570
    571		d->type_states[id].order_state = ORDERED;
    572		return 1;
    573	}
    574	case BTF_KIND_VOLATILE:
    575	case BTF_KIND_CONST:
    576	case BTF_KIND_RESTRICT:
    577	case BTF_KIND_TYPE_TAG:
    578		return btf_dump_order_type(d, t->type, through_ptr);
    579
    580	case BTF_KIND_FUNC_PROTO: {
    581		const struct btf_param *p = btf_params(t);
    582		bool is_strong;
    583
    584		err = btf_dump_order_type(d, t->type, through_ptr);
    585		if (err < 0)
    586			return err;
    587		is_strong = err > 0;
    588
    589		vlen = btf_vlen(t);
    590		for (i = 0; i < vlen; i++, p++) {
    591			err = btf_dump_order_type(d, p->type, through_ptr);
    592			if (err < 0)
    593				return err;
    594			if (err > 0)
    595				is_strong = true;
    596		}
    597		return is_strong;
    598	}
    599	case BTF_KIND_FUNC:
    600	case BTF_KIND_VAR:
    601	case BTF_KIND_DATASEC:
    602	case BTF_KIND_DECL_TAG:
    603		d->type_states[id].order_state = ORDERED;
    604		return 0;
    605
    606	default:
    607		return -EINVAL;
    608	}
    609}
    610
    611static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
    612					  const struct btf_type *t);
    613
    614static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
    615				     const struct btf_type *t);
    616static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
    617				     const struct btf_type *t, int lvl);
    618
    619static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
    620				   const struct btf_type *t);
    621static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
    622				   const struct btf_type *t, int lvl);
    623
    624static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
    625				  const struct btf_type *t);
    626
    627static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
    628				      const struct btf_type *t, int lvl);
    629
    630/* a local view into a shared stack */
    631struct id_stack {
    632	const __u32 *ids;
    633	int cnt;
    634};
    635
    636static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
    637				    const char *fname, int lvl);
    638static void btf_dump_emit_type_chain(struct btf_dump *d,
    639				     struct id_stack *decl_stack,
    640				     const char *fname, int lvl);
    641
    642static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
    643static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
    644static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
    645				 const char *orig_name);
    646
    647static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
    648{
    649	const struct btf_type *t = btf__type_by_id(d->btf, id);
    650
    651	/* __builtin_va_list is a compiler built-in, which causes compilation
    652	 * errors, when compiling w/ different compiler, then used to compile
    653	 * original code (e.g., GCC to compile kernel, Clang to use generated
    654	 * C header from BTF). As it is built-in, it should be already defined
    655	 * properly internally in compiler.
    656	 */
    657	if (t->name_off == 0)
    658		return false;
    659	return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
    660}
    661
    662/*
    663 * Emit C-syntax definitions of types from chains of BTF types.
    664 *
    665 * High-level handling of determining necessary forward declarations are handled
    666 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
    667 * declarations/definitions in C syntax  are handled by a combo of
    668 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
    669 * corresponding btf_dump_emit_*_{def,fwd}() functions.
    670 *
    671 * We also keep track of "containing struct/union type ID" to determine when
    672 * we reference it from inside and thus can avoid emitting unnecessary forward
    673 * declaration.
    674 *
    675 * This algorithm is designed in such a way, that even if some error occurs
    676 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF
    677 * that doesn't comply to C rules completely), algorithm will try to proceed
    678 * and produce as much meaningful output as possible.
    679 */
    680static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
    681{
    682	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
    683	bool top_level_def = cont_id == 0;
    684	const struct btf_type *t;
    685	__u16 kind;
    686
    687	if (tstate->emit_state == EMITTED)
    688		return;
    689
    690	t = btf__type_by_id(d->btf, id);
    691	kind = btf_kind(t);
    692
    693	if (tstate->emit_state == EMITTING) {
    694		if (tstate->fwd_emitted)
    695			return;
    696
    697		switch (kind) {
    698		case BTF_KIND_STRUCT:
    699		case BTF_KIND_UNION:
    700			/*
    701			 * if we are referencing a struct/union that we are
    702			 * part of - then no need for fwd declaration
    703			 */
    704			if (id == cont_id)
    705				return;
    706			if (t->name_off == 0) {
    707				pr_warn("anonymous struct/union loop, id:[%u]\n",
    708					id);
    709				return;
    710			}
    711			btf_dump_emit_struct_fwd(d, id, t);
    712			btf_dump_printf(d, ";\n\n");
    713			tstate->fwd_emitted = 1;
    714			break;
    715		case BTF_KIND_TYPEDEF:
    716			/*
    717			 * for typedef fwd_emitted means typedef definition
    718			 * was emitted, but it can be used only for "weak"
    719			 * references through pointer only, not for embedding
    720			 */
    721			if (!btf_dump_is_blacklisted(d, id)) {
    722				btf_dump_emit_typedef_def(d, id, t, 0);
    723				btf_dump_printf(d, ";\n\n");
    724			}
    725			tstate->fwd_emitted = 1;
    726			break;
    727		default:
    728			break;
    729		}
    730
    731		return;
    732	}
    733
    734	switch (kind) {
    735	case BTF_KIND_INT:
    736		/* Emit type alias definitions if necessary */
    737		btf_dump_emit_missing_aliases(d, id, t);
    738
    739		tstate->emit_state = EMITTED;
    740		break;
    741	case BTF_KIND_ENUM:
    742		if (top_level_def) {
    743			btf_dump_emit_enum_def(d, id, t, 0);
    744			btf_dump_printf(d, ";\n\n");
    745		}
    746		tstate->emit_state = EMITTED;
    747		break;
    748	case BTF_KIND_PTR:
    749	case BTF_KIND_VOLATILE:
    750	case BTF_KIND_CONST:
    751	case BTF_KIND_RESTRICT:
    752	case BTF_KIND_TYPE_TAG:
    753		btf_dump_emit_type(d, t->type, cont_id);
    754		break;
    755	case BTF_KIND_ARRAY:
    756		btf_dump_emit_type(d, btf_array(t)->type, cont_id);
    757		break;
    758	case BTF_KIND_FWD:
    759		btf_dump_emit_fwd_def(d, id, t);
    760		btf_dump_printf(d, ";\n\n");
    761		tstate->emit_state = EMITTED;
    762		break;
    763	case BTF_KIND_TYPEDEF:
    764		tstate->emit_state = EMITTING;
    765		btf_dump_emit_type(d, t->type, id);
    766		/*
    767		 * typedef can server as both definition and forward
    768		 * declaration; at this stage someone depends on
    769		 * typedef as a forward declaration (refers to it
    770		 * through pointer), so unless we already did it,
    771		 * emit typedef as a forward declaration
    772		 */
    773		if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
    774			btf_dump_emit_typedef_def(d, id, t, 0);
    775			btf_dump_printf(d, ";\n\n");
    776		}
    777		tstate->emit_state = EMITTED;
    778		break;
    779	case BTF_KIND_STRUCT:
    780	case BTF_KIND_UNION:
    781		tstate->emit_state = EMITTING;
    782		/* if it's a top-level struct/union definition or struct/union
    783		 * is anonymous, then in C we'll be emitting all fields and
    784		 * their types (as opposed to just `struct X`), so we need to
    785		 * make sure that all types, referenced from struct/union
    786		 * members have necessary forward-declarations, where
    787		 * applicable
    788		 */
    789		if (top_level_def || t->name_off == 0) {
    790			const struct btf_member *m = btf_members(t);
    791			__u16 vlen = btf_vlen(t);
    792			int i, new_cont_id;
    793
    794			new_cont_id = t->name_off == 0 ? cont_id : id;
    795			for (i = 0; i < vlen; i++, m++)
    796				btf_dump_emit_type(d, m->type, new_cont_id);
