cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

numa.c (47470B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * numa.c
      4 *
      5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
      6 */
      7
      8#include <inttypes.h>
      9/* For the CLR_() macros */
     10#include <pthread.h>
     11
     12#include <subcmd/parse-options.h>
     13#include "../util/cloexec.h"
     14
     15#include "bench.h"
     16
     17#include <errno.h>
     18#include <sched.h>
     19#include <stdio.h>
     20#include <assert.h>
     21#include <malloc.h>
     22#include <signal.h>
     23#include <stdlib.h>
     24#include <string.h>
     25#include <unistd.h>
     26#include <sys/mman.h>
     27#include <sys/time.h>
     28#include <sys/resource.h>
     29#include <sys/wait.h>
     30#include <sys/prctl.h>
     31#include <sys/types.h>
     32#include <linux/kernel.h>
     33#include <linux/time64.h>
     34#include <linux/numa.h>
     35#include <linux/zalloc.h>
     36
     37#include "../util/header.h"
     38#include <numa.h>
     39#include <numaif.h>
     40
     41#ifndef RUSAGE_THREAD
     42# define RUSAGE_THREAD 1
     43#endif
     44
     45/*
     46 * Regular printout to the terminal, suppressed if -q is specified:
     47 */
     48#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
     49
     50/*
     51 * Debug printf:
     52 */
     53#undef dprintf
     54#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
     55
     56struct thread_data {
     57	int			curr_cpu;
     58	cpu_set_t		*bind_cpumask;
     59	int			bind_node;
     60	u8			*process_data;
     61	int			process_nr;
     62	int			thread_nr;
     63	int			task_nr;
     64	unsigned int		loops_done;
     65	u64			val;
     66	u64			runtime_ns;
     67	u64			system_time_ns;
     68	u64			user_time_ns;
     69	double			speed_gbs;
     70	pthread_mutex_t		*process_lock;
     71};
     72
     73/* Parameters set by options: */
     74
     75struct params {
     76	/* Startup synchronization: */
     77	bool			serialize_startup;
     78
     79	/* Task hierarchy: */
     80	int			nr_proc;
     81	int			nr_threads;
     82
     83	/* Working set sizes: */
     84	const char		*mb_global_str;
     85	const char		*mb_proc_str;
     86	const char		*mb_proc_locked_str;
     87	const char		*mb_thread_str;
     88
     89	double			mb_global;
     90	double			mb_proc;
     91	double			mb_proc_locked;
     92	double			mb_thread;
     93
     94	/* Access patterns to the working set: */
     95	bool			data_reads;
     96	bool			data_writes;
     97	bool			data_backwards;
     98	bool			data_zero_memset;
     99	bool			data_rand_walk;
    100	u32			nr_loops;
    101	u32			nr_secs;
    102	u32			sleep_usecs;
    103
    104	/* Working set initialization: */
    105	bool			init_zero;
    106	bool			init_random;
    107	bool			init_cpu0;
    108
    109	/* Misc options: */
    110	int			show_details;
    111	int			run_all;
    112	int			thp;
    113
    114	long			bytes_global;
    115	long			bytes_process;
    116	long			bytes_process_locked;
    117	long			bytes_thread;
    118
    119	int			nr_tasks;
    120	bool			show_quiet;
    121
    122	bool			show_convergence;
    123	bool			measure_convergence;
    124
    125	int			perturb_secs;
    126	int			nr_cpus;
    127	int			nr_nodes;
    128
    129	/* Affinity options -C and -N: */
    130	char			*cpu_list_str;
    131	char			*node_list_str;
    132};
    133
    134
    135/* Global, read-writable area, accessible to all processes and threads: */
    136
    137struct global_info {
    138	u8			*data;
    139
    140	pthread_mutex_t		startup_mutex;
    141	pthread_cond_t		startup_cond;
    142	int			nr_tasks_started;
    143
    144	pthread_mutex_t		start_work_mutex;
    145	pthread_cond_t		start_work_cond;
    146	int			nr_tasks_working;
    147	bool			start_work;
    148
    149	pthread_mutex_t		stop_work_mutex;
    150	u64			bytes_done;
    151
    152	struct thread_data	*threads;
    153
    154	/* Convergence latency measurement: */
    155	bool			all_converged;
    156	bool			stop_work;
    157
    158	int			print_once;
    159
    160	struct params		p;
    161};
    162
    163static struct global_info	*g = NULL;
    164
    165static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
    166static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
    167
    168struct params p0;
    169
    170static const struct option options[] = {
    171	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
    172	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
    173
    174	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
    175	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
    176	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
    177	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
    178
    179	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run (default: unlimited)"),
    180	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run (default: 5 secs)"),
    181	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
    182
    183	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via reads (can be mixed with -W)"),
    184	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
    185	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
    186	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
    187	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
    188
    189
    190	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
    191	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
    192	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
    193	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
    194
    195	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
    196	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
    197	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
    198	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
    199		    "convergence is reached when each process (all its threads) is running on a single NUMA node."),
    200	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
    201	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"quiet mode"),
    202	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
    203
    204	/* Special option string parsing callbacks: */
    205        OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
    206			"bind the first N tasks to these specific cpus (the rest is unbound)",
    207			parse_cpus_opt),
    208        OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
    209			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
    210			parse_nodes_opt),
    211	OPT_END()
    212};
    213
    214static const char * const bench_numa_usage[] = {
    215	"perf bench numa <options>",
    216	NULL
    217};
    218
    219static const char * const numa_usage[] = {
    220	"perf bench numa mem [<options>]",
    221	NULL
    222};
    223
    224/*
    225 * To get number of numa nodes present.
    226 */
    227static int nr_numa_nodes(void)
    228{
    229	int i, nr_nodes = 0;
    230
    231	for (i = 0; i < g->p.nr_nodes; i++) {
    232		if (numa_bitmask_isbitset(numa_nodes_ptr, i))
    233			nr_nodes++;
    234	}
    235
    236	return nr_nodes;
    237}
    238
    239/*
    240 * To check if given numa node is present.
    241 */
    242static int is_node_present(int node)
    243{
    244	return numa_bitmask_isbitset(numa_nodes_ptr, node);
    245}
    246
    247/*
    248 * To check given numa node has cpus.
    249 */
    250static bool node_has_cpus(int node)
    251{
    252	struct bitmask *cpumask = numa_allocate_cpumask();
    253	bool ret = false; /* fall back to nocpus */
    254	int cpu;
    255
    256	BUG_ON(!cpumask);
    257	if (!numa_node_to_cpus(node, cpumask)) {
    258		for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
    259			if (numa_bitmask_isbitset(cpumask, cpu)) {
    260				ret = true;
    261				break;
    262			}
    263		}
    264	}
    265	numa_free_cpumask(cpumask);
    266
    267	return ret;
    268}
    269
    270static cpu_set_t *bind_to_cpu(int target_cpu)
    271{
    272	int nrcpus = numa_num_possible_cpus();
    273	cpu_set_t *orig_mask, *mask;
    274	size_t size;
    275
    276	orig_mask = CPU_ALLOC(nrcpus);
    277	BUG_ON(!orig_mask);
    278	size = CPU_ALLOC_SIZE(nrcpus);
    279	CPU_ZERO_S(size, orig_mask);
    280
    281	if (sched_getaffinity(0, size, orig_mask))
    282		goto err_out;
    283
    284	mask = CPU_ALLOC(nrcpus);
    285	if (!mask)
    286		goto err_out;
    287