    797		} else if (!tstate->fwd_emitted && id != cont_id) {
    798			btf_dump_emit_struct_fwd(d, id, t);
    799			btf_dump_printf(d, ";\n\n");
    800			tstate->fwd_emitted = 1;
    801		}
    802
    803		if (top_level_def) {
    804			btf_dump_emit_struct_def(d, id, t, 0);
    805			btf_dump_printf(d, ";\n\n");
    806			tstate->emit_state = EMITTED;
    807		} else {
    808			tstate->emit_state = NOT_EMITTED;
    809		}
    810		break;
    811	case BTF_KIND_FUNC_PROTO: {
    812		const struct btf_param *p = btf_params(t);
    813		__u16 n = btf_vlen(t);
    814		int i;
    815
    816		btf_dump_emit_type(d, t->type, cont_id);
    817		for (i = 0; i < n; i++, p++)
    818			btf_dump_emit_type(d, p->type, cont_id);
    819
    820		break;
    821	}
    822	default:
    823		break;
    824	}
    825}
    826
    827static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
    828				 const struct btf_type *t)
    829{
    830	const struct btf_member *m;
    831	int align, i, bit_sz;
    832	__u16 vlen;
    833
    834	align = btf__align_of(btf, id);
    835	/* size of a non-packed struct has to be a multiple of its alignment*/
    836	if (align && t->size % align)
    837		return true;
    838
    839	m = btf_members(t);
    840	vlen = btf_vlen(t);
    841	/* all non-bitfield fields have to be naturally aligned */
    842	for (i = 0; i < vlen; i++, m++) {
    843		align = btf__align_of(btf, m->type);
    844		bit_sz = btf_member_bitfield_size(t, i);
    845		if (align && bit_sz == 0 && m->offset % (8 * align) != 0)
    846			return true;
    847	}
    848
    849	/*
    850	 * if original struct was marked as packed, but its layout is
    851	 * naturally aligned, we'll detect that it's not packed
    852	 */
    853	return false;
    854}
    855
    856static int chip_away_bits(int total, int at_most)
    857{
    858	return total % at_most ? : at_most;
    859}
    860
    861static void btf_dump_emit_bit_padding(const struct btf_dump *d,
    862				      int cur_off, int m_off, int m_bit_sz,
    863				      int align, int lvl)
    864{
    865	int off_diff = m_off - cur_off;
    866	int ptr_bits = d->ptr_sz * 8;
    867
    868	if (off_diff <= 0)
    869		/* no gap */
    870		return;
    871	if (m_bit_sz == 0 && off_diff < align * 8)
    872		/* natural padding will take care of a gap */
    873		return;
    874
    875	while (off_diff > 0) {
    876		const char *pad_type;
    877		int pad_bits;
    878
    879		if (ptr_bits > 32 && off_diff > 32) {
    880			pad_type = "long";
    881			pad_bits = chip_away_bits(off_diff, ptr_bits);
    882		} else if (off_diff > 16) {
    883			pad_type = "int";
    884			pad_bits = chip_away_bits(off_diff, 32);
    885		} else if (off_diff > 8) {
    886			pad_type = "short";
    887			pad_bits = chip_away_bits(off_diff, 16);
    888		} else {
    889			pad_type = "char";
    890			pad_bits = chip_away_bits(off_diff, 8);
    891		}
    892		btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
    893		off_diff -= pad_bits;
    894	}
    895}
    896
    897static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
    898				     const struct btf_type *t)
    899{
    900	btf_dump_printf(d, "%s%s%s",
    901			btf_is_struct(t) ? "struct" : "union",
    902			t->name_off ? " " : "",
    903			btf_dump_type_name(d, id));
    904}
    905
    906static void btf_dump_emit_struct_def(struct btf_dump *d,
    907				     __u32 id,
    908				     const struct btf_type *t,
    909				     int lvl)
    910{
    911	const struct btf_member *m = btf_members(t);
    912	bool is_struct = btf_is_struct(t);
    913	int align, i, packed, off = 0;
    914	__u16 vlen = btf_vlen(t);
    915
    916	packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;
    917
    918	btf_dump_printf(d, "%s%s%s {",
    919			is_struct ? "struct" : "union",
    920			t->name_off ? " " : "",
    921			btf_dump_type_name(d, id));
    922
    923	for (i = 0; i < vlen; i++, m++) {
    924		const char *fname;
    925		int m_off, m_sz;
    926
    927		fname = btf_name_of(d, m->name_off);
    928		m_sz = btf_member_bitfield_size(t, i);
    929		m_off = btf_member_bit_offset(t, i);
    930		align = packed ? 1 : btf__align_of(d->btf, m->type);
    931
    932		btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1);
    933		btf_dump_printf(d, "\n%s", pfx(lvl + 1));
    934		btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);
    935
    936		if (m_sz) {
    937			btf_dump_printf(d, ": %d", m_sz);
    938			off = m_off + m_sz;
    939		} else {
    940			m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type));
    941			off = m_off + m_sz * 8;
    942		}
    943		btf_dump_printf(d, ";");
    944	}
    945
    946	/* pad at the end, if necessary */
    947	if (is_struct) {
    948		align = packed ? 1 : btf__align_of(d->btf, id);
    949		btf_dump_emit_bit_padding(d, off, t->size * 8, 0, align,
    950					  lvl + 1);
    951	}
    952
    953	if (vlen)
    954		btf_dump_printf(d, "\n");
    955	btf_dump_printf(d, "%s}", pfx(lvl));
    956	if (packed)
    957		btf_dump_printf(d, " __attribute__((packed))");
    958}
    959
    960static const char *missing_base_types[][2] = {
    961	/*
    962	 * GCC emits typedefs to its internal __PolyX_t types when compiling Arm
    963	 * SIMD intrinsics. Alias them to standard base types.
    964	 */
    965	{ "__Poly8_t",		"unsigned char" },
    966	{ "__Poly16_t",		"unsigned short" },
    967	{ "__Poly64_t",		"unsigned long long" },
    968	{ "__Poly128_t",	"unsigned __int128" },
    969};
    970
    971static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
    972					  const struct btf_type *t)
    973{
    974	const char *name = btf_dump_type_name(d, id);
    975	int i;
    976
    977	for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) {
    978		if (strcmp(name, missing_base_types[i][0]) == 0) {
    979			btf_dump_printf(d, "typedef %s %s;\n\n",
    980					missing_base_types[i][1], name);
    981			break;
    982		}
    983	}
    984}
    985
    986static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
    987				   const struct btf_type *t)
    988{
    989	btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
    990}
    991
    992static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
    993				   const struct btf_type *t,
    994				   int lvl)
    995{
    996	const struct btf_enum *v = btf_enum(t);
    997	__u16 vlen = btf_vlen(t);
    998	const char *name;
    999	size_t dup_cnt;
   1000	int i;
   1001
   1002	btf_dump_printf(d, "enum%s%s",
   1003			t->name_off ? " " : "",
   1004			btf_dump_type_name(d, id));
   1005
   1006	if (vlen) {
   1007		btf_dump_printf(d, " {");
   1008		for (i = 0; i < vlen; i++, v++) {
   1009			name = btf_name_of(d, v->name_off);
   1010			/* enumerators share namespace with typedef idents */
   1011			dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
   1012			if (dup_cnt > 1) {
   1013				btf_dump_printf(d, "\n%s%s___%zu = %u,",
   1014						pfx(lvl + 1), name, dup_cnt,
   1015						(__u32)v->val);
   1016			} else {
   1017				btf_dump_printf(d, "\n%s%s = %u,",
   1018						pfx(lvl + 1), name,
   1019						(__u32)v->val);
   1020			}
   1021		}
   1022		btf_dump_printf(d, "\n%s}", pfx(lvl));
   1023	}
   1024}
   1025
   1026static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
   1027				  const struct btf_type *t)
   1028{
   1029	const char *name = btf_dump_type_name(d, id);
   1030
   1031	if (btf_kflag(t))
   1032		btf_dump_printf(d, "union %s", name);
   1033	else
   1034		btf_dump_printf(d, "struct %s", name);
   1035}
   1036
   1037static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
   1038				     const struct btf_type *t, int lvl)
   1039{
   1040	const char *name = btf_dump_ident_name(d, id);
   1041
   1042	/*
   1043	 * Old GCC versions are emitting invalid typedef for __gnuc_va_list
   1044	 * pointing to VOID. This generates warnings from btf_dump() and
   1045	 * results in uncompilable header file, so we are fixing it up here
   1046	 * with valid typedef into __builtin_va_list.