    288	CPU_ZERO_S(size, mask);
    289
    290	if (target_cpu == -1) {
    291		int cpu;
    292
    293		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
    294			CPU_SET_S(cpu, size, mask);
    295	} else {
    296		if (target_cpu < 0 || target_cpu >= g->p.nr_cpus)
    297			goto err;
    298
    299		CPU_SET_S(target_cpu, size, mask);
    300	}
    301
    302	if (sched_setaffinity(0, size, mask))
    303		goto err;
    304
    305	return orig_mask;
    306
    307err:
    308	CPU_FREE(mask);
    309err_out:
    310	CPU_FREE(orig_mask);
    311
    312	/* BUG_ON due to failure in allocation of orig_mask/mask */
    313	BUG_ON(-1);
    314	return NULL;
    315}
    316
    317static cpu_set_t *bind_to_node(int target_node)
    318{
    319	int nrcpus = numa_num_possible_cpus();
    320	size_t size;
    321	cpu_set_t *orig_mask, *mask;
    322	int cpu;
    323
    324	orig_mask = CPU_ALLOC(nrcpus);
    325	BUG_ON(!orig_mask);
    326	size = CPU_ALLOC_SIZE(nrcpus);
    327	CPU_ZERO_S(size, orig_mask);
    328
    329	if (sched_getaffinity(0, size, orig_mask))
    330		goto err_out;
    331
    332	mask = CPU_ALLOC(nrcpus);
    333	if (!mask)
    334		goto err_out;
    335
    336	CPU_ZERO_S(size, mask);
    337
    338	if (target_node == NUMA_NO_NODE) {
    339		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
    340			CPU_SET_S(cpu, size, mask);
    341	} else {
    342		struct bitmask *cpumask = numa_allocate_cpumask();
    343
    344		if (!cpumask)
    345			goto err;
    346
    347		if (!numa_node_to_cpus(target_node, cpumask)) {
    348			for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
    349				if (numa_bitmask_isbitset(cpumask, cpu))
    350					CPU_SET_S(cpu, size, mask);
    351			}
    352		}
    353		numa_free_cpumask(cpumask);
    354	}
    355
    356	if (sched_setaffinity(0, size, mask))
    357		goto err;
    358
    359	return orig_mask;
    360
    361err:
    362	CPU_FREE(mask);
    363err_out:
    364	CPU_FREE(orig_mask);
    365
    366	/* BUG_ON due to failure in allocation of orig_mask/mask */
    367	BUG_ON(-1);
    368	return NULL;
    369}
    370
    371static void bind_to_cpumask(cpu_set_t *mask)
    372{
    373	int ret;
    374	size_t size = CPU_ALLOC_SIZE(numa_num_possible_cpus());
    375
    376	ret = sched_setaffinity(0, size, mask);
    377	if (ret) {
    378		CPU_FREE(mask);
    379		BUG_ON(ret);
    380	}
    381}
    382
    383static void mempol_restore(void)
    384{
    385	int ret;
    386
    387	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
    388
    389	BUG_ON(ret);
    390}
    391
    392static void bind_to_memnode(int node)
    393{
    394	struct bitmask *node_mask;
    395	int ret;
    396
    397	if (node == NUMA_NO_NODE)
    398		return;
    399
    400	node_mask = numa_allocate_nodemask();
    401	BUG_ON(!node_mask);
    402
    403	numa_bitmask_clearall(node_mask);
    404	numa_bitmask_setbit(node_mask, node);
    405
    406	ret = set_mempolicy(MPOL_BIND, node_mask->maskp, node_mask->size + 1);
    407	dprintf("binding to node %d, mask: %016lx => %d\n", node, *node_mask->maskp, ret);
    408
    409	numa_bitmask_free(node_mask);
    410	BUG_ON(ret);
    411}
    412
    413#define HPSIZE (2*1024*1024)
    414
    415#define set_taskname(fmt...)				\
    416do {							\
    417	char name[20];					\
    418							\
    419	snprintf(name, 20, fmt);			\
    420	prctl(PR_SET_NAME, name);			\
    421} while (0)
    422
    423static u8 *alloc_data(ssize_t bytes0, int map_flags,
    424		      int init_zero, int init_cpu0, int thp, int init_random)
    425{
    426	cpu_set_t *orig_mask = NULL;
    427	ssize_t bytes;
    428	u8 *buf;
    429	int ret;
    430
    431	if (!bytes0)
    432		return NULL;
    433
    434	/* Allocate and initialize all memory on CPU#0: */
    435	if (init_cpu0) {
    436		int node = numa_node_of_cpu(0);
    437
    438		orig_mask = bind_to_node(node);
    439		bind_to_memnode(node);
    440	}
    441
    442	bytes = bytes0 + HPSIZE;
    443
    444	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
    445	BUG_ON(buf == (void *)-1);
    446
    447	if (map_flags == MAP_PRIVATE) {
    448		if (thp > 0) {
    449			ret = madvise(buf, bytes, MADV_HUGEPAGE);
    450			if (ret && !g->print_once) {
    451				g->print_once = 1;