   1047	 */
   1048	if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) {
   1049		btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list");
   1050		return;
   1051	}
   1052
   1053	btf_dump_printf(d, "typedef ");
   1054	btf_dump_emit_type_decl(d, t->type, name, lvl);
   1055}
   1056
   1057static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
   1058{
   1059	__u32 *new_stack;
   1060	size_t new_cap;
   1061
   1062	if (d->decl_stack_cnt >= d->decl_stack_cap) {
   1063		new_cap = max(16, d->decl_stack_cap * 3 / 2);
   1064		new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0]));
   1065		if (!new_stack)
   1066			return -ENOMEM;
   1067		d->decl_stack = new_stack;
   1068		d->decl_stack_cap = new_cap;
   1069	}
   1070
   1071	d->decl_stack[d->decl_stack_cnt++] = id;
   1072
   1073	return 0;
   1074}
   1075
   1076/*
   1077 * Emit type declaration (e.g., field type declaration in a struct or argument
   1078 * declaration in function prototype) in correct C syntax.
   1079 *
   1080 * For most types it's trivial, but there are few quirky type declaration
   1081 * cases worth mentioning:
   1082 *   - function prototypes (especially nesting of function prototypes);
   1083 *   - arrays;
   1084 *   - const/volatile/restrict for pointers vs other types.
   1085 *
   1086 * For a good discussion of *PARSING* C syntax (as a human), see
   1087 * Peter van der Linden's "Expert C Programming: Deep C Secrets",
   1088 * Ch.3 "Unscrambling Declarations in C".
   1089 *
   1090 * It won't help with BTF to C conversion much, though, as it's an opposite
   1091 * problem. So we came up with this algorithm in reverse to van der Linden's
   1092 * parsing algorithm. It goes from structured BTF representation of type
   1093 * declaration to a valid compilable C syntax.
   1094 *
   1095 * For instance, consider this C typedef:
   1096 *	typedef const int * const * arr[10] arr_t;
   1097 * It will be represented in BTF with this chain of BTF types:
   1098 *	[typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
   1099 *
   1100 * Notice how [const] modifier always goes before type it modifies in BTF type
   1101 * graph, but in C syntax, const/volatile/restrict modifiers are written to
   1102 * the right of pointers, but to the left of other types. There are also other
   1103 * quirks, like function pointers, arrays of them, functions returning other
   1104 * functions, etc.
   1105 *
   1106 * We handle that by pushing all the types to a stack, until we hit "terminal"
   1107 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on
   1108 * top of a stack, modifiers are handled differently. Array/function pointers
   1109 * have also wildly different syntax and how nesting of them are done. See
   1110 * code for authoritative definition.
   1111 *
   1112 * To avoid allocating new stack for each independent chain of BTF types, we
   1113 * share one bigger stack, with each chain working only on its own local view
   1114 * of a stack frame. Some care is required to "pop" stack frames after
   1115 * processing type declaration chain.
   1116 */
   1117int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id,
   1118			     const struct btf_dump_emit_type_decl_opts *opts)
   1119{
   1120	const char *fname;
   1121	int lvl, err;
   1122
   1123	if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts))
   1124		return libbpf_err(-EINVAL);
   1125
   1126	err = btf_dump_resize(d);
   1127	if (err)
   1128		return libbpf_err(err);
   1129
   1130	fname = OPTS_GET(opts, field_name, "");
   1131	lvl = OPTS_GET(opts, indent_level, 0);
   1132	d->strip_mods = OPTS_GET(opts, strip_mods, false);
   1133	btf_dump_emit_type_decl(d, id, fname, lvl);
   1134	d->strip_mods = false;
   1135	return 0;
   1136}
   1137
   1138static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
   1139				    const char *fname, int lvl)
   1140{
   1141	struct id_stack decl_stack;
   1142	const struct btf_type *t;
   1143	int err, stack_start;
   1144
   1145	stack_start = d->decl_stack_cnt;
   1146	for (;;) {
   1147		t = btf__type_by_id(d->btf, id);
   1148		if (d->strip_mods && btf_is_mod(t))
   1149			goto skip_mod;
   1150
   1151		err = btf_dump_push_decl_stack_id(d, id);
   1152		if (err < 0) {
   1153			/*
   1154			 * if we don't have enough memory for entire type decl
   1155			 * chain, restore stack, emit warning, and try to
   1156			 * proceed nevertheless
   1157			 */
   1158			pr_warn("not enough memory for decl stack:%d", err);
   1159			d->decl_stack_cnt = stack_start;
   1160			return;
   1161		}
   1162skip_mod:
   1163		/* VOID */
   1164		if (id == 0)
   1165			break;
   1166
   1167		switch (btf_kind(t)) {
   1168		case BTF_KIND_PTR:
   1169		case BTF_KIND_VOLATILE:
   1170		case BTF_KIND_CONST:
   1171		case BTF_KIND_RESTRICT:
   1172		case BTF_KIND_FUNC_PROTO:
   1173		case BTF_KIND_TYPE_TAG:
   1174			id = t->type;
   1175			break;
   1176		case BTF_KIND_ARRAY:
   1177			id = btf_array(t)->type;
   1178			break;
   1179		case BTF_KIND_INT:
   1180		case BTF_KIND_ENUM:
   1181		case BTF_KIND_FWD:
   1182		case BTF_KIND_STRUCT:
   1183		case BTF_KIND_UNION:
   1184		case BTF_KIND_TYPEDEF:
   1185		case BTF_KIND_FLOAT:
   1186			goto done;
   1187		default:
   1188			pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
   1189				btf_kind(t), id);
   1190			goto done;
   1191		}
   1192	}
   1193done:
   1194	/*
   1195	 * We might be inside a chain of declarations (e.g., array of function
   1196	 * pointers returning anonymous (so inlined) structs, having another
   1197	 * array field). Each of those needs its own "stack frame" to handle
   1198	 * emitting of declarations. Those stack frames are non-overlapping
   1199	 * portions of shared btf_dump->decl_stack. To make it a bit nicer to
   1200	 * handle this set of nested stacks, we create a view corresponding to
   1201	 * our own "stack frame" and work with it as an independent stack.
   1202	 * We'll need to clean up after emit_type_chain() returns, though.
   1203	 */
   1204	decl_stack.ids = d->decl_stack + stack_start;
   1205	decl_stack.cnt = d->decl_stack_cnt - stack_start;
   1206	btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
   1207	/*
   1208	 * emit_type_chain() guarantees that it will pop its entire decl_stack
   1209	 * frame before returning. But it works with a read-only view into
   1210	 * decl_stack, so it doesn't actually pop anything from the
   1211	 * perspective of shared btf_dump->decl_stack, per se. We need to
   1212	 * reset decl_stack state to how it was before us to avoid it growing
   1213	 * all the time.
   1214	 */
   1215	d->decl_stack_cnt = stack_start;
   1216}
   1217
   1218static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
   1219{
   1220	const struct btf_type *t;
   1221	__u32 id;
   1222
   1223	while (decl_stack->cnt) {
   1224		id = decl_stack->ids[decl_stack->cnt - 1];
   1225		t = btf__type_by_id(d->btf, id);
   1226
   1227		switch (btf_kind(t)) {
   1228		case BTF_KIND_VOLATILE:
   1229			btf_dump_printf(d, "volatile ");
   1230			break;
   1231		case BTF_KIND_CONST:
   1232			btf_dump_printf(d, "const ");
   1233			break;
   1234		case BTF_KIND_RESTRICT:
   1235			btf_dump_printf(d, "restrict ");
   1236			break;
   1237		default:
   1238			return;
   1239		}
   1240		decl_stack->cnt--;
   1241	}
   1242}
   1243
   1244static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack)
   1245{
   1246	const struct btf_type *t;
   1247	__u32 id;
   1248
   1249	while (decl_stack->cnt) {
   1250		id = decl_stack->ids[decl_stack->cnt - 1];
   1251		t = btf__type_by_id(d->btf, id);
   1252		if (!btf_is_mod(t))
   1253			return;
   1254		decl_stack->cnt--;
   1255	}
   1256}
   1257
   1258static void btf_dump_emit_name(const struct btf_dump *d,
   1259			       const char *name, bool last_was_ptr)
   1260{
   1261	bool separate = name[0] && !last_was_ptr;
   1262
   1263	btf_dump_printf(d, "%s%s", separate ? " " : "", name);
   1264}
   1265
   1266static void btf_dump_emit_type_chain(struct btf_dump *d,
   1267				     struct id_stack *decls,
   1268				     const char *fname, int lvl)
   1269{
   1270	/*
   1271	 * last_was_ptr is used to determine if we need to separate pointer
   1272	 * asterisk (*) from previous part of type signature with space, so
   1273	 * that we get `int ***`, instead of `int * * *`. We default to true
   1274	 * for cases where we have single pointer in a chain. E.g., in ptr ->
   1275	 * func_proto case. func_proto will start a new emit_type_chain call
   1276	 * with just ptr, which should be emitted as (*) or (*<fname>), so we
   1277	 * don't want to prepend space for that last pointer.
   1278	 */
   1279	bool last_was_ptr = true;
   1280	const struct btf_type *t;
   1281	const char *name;
   1282	__u16 kind;
   1283	__u32 id;
   1284
   1285	while (decls->cnt) {
   1286		id = decls->ids[--decls->cnt];
   1287		if (id == 0) {
   1288			/* VOID is a special snowflake */
   1289			btf_dump_emit_mods(d, decls);
   1290			btf_dump_printf(d, "void");
   1291			last_was_ptr = false;
   1292			continue;
   1293		}
   1294
   1295		t = btf__type_by_id(d->btf, id);
   1296		kind = btf_kind(t);
   1297
   1298		switch (kind) {
   1299		case BTF_KIND_INT:
   1300		case BTF_KIND_FLOAT:
   1301			btf_dump_emit_mods(d, decls);
   1302			name = btf_name_of(d, t->name_off);
   1303			btf_dump_printf(d, "%s", name);
   1304			break;
   1305		case BTF_KIND_STRUCT:
   1306		case BTF_KIND_UNION:
   1307			btf_dump_emit_mods(d, decls);
   1308			/* inline anonymous struct/union */
   1309			if (t->name_off == 0 && !d->skip_anon_defs)
   1310				btf_dump_emit_struct_def(d, id, t, lvl);
   1311			else
   1312				btf_dump_emit_struct_fwd(d, id, t);
   1313			break;
   1314		case BTF_KIND_ENUM:
   1315			btf_dump_emit_mods(d, decls);
   1316			/* inline anonymous enum */
   1317			if (t->name_off == 0 && !d->skip_anon_defs)
   1318				btf_dump_emit_enum_def(d, id, t, lvl);
   1319			else
   1320				btf_dump_emit_enum_fwd(d, id, t);
   1321			break;
   1322		case BTF_KIND_FWD:
   1323			btf_dump_emit_mods(d, decls);
   1324			btf_dump_emit_fwd_def(d, id, t);
   1325			break;
   1326		case BTF_KIND_TYPEDEF:
   1327			btf_dump_emit_mods(d, decls);
   1328			btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
   1329			break;
   1330		case BTF_KIND_PTR:
   1331			btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
   1332			break;
   1333		case BTF_KIND_VOLATILE:
   1334			btf_dump_printf(d, " volatile");
   1335			break;
   1336		case BTF_KIND_CONST:
   1337			btf_dump_printf(d, " const");
   1338			break;
   1339		case BTF_KIND_RESTRICT:
   1340			btf_dump_printf(d, " restrict");
   1341			break;
   1342		case BTF_KIND_TYPE_TAG:
   1343			btf_dump_emit_mods(d, decls);
   1344			name = btf_name_of(d, t->name_off);
   1345			btf_dump_printf(d, " __attribute__((btf_type_tag(\"%s\")))", name);
   1346			break;
   1347		case BTF_KIND_ARRAY: {
   1348			const struct btf_array *a = btf_array(t);
   1349			const struct btf_type *next_t;
   1350			__u32 next_id;
   1351			bool multidim;
   1352			/*
   1353			 * GCC has a bug
   1354			 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
   1355			 * which causes it to emit extra const/volatile
   1356			 * modifiers for an array, if array's element type has
   1357			 * const/volatile modifiers. Clang doesn't do that.
   1358			 * In general, it doesn't seem very meaningful to have
   1359			 * a const/volatile modifier for array, so we are
   1360			 * going to silently skip them here.
   1361			 */
   1362			btf_dump_drop_mods(d, decls);
   1363
   1364			if (decls->cnt == 0) {
   1365				btf_dump_emit_name(d, fname, last_was_ptr);
   1366				btf_dump_printf(d, "[%u]", a->nelems);
   1367				return;
   1368			}
   1369
   1370			next_id = decls->ids[decls->cnt - 1];
   1371			next_t = btf__type_by_id(d->btf, next_id);
   1372			multidim = btf_is_array(next_t);
   1373			/* we need space if we have named non-pointer */
   1374			if (fname[0] && !last_was_ptr)
   1375				btf_dump_printf(d, " ");
   1376			/* no parentheses for multi-dimensional array */
   1377			if (!multidim)
   1378				btf_dump_printf(d, "(");
   1379			btf_dump_emit_type_chain(d, decls, fname, lvl);
   1380			if (!multidim)
   1381				btf_dump_printf(d, ")");
   1382			btf_dump_printf(d, "[%u]", a->nelems);
   1383			return;
   1384		}
   1385		case BTF_KIND_FUNC_PROTO: {
   1386			const struct btf_param *p = btf_params(t);
   1387			__u16 vlen = btf_vlen(t);
   1388			int i;
   1389
   1390			/*
   1391			 * GCC emits extra volatile qualifier for
   1392			 * __attribute__((noreturn)) function pointers. Clang
   1393			 * doesn't do it. It's a GCC quirk for backwards
   1394			 * compatibility with code written for GCC <2.5. So,
   1395			 * similarly to extra qualifiers for array, just drop
   1396			 * them, instead of handling them.
   1397			 */
   1398			btf_dump_drop_mods(d, decls);
   1399			if (decls->cnt) {
   1400				btf_dump_printf(d, " (");
   1401				btf_dump_emit_type_chain(d, decls, fname, lvl);
   1402				btf_dump_printf(d, ")");
   1403			} else {
   1404				btf_dump_emit_name(d, fname, last_was_ptr);
   1405			}
   1406			btf_dump_printf(d, "(");
   1407			/*
   1408			 * Clang for BPF target generates func_proto with no
   1409			 * args as a func_proto with a single void arg (e.g.,
   1410			 * `int (*f)(void)` vs just `int (*f)()`). We are
   1411			 * going to pretend there are no args for such case.
   1412			 */
   1413			if (vlen == 1 && p->type == 0) {
   1414				btf_dump_printf(d, ")");
   1415				return;
   1416			}
   1417
   1418			for (i = 0; i < vlen; i++, p++) {
   1419				if (i > 0)
   1420					btf_dump_printf(d, ", ");
   1421
   1422				/* last arg of type void is vararg */
   1423				if (i == vlen - 1 && p->type == 0) {
   1424					btf_dump_printf(d, "...");
   1425					break;
   1426				}
   1427
   1428				name = btf_name_of(d, p->name_off);
   1429				btf_dump_emit_type_decl(d, p->type, name, lvl);
   1430			}
   1431
   1432			btf_dump_printf(d, ")");
   1433			return;
   1434		}
   1435		default:
   1436			pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
   1437				kind, id);
   1438			return;
   1439		}
   1440
   1441		last_was_ptr = kind == BTF_KIND_PTR;
   1442	}
   1443
   1444	btf_dump_emit_name(d, fname, last_was_ptr);
   1445}
   1446
   1447/* show type name as (type_name) */
   1448static void btf_dump_emit_type_cast(struct btf_dump *d, __u32 id,
   1449				    bool top_level)
   1450{
   1451	const struct btf_type *t;
   1452
   1453	/* for array members, we don't bother emitting type name for each
   1454	 * member to avoid the redundancy of
   1455	 * .name = (char[4])[(char)'f',(char)'o',(char)'o',]
   1456	 */
   1457	if (d->typed_dump->is_array_member)
   1458		return;
   1459
   1460	/* avoid type name specification for variable/section; it will be done
   1461	 * for the associated variable value(s).