    452				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
    453			}
    454		}
    455		if (thp < 0) {
    456			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
    457			if (ret && !g->print_once) {
    458				g->print_once = 1;
    459				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
    460			}
    461		}
    462	}
    463
    464	if (init_zero) {
    465		bzero(buf, bytes);
    466	} else {
    467		/* Initialize random contents, different in each word: */
    468		if (init_random) {
    469			u64 *wbuf = (void *)buf;
    470			long off = rand();
    471			long i;
    472
    473			for (i = 0; i < bytes/8; i++)
    474				wbuf[i] = i + off;
    475		}
    476	}
    477
    478	/* Align to 2MB boundary: */
    479	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
    480
    481	/* Restore affinity: */
    482	if (init_cpu0) {
    483		bind_to_cpumask(orig_mask);
    484		CPU_FREE(orig_mask);
    485		mempol_restore();
    486	}
    487
    488	return buf;
    489}
    490
    491static void free_data(void *data, ssize_t bytes)
    492{
    493	int ret;
    494
    495	if (!data)
    496		return;
    497
    498	ret = munmap(data, bytes);
    499	BUG_ON(ret);
    500}
    501
    502/*
    503 * Create a shared memory buffer that can be shared between processes, zeroed:
    504 */
    505static void * zalloc_shared_data(ssize_t bytes)
    506{
    507	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
    508}
    509
    510/*
    511 * Create a shared memory buffer that can be shared between processes:
    512 */
    513static void * setup_shared_data(ssize_t bytes)
    514{
    515	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
    516}
    517
    518/*
    519 * Allocate process-local memory - this will either be shared between
    520 * threads of this process, or only be accessed by this thread:
    521 */
    522static void * setup_private_data(ssize_t bytes)
    523{
    524	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
    525}
    526
    527/*
    528 * Return a process-shared (global) mutex:
    529 */
    530static void init_global_mutex(pthread_mutex_t *mutex)
    531{
    532	pthread_mutexattr_t attr;
    533
    534	pthread_mutexattr_init(&attr);
    535	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
    536	pthread_mutex_init(mutex, &attr);
    537}
    538
    539/*
    540 * Return a process-shared (global) condition variable:
    541 */
    542static void init_global_cond(pthread_cond_t *cond)
    543{
    544	pthread_condattr_t attr;
    545
    546	pthread_condattr_init(&attr);
    547	pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
    548	pthread_cond_init(cond, &attr);
    549}
    550
    551static int parse_cpu_list(const char *arg)
    552{
    553	p0.cpu_list_str = strdup(arg);
    554
    555	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
    556
    557	return 0;
    558}
    559
    560static int parse_setup_cpu_list(void)
    561{
    562	struct thread_data *td;
    563	char *str0, *str;
    564	int t;
    565
    566	if (!g->p.cpu_list_str)
    567		return 0;
    568
    569	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
    570
    571	str0 = str = strdup(g->p.cpu_list_str);
    572	t = 0;
    573
    574	BUG_ON(!str);
    575
    576	tprintf("# binding tasks to CPUs:\n");
    577	tprintf("#  ");
    578
    579	while (true) {
    580		int bind_cpu, bind_cpu_0, bind_cpu_1;
    581		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
    582		int bind_len;
    583		int step;
    584		int mul;
    585
    586		tok = strsep(&str, ",");
    587		if (!tok)
    588			break;
    589
    590		tok_end = strstr(tok, "-");
    591
    592		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
    593		if (!tok_end) {
    594			/* Single CPU specified: */
    595			bind_cpu_0 = bind_cpu_1 = atol(tok);
    596		} else {
    597			/* CPU range specified (for example: "5-11"): */
    598			bind_cpu_0 = atol(tok);
    599			bind_cpu_1 = atol(tok_end + 1);
    600		}
    601
    602		step = 1;
    603		tok_step = strstr(tok, "#");
    604		if (tok_step) {
    605			step = atol(tok_step + 1);
    606			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
    607		}
    608
    609		/*
    610		 * Mask length.