   1462	 */
   1463	t = btf__type_by_id(d->btf, id);
   1464	if (btf_is_var(t) || btf_is_datasec(t))
   1465		return;
   1466
   1467	if (top_level)
   1468		btf_dump_printf(d, "(");
   1469
   1470	d->skip_anon_defs = true;
   1471	d->strip_mods = true;
   1472	btf_dump_emit_type_decl(d, id, "", 0);
   1473	d->strip_mods = false;
   1474	d->skip_anon_defs = false;
   1475
   1476	if (top_level)
   1477		btf_dump_printf(d, ")");
   1478}
   1479
   1480/* return number of duplicates (occurrences) of a given name */
   1481static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
   1482				 const char *orig_name)
   1483{
   1484	size_t dup_cnt = 0;
   1485
   1486	hashmap__find(name_map, orig_name, (void **)&dup_cnt);
   1487	dup_cnt++;
   1488	hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL);
   1489
   1490	return dup_cnt;
   1491}
   1492
   1493static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
   1494					 struct hashmap *name_map)
   1495{
   1496	struct btf_dump_type_aux_state *s = &d->type_states[id];
   1497	const struct btf_type *t = btf__type_by_id(d->btf, id);
   1498	const char *orig_name = btf_name_of(d, t->name_off);
   1499	const char **cached_name = &d->cached_names[id];
   1500	size_t dup_cnt;
   1501
   1502	if (t->name_off == 0)
   1503		return "";
   1504
   1505	if (s->name_resolved)
   1506		return *cached_name ? *cached_name : orig_name;
   1507
   1508	if (btf_is_fwd(t) || (btf_is_enum(t) && btf_vlen(t) == 0)) {
   1509		s->name_resolved = 1;
   1510		return orig_name;
   1511	}
   1512
   1513	dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
   1514	if (dup_cnt > 1) {
   1515		const size_t max_len = 256;
   1516		char new_name[max_len];
   1517
   1518		snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
   1519		*cached_name = strdup(new_name);
   1520	}
   1521
   1522	s->name_resolved = 1;
   1523	return *cached_name ? *cached_name : orig_name;
   1524}
   1525
   1526static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
   1527{
   1528	return btf_dump_resolve_name(d, id, d->type_names);
   1529}
   1530
   1531static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
   1532{
   1533	return btf_dump_resolve_name(d, id, d->ident_names);
   1534}
   1535
   1536static int btf_dump_dump_type_data(struct btf_dump *d,
   1537				   const char *fname,
   1538				   const struct btf_type *t,
   1539				   __u32 id,
   1540				   const void *data,
   1541				   __u8 bits_offset,
   1542				   __u8 bit_sz);
   1543
   1544static const char *btf_dump_data_newline(struct btf_dump *d)
   1545{
   1546	return d->typed_dump->compact || d->typed_dump->depth == 0 ? "" : "\n";
   1547}
   1548
   1549static const char *btf_dump_data_delim(struct btf_dump *d)
   1550{
   1551	return d->typed_dump->depth == 0 ? "" : ",";
   1552}
   1553
   1554static void btf_dump_data_pfx(struct btf_dump *d)
   1555{
   1556	int i, lvl = d->typed_dump->indent_lvl + d->typed_dump->depth;
   1557
   1558	if (d->typed_dump->compact)
   1559		return;
   1560
   1561	for (i = 0; i < lvl; i++)
   1562		btf_dump_printf(d, "%s", d->typed_dump->indent_str);
   1563}
   1564
   1565/* A macro is used here as btf_type_value[s]() appends format specifiers
   1566 * to the format specifier passed in; these do the work of appending
   1567 * delimiters etc while the caller simply has to specify the type values
   1568 * in the format specifier + value(s).
   1569 */
   1570#define btf_dump_type_values(d, fmt, ...)				\
   1571	btf_dump_printf(d, fmt "%s%s",					\
   1572			##__VA_ARGS__,					\
   1573			btf_dump_data_delim(d),				\
   1574			btf_dump_data_newline(d))
   1575
   1576static int btf_dump_unsupported_data(struct btf_dump *d,
   1577				     const struct btf_type *t,
   1578				     __u32 id)
   1579{
   1580	btf_dump_printf(d, "<unsupported kind:%u>", btf_kind(t));
   1581	return -ENOTSUP;
   1582}
   1583
   1584static int btf_dump_get_bitfield_value(struct btf_dump *d,
   1585				       const struct btf_type *t,
   1586				       const void *data,
   1587				       __u8 bits_offset,
   1588				       __u8 bit_sz,
   1589				       __u64 *value)
   1590{
   1591	__u16 left_shift_bits, right_shift_bits;
   1592	const __u8 *bytes = data;
   1593	__u8 nr_copy_bits;
   1594	__u64 num = 0;
   1595	int i;
   1596
   1597	/* Maximum supported bitfield size is 64 bits */
   1598	if (t->size > 8) {
   1599		pr_warn("unexpected bitfield size %d\n", t->size);
   1600		return -EINVAL;
   1601	}
   1602
   1603	/* Bitfield value retrieval is done in two steps; first relevant bytes are
   1604	 * stored in num, then we left/right shift num to eliminate irrelevant bits.
   1605	 */
   1606#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
   1607	for (i = t->size - 1; i >= 0; i--)
   1608		num = num * 256 + bytes[i];
   1609	nr_copy_bits = bit_sz + bits_offset;
   1610#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
   1611	for (i = 0; i < t->size; i++)
   1612		num = num * 256 + bytes[i];
   1613	nr_copy_bits = t->size * 8 - bits_offset;
   1614#else
   1615# error "Unrecognized __BYTE_ORDER__"
   1616#endif
   1617	left_shift_bits = 64 - nr_copy_bits;
   1618	right_shift_bits = 64 - bit_sz;
   1619
   1620	*value = (num << left_shift_bits) >> right_shift_bits;
   1621
   1622	return 0;
   1623}
   1624
   1625static int btf_dump_bitfield_check_zero(struct btf_dump *d,
   1626					const struct btf_type *t,
   1627					const void *data,
   1628					__u8 bits_offset,
   1629					__u8 bit_sz)
   1630{
   1631	__u64 check_num;
   1632	int err;
   1633
   1634	err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &check_num);
   1635	if (err)
   1636		return err;
   1637	if (check_num == 0)
   1638		return -ENODATA;
   1639	return 0;
   1640}
   1641
   1642static int btf_dump_bitfield_data(struct btf_dump *d,
   1643				  const struct btf_type *t,
   1644				  const void *data,
   1645				  __u8 bits_offset,
   1646				  __u8 bit_sz)
   1647{
   1648	__u64 print_num;
   1649	int err;
   1650
   1651	err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &print_num);
   1652	if (err)
   1653		return err;
   1654
   1655	btf_dump_type_values(d, "0x%llx", (unsigned long long)print_num);
   1656
   1657	return 0;
   1658}
   1659
   1660/* ints, floats and ptrs */
   1661static int btf_dump_base_type_check_zero(struct btf_dump *d,
   1662					 const struct btf_type *t,
   1663					 __u32 id,
   1664					 const void *data)
   1665{
   1666	static __u8 bytecmp[16] = {};
   1667	int nr_bytes;
   1668
   1669	/* For pointer types, pointer size is not defined on a per-type basis.
   1670	 * On dump creation however, we store the pointer size.
   1671	 */
   1672	if (btf_kind(t) == BTF_KIND_PTR)
   1673		nr_bytes = d->ptr_sz;
   1674	else
   1675		nr_bytes = t->size;
   1676
   1677	if (nr_bytes < 1 || nr_bytes > 16) {
   1678		pr_warn("unexpected size %d for id [%u]\n", nr_bytes, id);
   1679		return -EINVAL;
   1680	}
   1681
   1682	if (memcmp(data, bytecmp, nr_bytes) == 0)
   1683		return -ENODATA;
   1684	return 0;
   1685}
   1686
   1687static bool ptr_is_aligned(const struct btf *btf, __u32 type_id,
   1688			   const void *data)
   1689{
   1690	int alignment = btf__align_of(btf, type_id);
   1691
   1692	if (alignment == 0)
   1693		return false;
   1694
   1695	return ((uintptr_t)data) % alignment == 0;
   1696}
   1697
   1698static int btf_dump_int_data(struct btf_dump *d,
   1699			     const struct btf_type *t,
   1700			     __u32 type_id,
   1701			     const void *data,
   1702			     __u8 bits_offset)
   1703{
   1704	__u8 encoding = btf_int_encoding(t);
   1705	bool sign = encoding & BTF_INT_SIGNED;
   1706	char buf[16] __attribute__((aligned(16)));
   1707	int sz = t->size;
   1708
   1709	if (sz == 0 || sz > sizeof(buf)) {
   1710		pr_warn("unexpected size %d for id [%u]\n", sz, type_id);
   1711		return -EINVAL;
   1712	}
   1713
   1714	/* handle packed int data - accesses of integers not aligned on
   1715	 * int boundaries can cause problems on some platforms.