    611		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
    612		 * where the _4 means the next 4 CPUs are allowed.
    613		 */
    614		bind_len = 1;
    615		tok_len = strstr(tok, "_");
    616		if (tok_len) {
    617			bind_len = atol(tok_len + 1);
    618			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
    619		}
    620
    621		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
    622		mul = 1;
    623		tok_mul = strstr(tok, "x");
    624		if (tok_mul) {
    625			mul = atol(tok_mul + 1);
    626			BUG_ON(mul <= 0);
    627		}
    628
    629		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
    630
    631		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
    632			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
    633			return -1;
    634		}
    635
    636		if (is_cpu_online(bind_cpu_0) != 1 || is_cpu_online(bind_cpu_1) != 1) {
    637			printf("\nTest not applicable, bind_cpu_0 or bind_cpu_1 is offline\n");
    638			return -1;
    639		}
    640
    641		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
    642		BUG_ON(bind_cpu_0 > bind_cpu_1);
    643
    644		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
    645			size_t size = CPU_ALLOC_SIZE(g->p.nr_cpus);
    646			int i;
    647
    648			for (i = 0; i < mul; i++) {
    649				int cpu;
    650
    651				if (t >= g->p.nr_tasks) {
    652					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
    653					goto out;
    654				}
    655				td = g->threads + t;
    656
    657				if (t)
    658					tprintf(",");
    659				if (bind_len > 1) {
    660					tprintf("%2d/%d", bind_cpu, bind_len);
    661				} else {
    662					tprintf("%2d", bind_cpu);
    663				}
    664
    665				td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus);
    666				BUG_ON(!td->bind_cpumask);
    667				CPU_ZERO_S(size, td->bind_cpumask);
    668				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
    669					if (cpu < 0 || cpu >= g->p.nr_cpus) {
    670						CPU_FREE(td->bind_cpumask);
    671						BUG_ON(-1);
    672					}
    673					CPU_SET_S(cpu, size, td->bind_cpumask);
    674				}
    675				t++;
    676			}
    677		}
    678	}
    679out:
    680
    681	tprintf("\n");
    682
    683	if (t < g->p.nr_tasks)
    684		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
    685
    686	free(str0);
    687	return 0;
    688}
    689
    690static int parse_cpus_opt(const struct option *opt __maybe_unused,
    691			  const char *arg, int unset __maybe_unused)
    692{
    693	if (!arg)
    694		return -1;
    695
    696	return parse_cpu_list(arg);
    697}
    698
    699static int parse_node_list(const char *arg)
    700{
    701	p0.node_list_str = strdup(arg);
    702
    703	dprintf("got NODE list: {%s}\n", p0.node_list_str);
    704
    705	return 0;
    706}
    707
    708static int parse_setup_node_list(void)
    709{
    710	struct thread_data *td;
    711	char *str0, *str;
    712	int t;
    713
    714	if (!g->p.node_list_str)
    715		return 0;
    716
    717	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
    718
    719	str0 = str = strdup(g->p.node_list_str);
    720	t = 0;
    721
    722	BUG_ON(!str);
    723
    724	tprintf("# binding tasks to NODEs:\n");
    725	tprintf("# ");
    726
    727	while (true) {
    728		int bind_node, bind_node_0, bind_node_1;
    729		char *tok, *tok_end, *tok_step, *tok_mul;
    730		int step;
    731		int mul;
    732
    733		tok = strsep(&str, ",");
    734		if (!tok)
    735			break;
    736
    737		tok_end = strstr(tok, "-");
    738
    739		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
    740		if (!tok_end) {
    741			/* Single NODE specified: */
    742			bind_node_0 = bind_node_1 = atol(tok);
    743		} else {
    744			/* NODE range specified (for example: "5-11"): */
    745			bind_node_0 = atol(tok);
    746			bind_node_1 = atol(tok_end + 1);
    747		}
    748
    749		step = 1;
    750		tok_step = strstr(tok, "#");
    751		if (tok_step) {
    752			step = atol(tok_step + 1);
    753			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
    754		}
    755
    756		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
    757		mul = 1;
    758		tok_mul = strstr(tok, "x");
    759		if (tok_mul) {
    760			mul = atol(tok_mul + 1);
    761			BUG_ON(mul <= 0);
    762		}
    763
    764		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
    765
    766		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
    767			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
    768			return -1;
    769		}
    770
    771		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
    772		BUG_ON(bind_node_0 > bind_node_1);
    773
    774		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
    775			int i;
    776
    777			for (i = 0; i < mul; i++) {
    778				if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
    779					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
    780					goto out;
    781				}
    782				td = g->threads + t;
    783
    784				if (!t)
    785					tprintf(" %2d", bind_node);
    786				else
    787					tprintf(",%2d", bind_node);
    788
    789				td->bind_node = bind_node;
    790				t++;
    791			}
    792		}
    793	}
    794out:
    795
    796	tprintf("\n");
    797
    798	if (t < g->p.nr_tasks)
    799		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
    800
    801	free(str0);
    802	return 0;
    803}
    804
    805static int parse_nodes_opt(const struct option *opt __maybe_unused,
    806			  const char *arg, int unset __maybe_unused)
    807{
    808	if (!arg)
    809		return -1;
    810
    811	return parse_node_list(arg);
    812}
    813
    814static inline uint32_t lfsr_32(uint32_t lfsr)
    815{
    816	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
    817	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
    818}
    819
    820/*
    821 * Make sure there's real data dependency to RAM (when read
    822 * accesses are enabled), so the compiler, the CPU and the
    823 * kernel (KSM, zero page, etc.) cannot optimize away RAM
    824 * accesses:
    825 */
    826static inline u64 access_data(u64 *data, u64 val)
    827{
    828	if (g->p.data_reads)
    829		val += *data;
    830	if (g->p.data_writes)
    831		*data = val + 1;
    832	return val;
    833}
    834
    835/*
    836 * The worker process does two types of work, a forwards going
    837 * loop and a backwards going loop.
    838 *
    839 * We do this so that on multiprocessor systems we do not create
    840 * a 'train' of processing, with highly synchronized processes,
    841 * skewing the whole benchmark.
    842 */
    843static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
    844{
    845	long words = bytes/sizeof(u64);
    846	u64 *data = (void *)__data;
    847	long chunk_0, chunk_1;
    848	u64 *d0, *d, *d1;
    849	long off;
    850	long i;
    851
    852	BUG_ON(!data && words);
    853	BUG_ON(data && !words);
    854
    855	if (!data)
    856		return val;
    857
    858	/* Very simple memset() work variant: */
    859	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
    860		bzero(data, bytes);
    861		return val;
    862	}
    863
    864	/* Spread out by PID/TID nr and by loop nr: */
    865	chunk_0 = words/nr_max;
    866	chunk_1 = words/g->p.nr_loops;
    867	off = nr*chunk_0 + loop*chunk_1;
    868
    869	while (off >= words)
    870		off -= words;
    871