   1716	 */
   1717	if (!ptr_is_aligned(d->btf, type_id, data)) {
   1718		memcpy(buf, data, sz);
   1719		data = buf;
   1720	}
   1721
   1722	switch (sz) {
   1723	case 16: {
   1724		const __u64 *ints = data;
   1725		__u64 lsi, msi;
   1726
   1727		/* avoid use of __int128 as some 32-bit platforms do not
   1728		 * support it.
   1729		 */
   1730#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
   1731		lsi = ints[0];
   1732		msi = ints[1];
   1733#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
   1734		lsi = ints[1];
   1735		msi = ints[0];
   1736#else
   1737# error "Unrecognized __BYTE_ORDER__"
   1738#endif
   1739		if (msi == 0)
   1740			btf_dump_type_values(d, "0x%llx", (unsigned long long)lsi);
   1741		else
   1742			btf_dump_type_values(d, "0x%llx%016llx", (unsigned long long)msi,
   1743					     (unsigned long long)lsi);
   1744		break;
   1745	}
   1746	case 8:
   1747		if (sign)
   1748			btf_dump_type_values(d, "%lld", *(long long *)data);
   1749		else
   1750			btf_dump_type_values(d, "%llu", *(unsigned long long *)data);
   1751		break;
   1752	case 4:
   1753		if (sign)
   1754			btf_dump_type_values(d, "%d", *(__s32 *)data);
   1755		else
   1756			btf_dump_type_values(d, "%u", *(__u32 *)data);
   1757		break;
   1758	case 2:
   1759		if (sign)
   1760			btf_dump_type_values(d, "%d", *(__s16 *)data);
   1761		else
   1762			btf_dump_type_values(d, "%u", *(__u16 *)data);
   1763		break;
   1764	case 1:
   1765		if (d->typed_dump->is_array_char) {
   1766			/* check for null terminator */
   1767			if (d->typed_dump->is_array_terminated)
   1768				break;
   1769			if (*(char *)data == '\0') {
   1770				d->typed_dump->is_array_terminated = true;
   1771				break;
   1772			}
   1773			if (isprint(*(char *)data)) {
   1774				btf_dump_type_values(d, "'%c'", *(char *)data);
   1775				break;
   1776			}
   1777		}
   1778		if (sign)
   1779			btf_dump_type_values(d, "%d", *(__s8 *)data);
   1780		else
   1781			btf_dump_type_values(d, "%u", *(__u8 *)data);
   1782		break;
   1783	default:
   1784		pr_warn("unexpected sz %d for id [%u]\n", sz, type_id);
   1785		return -EINVAL;
   1786	}
   1787	return 0;
   1788}
   1789
   1790union float_data {
   1791	long double ld;
   1792	double d;
   1793	float f;
   1794};
   1795
   1796static int btf_dump_float_data(struct btf_dump *d,
   1797			       const struct btf_type *t,
   1798			       __u32 type_id,
   1799			       const void *data)
   1800{
   1801	const union float_data *flp = data;
   1802	union float_data fl;
   1803	int sz = t->size;
   1804
   1805	/* handle unaligned data; copy to local union */
   1806	if (!ptr_is_aligned(d->btf, type_id, data)) {
   1807		memcpy(&fl, data, sz);
   1808		flp = &fl;
   1809	}
   1810
   1811	switch (sz) {
   1812	case 16:
   1813		btf_dump_type_values(d, "%Lf", flp->ld);
   1814		break;
   1815	case 8:
   1816		btf_dump_type_values(d, "%lf", flp->d);
   1817		break;
   1818	case 4:
   1819		btf_dump_type_values(d, "%f", flp->f);
   1820		break;
   1821	default:
   1822		pr_warn("unexpected size %d for id [%u]\n", sz, type_id);
   1823		return -EINVAL;
   1824	}
   1825	return 0;
   1826}
   1827
   1828static int btf_dump_var_data(struct btf_dump *d,
   1829			     const struct btf_type *v,
   1830			     __u32 id,
   1831			     const void *data)
   1832{
   1833	enum btf_func_linkage linkage = btf_var(v)->linkage;
   1834	const struct btf_type *t;
   1835	const char *l;
   1836	__u32 type_id;
   1837
   1838	switch (linkage) {
   1839	case BTF_FUNC_STATIC:
   1840		l = "static ";
   1841		break;
   1842	case BTF_FUNC_EXTERN:
   1843		l = "extern ";
   1844		break;
   1845	case BTF_FUNC_GLOBAL:
   1846	default:
   1847		l = "";
   1848		break;
   1849	}
   1850
   1851	/* format of output here is [linkage] [type] [varname] = (type)value,
   1852	 * for example "static int cpu_profile_flip = (int)1"
   1853	 */
   1854	btf_dump_printf(d, "%s", l);
   1855	type_id = v->type;
   1856	t = btf__type_by_id(d->btf, type_id);
   1857	btf_dump_emit_type_cast(d, type_id, false);
   1858	btf_dump_printf(d, " %s = ", btf_name_of(d, v->name_off));
   1859	return btf_dump_dump_type_data(d, NULL, t, type_id, data, 0, 0);
   1860}
   1861
   1862static int btf_dump_array_data(struct btf_dump *d,
   1863			       const struct btf_type *t,
   1864			       __u32 id,
   1865			       const void *data)
   1866{
   1867	const struct btf_array *array = btf_array(t);
   1868	const struct btf_type *elem_type;
   1869	__u32 i, elem_type_id;
   1870	__s64 elem_size;
   1871	bool is_array_member;
   1872
   1873	elem_type_id = array->type;
   1874	elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL);
   1875	elem_size = btf__resolve_size(d->btf, elem_type_id);
   1876	if (elem_size <= 0) {
   1877		pr_warn("unexpected elem size %zd for array type [%u]\n",
   1878			(ssize_t)elem_size, id);
   1879		return -EINVAL;
   1880	}
   1881
   1882	if (btf_is_int(elem_type)) {
   1883		/*
   1884		 * BTF_INT_CHAR encoding never seems to be set for
   1885		 * char arrays, so if size is 1 and element is
   1886		 * printable as a char, we'll do that.
   1887		 */
   1888		if (elem_size == 1)
   1889			d->typed_dump->is_array_char = true;
   1890	}
   1891
   1892	/* note that we increment depth before calling btf_dump_print() below;
   1893	 * this is intentional.  btf_dump_data_newline() will not print a
   1894	 * newline for depth 0 (since this leaves us with trailing newlines
   1895	 * at the end of typed display), so depth is incremented first.
   1896	 * For similar reasons, we decrement depth before showing the closing
   1897	 * parenthesis.
   1898	 */
   1899	d->typed_dump->depth++;
   1900	btf_dump_printf(d, "[%s", btf_dump_data_newline(d));
   1901
   1902	/* may be a multidimensional array, so store current "is array member"
   1903	 * status so we can restore it correctly later.
   1904	 */
   1905	is_array_member = d->typed_dump->is_array_member;
   1906	d->typed_dump->is_array_member = true;
   1907	for (i = 0; i < array->nelems; i++, data += elem_size) {
   1908		if (d->typed_dump->is_array_terminated)
   1909			break;
   1910		btf_dump_dump_type_data(d, NULL, elem_type, elem_type_id, data, 0, 0);
   1911	}
   1912	d->typed_dump->is_array_member = is_array_member;
   1913	d->typed_dump->depth--;
   1914	btf_dump_data_pfx(d);
   1915	btf_dump_type_values(d, "]");
   1916
   1917	return 0;
   1918}
   1919
   1920static int btf_dump_struct_data(struct btf_dump *d,
   1921				const struct btf_type *t,
   1922				__u32 id,
   1923				const void *data)
   1924{
   1925	const struct btf_member *m = btf_members(t);
   1926	__u16 n = btf_vlen(t);
   1927	int i, err;
   1928
   1929	/* note that we increment depth before calling btf_dump_print() below;
   1930	 * this is intentional.  btf_dump_data_newline() will not print a
   1931	 * newline for depth 0 (since this leaves us with trailing newlines
   1932	 * at the end of typed display), so depth is incremented first.