    872	if (g->p.data_rand_walk) {
    873		u32 lfsr = nr + loop + val;
    874		int j;
    875
    876		for (i = 0; i < words/1024; i++) {
    877			long start, end;
    878
    879			lfsr = lfsr_32(lfsr);
    880
    881			start = lfsr % words;
    882			end = min(start + 1024, words-1);
    883
    884			if (g->p.data_zero_memset) {
    885				bzero(data + start, (end-start) * sizeof(u64));
    886			} else {
    887				for (j = start; j < end; j++)
    888					val = access_data(data + j, val);
    889			}
    890		}
    891	} else if (!g->p.data_backwards || (nr + loop) & 1) {
    892		/* Process data forwards: */
    893
    894		d0 = data + off;
    895		d  = data + off + 1;
    896		d1 = data + words;
    897
    898		for (;;) {
    899			if (unlikely(d >= d1))
    900				d = data;
    901			if (unlikely(d == d0))
    902				break;
    903
    904			val = access_data(d, val);
    905
    906			d++;
    907		}
    908	} else {
    909		/* Process data backwards: */
    910
    911		d0 = data + off;
    912		d  = data + off - 1;
    913		d1 = data + words;
    914
    915		for (;;) {
    916			if (unlikely(d < data))
    917				d = data + words-1;
    918			if (unlikely(d == d0))
    919				break;
    920
    921			val = access_data(d, val);
    922
    923			d--;
    924		}
    925	}
    926
    927	return val;
    928}
    929
    930static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
    931{
    932	unsigned int cpu;
    933
    934	cpu = sched_getcpu();
    935
    936	g->threads[task_nr].curr_cpu = cpu;
    937	prctl(0, bytes_worked);
    938}
    939
    940/*
    941 * Count the number of nodes a process's threads
    942 * are spread out on.
    943 *
    944 * A count of 1 means that the process is compressed
    945 * to a single node. A count of g->p.nr_nodes means it's
    946 * spread out on the whole system.
    947 */
    948static int count_process_nodes(int process_nr)
    949{
    950	char *node_present;
    951	int nodes;
    952	int n, t;
    953
    954	node_present = (char *)malloc(g->p.nr_nodes * sizeof(char));
    955	BUG_ON(!node_present);
    956	for (nodes = 0; nodes < g->p.nr_nodes; nodes++)
    957		node_present[nodes] = 0;
    958
    959	for (t = 0; t < g->p.nr_threads; t++) {
    960		struct thread_data *td;
    961		int task_nr;
    962		int node;
    963
    964		task_nr = process_nr*g->p.nr_threads + t;
    965		td = g->threads + task_nr;
    966
    967		node = numa_node_of_cpu(td->curr_cpu);
    968		if (node < 0) /* curr_cpu was likely still -1 */ {
    969			free(node_present);
    970			return 0;
    971		}
    972
    973		node_present[node] = 1;
    974	}
    975
    976	nodes = 0;
    977
    978	for (n = 0; n < g->p.nr_nodes; n++)
    979		nodes += node_present[n];
    980
    981	free(node_present);
    982	return nodes;
    983}
    984
    985/*
    986 * Count the number of distinct process-threads a node contains.
    987 *
    988 * A count of 1 means that the node contains only a single
    989 * process. If all nodes on the system contain at most one
    990 * process then we are well-converged.
    991 */
    992static int count_node_processes(int node)
    993{
    994	int processes = 0;
    995	int t, p;
    996
    997	for (p = 0; p < g->p.nr_proc; p++) {
    998		for (t = 0; t < g->p.nr_threads; t++) {
    999			struct thread_data *td;
   1000			int task_nr;
   1001			int n;
   1002
   1003			task_nr = p*g->p.nr_threads + t;
   1004			td = g->threads + task_nr;
   1005
   1006			n = numa_node_of_cpu(td->curr_cpu);
   1007			if (n == node) {
   1008				processes++;
   1009				break;
   1010			}
   1011		}
   1012	}
   1013
   1014	return processes;
   1015}
   1016
   1017static void calc_convergence_compression(int *strong)