   1933	 * For similar reasons, we decrement depth before showing the closing
   1934	 * parenthesis.
   1935	 */
   1936	d->typed_dump->depth++;
   1937	btf_dump_printf(d, "{%s", btf_dump_data_newline(d));
   1938
   1939	for (i = 0; i < n; i++, m++) {
   1940		const struct btf_type *mtype;
   1941		const char *mname;
   1942		__u32 moffset;
   1943		__u8 bit_sz;
   1944
   1945		mtype = btf__type_by_id(d->btf, m->type);
   1946		mname = btf_name_of(d, m->name_off);
   1947		moffset = btf_member_bit_offset(t, i);
   1948
   1949		bit_sz = btf_member_bitfield_size(t, i);
   1950		err = btf_dump_dump_type_data(d, mname, mtype, m->type, data + moffset / 8,
   1951					      moffset % 8, bit_sz);
   1952		if (err < 0)
   1953			return err;
   1954	}
   1955	d->typed_dump->depth--;
   1956	btf_dump_data_pfx(d);
   1957	btf_dump_type_values(d, "}");
   1958	return err;
   1959}
   1960
   1961union ptr_data {
   1962	unsigned int p;
   1963	unsigned long long lp;
   1964};
   1965
   1966static int btf_dump_ptr_data(struct btf_dump *d,
   1967			      const struct btf_type *t,
   1968			      __u32 id,
   1969			      const void *data)
   1970{
   1971	if (ptr_is_aligned(d->btf, id, data) && d->ptr_sz == sizeof(void *)) {
   1972		btf_dump_type_values(d, "%p", *(void **)data);
   1973	} else {
   1974		union ptr_data pt;
   1975
   1976		memcpy(&pt, data, d->ptr_sz);
   1977		if (d->ptr_sz == 4)
   1978			btf_dump_type_values(d, "0x%x", pt.p);
   1979		else
   1980			btf_dump_type_values(d, "0x%llx", pt.lp);
   1981	}
   1982	return 0;
   1983}
   1984
   1985static int btf_dump_get_enum_value(struct btf_dump *d,
   1986				   const struct btf_type *t,
   1987				   const void *data,
   1988				   __u32 id,
   1989				   __s64 *value)
   1990{
   1991	/* handle unaligned enum value */
   1992	if (!ptr_is_aligned(d->btf, id, data)) {
   1993		__u64 val;
   1994		int err;
   1995
   1996		err = btf_dump_get_bitfield_value(d, t, data, 0, 0, &val);
   1997		if (err)
   1998			return err;
   1999		*value = (__s64)val;
   2000		return 0;
   2001	}
   2002
   2003	switch (t->size) {
   2004	case 8:
   2005		*value = *(__s64 *)data;
   2006		return 0;
   2007	case 4:
   2008		*value = *(__s32 *)data;
   2009		return 0;
   2010	case 2:
   2011		*value = *(__s16 *)data;
   2012		return 0;
   2013	case 1:
   2014		*value = *(__s8 *)data;
   2015		return 0;
   2016	default:
   2017		pr_warn("unexpected size %d for enum, id:[%u]\n", t->size, id);
   2018		return -EINVAL;
   2019	}
   2020}
   2021
   2022static int btf_dump_enum_data(struct btf_dump *d,
   2023			      const struct btf_type *t,
   2024			      __u32 id,
   2025			      const void *data)
   2026{
   2027	const struct btf_enum *e;
   2028	__s64 value;
   2029	int i, err;
   2030
   2031	err = btf_dump_get_enum_value(d, t, data, id, &value);
   2032	if (err)
   2033		return err;
   2034
   2035	for (i = 0, e = btf_enum(t); i < btf_vlen(t); i++, e++) {
   2036		if (value != e->val)
   2037			continue;
   2038		btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off));
   2039		return 0;
   2040	}
   2041
   2042	btf_dump_type_values(d, "%d", value);
   2043	return 0;
   2044}
   2045
   2046static int btf_dump_datasec_data(struct btf_dump *d,
   2047				 const struct btf_type *t,
   2048				 __u32 id,
   2049				 const void *data)
   2050{
   2051	const struct btf_var_secinfo *vsi;
   2052	const struct btf_type *var;
   2053	__u32 i;
   2054	int err;
   2055
   2056	btf_dump_type_values(d, "SEC(\"%s\") ", btf_name_of(d, t->name_off));
   2057
   2058	for (i = 0, vsi = btf_var_secinfos(t); i < btf_vlen(t); i++, vsi++) {
   2059		var = btf__type_by_id(d->btf, vsi->type);
   2060		err = btf_dump_dump_type_data(d, NULL, var, vsi->type, data + vsi->offset, 0, 0);
   2061		if (err < 0)
   2062			return err;
   2063		btf_dump_printf(d, ";");
   2064	}
   2065	return 0;
   2066}
   2067
   2068/* return size of type, or if base type overflows, return -E2BIG. */
   2069static int btf_dump_type_data_check_overflow(struct btf_dump *d,
   2070					     const struct btf_type *t,
   2071					     __u32 id,
   2072					     const void *data,
   2073					     __u8 bits_offset)
   2074{
   2075	__s64 size = btf__resolve_size(d->btf, id);
   2076
   2077	if (size < 0 || size >= INT_MAX) {
   2078		pr_warn("unexpected size [%zu] for id [%u]\n",
   2079			(size_t)size, id);
   2080		return -EINVAL;
   2081	}
   2082
   2083	/* Only do overflow checking for base types; we do not want to
   2084	 * avoid showing part of a struct, union or array, even if we
   2085	 * do not have enough data to show the full object.  By
   2086	 * restricting overflow checking to base types we can ensure
   2087	 * that partial display succeeds, while avoiding overflowing
   2088	 * and using bogus data for display.
   2089	 */
   2090	t = skip_mods_and_typedefs(d->btf, id, NULL);
   2091	if (!t) {
   2092		pr_warn("unexpected error skipping mods/typedefs for id [%u]\n",
   2093			id);
   2094		return -EINVAL;
   2095	}
   2096
   2097	switch (btf_kind(t)) {
   2098	case BTF_KIND_INT:
   2099	case BTF_KIND_FLOAT:
   2100	case BTF_KIND_PTR:
   2101	case BTF_KIND_ENUM:
   2102		if (data + bits_offset / 8 + size > d->typed_dump->data_end)
   2103			return -E2BIG;
   2104		break;
   2105	default:
   2106		break;
   2107	}
   2108	return (int)size;
   2109}
   2110
   2111static int btf_dump_type_data_check_zero(struct btf_dump *d,
   2112					 const struct btf_type *t,
   2113					 __u32 id,
   2114					 const void *data,
   2115					 __u8 bits_offset,
   2116					 __u8 bit_sz)
   2117{
   2118	__s64 value;
   2119	int i, err;
   2120
   2121	/* toplevel exceptions; we show zero values if
   2122	 * - we ask for them (emit_zeros)
   2123	 * - if we are at top-level so we see "struct empty { }"
   2124	 * - or if we are an array member and the array is non-empty and
   2125	 *   not a char array; we don't want to be in a situation where we
   2126	 *   have an integer array 0, 1, 0, 1 and only show non-zero values.
   2127	 *   If the array contains zeroes only, or is a char array starting
   2128	 *   with a '\0', the array-level check_zero() will prevent showing it;
   2129	 *   we are concerned with determining zero value at the array member
   2130	 *   level here.
   2131	 */
   2132	if (d->typed_dump->emit_zeroes || d->typed_dump->depth == 0 ||
   2133	    (d->typed_dump->is_array_member &&
   2134	     !d->typed_dump->is_array_char))
   2135		return 0;
   2136
   2137	t = skip_mods_and_typedefs(d->btf, id, NULL);
   2138
   2139	switch (btf_kind(t)) {
   2140	case BTF_KIND_INT:
   2141		if (bit_sz)
   2142			return btf_dump_bitfield_check_zero(d, t, data, bits_offset, bit_sz);
   2143		return btf_dump_base_type_check_zero(d, t, id, data);
   2144	case BTF_KIND_FLOAT:
   2145	case BTF_KIND_PTR:
   2146		return btf_dump_base_type_check_zero(d, t, id, data);
   2147	case BTF_KIND_ARRAY: {
   2148		const struct btf_array *array = btf_array(t);
   2149		const struct btf_type *elem_type;
   2150		__u32 elem_type_id, elem_size;
   2151		bool ischar;
   2152
   2153		elem_type_id = array->type;
   2154		elem_size = btf__resolve_size(d->btf, elem_type_id);
   2155		elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL);
   2156
   2157		ischar = btf_is_int(elem_type) && elem_size == 1;
   2158
   2159		/* check all elements; if _any_ element is nonzero, all
   2160		 * of array is displayed.  We make an exception however
   2161		 * for char arrays where the first element is 0; these
   2162		 * are considered zeroed also, even if later elements are
   2163		 * non-zero because the string is terminated.
   2164		 */
   2165		for (i = 0; i < array->nelems; i++) {
   2166			if (i == 0 && ischar && *(char *)data == 0)
   2167				return -ENODATA;
   2168			err = btf_dump_type_data_check_zero(d, elem_type,
   2169							    elem_type_id,
   2170							    data +
   2171							    (i * elem_size),
   2172							    bits_offset, 0);
   2173			if (err != -ENODATA)
   2174				return err;
   2175		}
   2176		return -ENODATA;
   2177	}
   2178	case BTF_KIND_STRUCT:
   2179	case BTF_KIND_UNION: {
   2180		const struct btf_member *m = btf_members(t);
   2181		__u16 n = btf_vlen(t);
   2182
   2183		/* if any struct/union member is non-zero, the struct/union
   2184		 * is considered non-zero and dumped.
   2185		 */
   2186		for (i = 0; i < n; i++, m++) {
   2187			const struct btf_type *mtype;
   2188			__u32 moffset;
   2189
   2190			mtype = btf__type_by_id(d->btf, m->type);
   2191			moffset = btf_member_bit_offset(t, i);
   2192
   2193			/* btf_int_bits() does not store member bitfield size;
   2194			 * bitfield size needs to be stored here so int display
   2195			 * of member can retrieve it.
   2196			 */
   2197			bit_sz = btf_member_bitfield_size(t, i);
   2198			err = btf_dump_type_data_check_zero(d, mtype, m->type, data + moffset / 8,
   2199							    moffset % 8, bit_sz);
   2200			if (err != ENODATA)
   2201				return err;
   2202		}
   2203		return -ENODATA;
   2204	}
   2205	case BTF_KIND_ENUM:
   2206		err = btf_dump_get_enum_value(d, t, data, id, &value);
   2207		if (err)
   2208			return err;
   2209		if (value == 0)
   2210			return -ENODATA;
   2211		return 0;
   2212	default:
   2213		return 0;
   2214	}
   2215}
   2216
   2217/* returns size of data dumped, or error. */
   2218static int btf_dump_dump_type_data(struct btf_dump *d,
   2219				   const char *fname,
   2220				   const struct btf_type *t,
   2221				   __u32 id,
   2222				   const void *data,
   2223				   __u8 bits_offset,
   2224				   __u8 bit_sz)
   2225{
   2226	int size, err = 0;
   2227
   2228	size = btf_dump_type_data_check_overflow(d, t, id, data, bits_offset);
   2229	if (size < 0)
   2230		return size;
   2231	err = btf_dump_type_data_check_zero(d, t, id, data, bits_offset, bit_sz);
   2232	if (err) {
   2233		/* zeroed data is expected and not an error, so simply skip
   2234		 * dumping such data.  Record other errors however.
   2235		 */
   2236		if (err == -ENODATA)
   2237			return size;
   2238		return err;
   2239	}
   2240	btf_dump_data_pfx(d);
   2241
   2242	if (!d->typed_dump->skip_names) {
   2243		if (fname && strlen(fname) > 0)
   2244			btf_dump_printf(d, ".%s = ", fname);
   2245		btf_dump_emit_type_cast(d, id, true);
   2246	}
   2247
   2248	t = skip_mods_and_typedefs(d->btf, id, NULL);
   2249
   2250	switch (btf_kind(t)) {
   2251	case BTF_KIND_UNKN:
   2252	case BTF_KIND_FWD:
   2253	case BTF_KIND_FUNC:
   2254	case BTF_KIND_FUNC_PROTO:
   2255	case BTF_KIND_DECL_TAG:
   2256		err = btf_dump_unsupported_data(d, t, id);
   2257		break;
   2258	case BTF_KIND_INT:
   2259		if (bit_sz)
   2260			err = btf_dump_bitfield_data(d, t, data, bits_offset, bit_sz);
   2261		else
   2262			err = btf_dump_int_data(d, t, id, data, bits_offset);
   2263		break;
   2264	case BTF_KIND_FLOAT:
   2265		err = btf_dump_float_data(d, t, id, data);
   2266		break;
   2267	case BTF_KIND_PTR:
   2268		err = btf_dump_ptr_data(d, t, id, data);
   2269		break;
   2270	case BTF_KIND_ARRAY:
   2271		err = btf_dump_array_data(d, t, id, data);
   2272		break;
   2273	case BTF_KIND_STRUCT:
   2274	case BTF_KIND_UNION:
   2275		err = btf_dump_struct_data(d, t, id, data);
   2276		break;
   2277	case BTF_KIND_ENUM:
   2278		/* handle bitfield and int enum values */
   2279		if (bit_sz) {
   2280			__u64 print_num;
   2281			__s64 enum_val;
   2282
   2283			err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz,
   2284							  &print_num);
   2285			if (err)
   2286				break;
   2287			enum_val = (__s64)print_num;
   2288			err = btf_dump_enum_data(d, t, id, &enum_val);
   2289		} else
   2290			err = btf_dump_enum_data(d, t, id, data);
   2291		break;
   2292	case BTF_KIND_VAR:
   2293		err = btf_dump_var_data(d, t, id, data);
   2294		break;
   2295	case BTF_KIND_DATASEC:
   2296		err = btf_dump_datasec_data(d, t, id, data);
   2297		break;
   2298	default:
   2299		pr_warn("unexpected kind [%u] for id [%u]\n",
   2300			BTF_INFO_KIND(t->info), id);
   2301		return -EINVAL;
   2302	}
   2303	if (err < 0)
   2304		return err;
   2305	return size;
   2306}
   2307
   2308int btf_dump__dump_type_data(struct btf_dump *d, __u32 id,
   2309			     const void *data, size_t data_sz,
   2310			     const struct btf_dump_type_data_opts *opts)
   2311{
   2312	struct btf_dump_data typed_dump = {};
   2313	const struct btf_type *t;
   2314	int ret;
   2315
   2316	if (!OPTS_VALID(opts, btf_dump_type_data_opts))
   2317		return libbpf_err(-EINVAL);
   2318
   2319	t = btf__type_by_id(d->btf, id);
   2320	if (!t)
   2321		return libbpf_err(-ENOENT);
   2322
   2323	d->typed_dump = &typed_dump;
   2324	d->typed_dump->data_end = data + data_sz;
   2325	d->typed_dump->indent_lvl = OPTS_GET(opts, indent_level, 0);
   2326
   2327	/* default indent string is a tab */
   2328	if (!opts->indent_str)
   2329		d->typed_dump->indent_str[0] = '\t';
   2330	else
   2331		libbpf_strlcpy(d->typed_dump->indent_str, opts->indent_str,
   2332			       sizeof(d->typed_dump->indent_str));
   2333
   2334	d->typed_dump->compact = OPTS_GET(opts, compact, false);
   2335	d->typed_dump->skip_names = OPTS_GET(opts, skip_names, false);
   2336	d->typed_dump->emit_zeroes = OPTS_GET(opts, emit_zeroes, false);
   2337
   2338	ret = btf_dump_dump_type_data(d, NULL, t, id, data, 0, 0);
   2339
   2340	d->typed_dump = NULL;
   2341
   2342	return libbpf_err(ret);
   2343}