   1018{
   1019	unsigned int nodes_min, nodes_max;
   1020	int p;
   1021
   1022	nodes_min = -1;
   1023	nodes_max =  0;
   1024
   1025	for (p = 0; p < g->p.nr_proc; p++) {
   1026		unsigned int nodes = count_process_nodes(p);
   1027
   1028		if (!nodes) {
   1029			*strong = 0;
   1030			return;
   1031		}
   1032
   1033		nodes_min = min(nodes, nodes_min);
   1034		nodes_max = max(nodes, nodes_max);
   1035	}
   1036
   1037	/* Strong convergence: all threads compress on a single node: */
   1038	if (nodes_min == 1 && nodes_max == 1) {
   1039		*strong = 1;
   1040	} else {
   1041		*strong = 0;
   1042		tprintf(" {%d-%d}", nodes_min, nodes_max);
   1043	}
   1044}
   1045
   1046static void calc_convergence(double runtime_ns_max, double *convergence)
   1047{
   1048	unsigned int loops_done_min, loops_done_max;
   1049	int process_groups;
   1050	int *nodes;
   1051	int distance;
   1052	int nr_min;
   1053	int nr_max;
   1054	int strong;
   1055	int sum;
   1056	int nr;
   1057	int node;
   1058	int cpu;
   1059	int t;
   1060
   1061	if (!g->p.show_convergence && !g->p.measure_convergence)
   1062		return;
   1063
   1064	nodes = (int *)malloc(g->p.nr_nodes * sizeof(int));
   1065	BUG_ON(!nodes);
   1066	for (node = 0; node < g->p.nr_nodes; node++)
   1067		nodes[node] = 0;
   1068
   1069	loops_done_min = -1;
   1070	loops_done_max = 0;
   1071
   1072	for (t = 0; t < g->p.nr_tasks; t++) {
   1073		struct thread_data *td = g->threads + t;
   1074		unsigned int loops_done;
   1075
   1076		cpu = td->curr_cpu;
   1077
   1078		/* Not all threads have written it yet: */
   1079		if (cpu < 0)
   1080			continue;
   1081
   1082		node = numa_node_of_cpu(cpu);
   1083
   1084		nodes[node]++;
   1085
   1086		loops_done = td->loops_done;
   1087		loops_done_min = min(loops_done, loops_done_min);
   1088		loops_done_max = max(loops_done, loops_done_max);
   1089	}
   1090
   1091	nr_max = 0;
   1092	nr_min = g->p.nr_tasks;
   1093	sum = 0;
   1094
   1095	for (node = 0; node < g->p.nr_nodes; node++) {
   1096		if (!is_node_present(node))
   1097			continue;
   1098		nr = nodes[node];
   1099		nr_min = min(nr, nr_min);
   1100		nr_max = max(nr, nr_max);
   1101		sum += nr;
   1102	}
   1103	BUG_ON(nr_min > nr_max);
   1104
   1105	BUG_ON(sum > g->p.nr_tasks);
   1106
   1107	if (0 && (sum < g->p.nr_tasks)) {
   1108		free(nodes);
   1109		return;
   1110	}
   1111
   1112	/*
   1113	 * Count the number of distinct process groups present
   1114	 * on nodes - when we are converged this will decrease
   1115	 * to g->p.nr_proc:
   1116	 */
   1117	process_groups = 0;
   1118
   1119	for (node = 0; node < g->p.nr_nodes; node++) {
   1120		int processes;
   1121
   1122		if (!is_node_present(node))
   1123			continue;
   1124		processes = count_node_processes(node);
   1125		nr = nodes[node];
   1126		tprintf(" %2d/%-2d", nr, processes);
   1127
   1128		process_groups += processes;
   1129	}
   1130
   1131	distance = nr_max - nr_min;
   1132
   1133	tprintf(" [%2d/%-2d]", distance, process_groups);
   1134
   1135	tprintf(" l:%3d-%-3d (%3d)",
   1136		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
   1137
   1138	if (loops_done_min && loops_done_max) {
   1139		double skew = 1.0 - (double)loops_done_min/loops_done_max;
   1140
   1141		tprintf(" [%4.1f%%]", skew * 100.0);
   1142	}
   1143
   1144	calc_convergence_compression(&strong);
   1145
   1146	if (strong && process_groups == g->p.nr_proc) {
   1147		if (!*convergence) {
   1148			*convergence = runtime_ns_max;
   1149			tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
   1150			if (g->p.measure_convergence) {
   1151				g->all_converged = true;
   1152				g->stop_work = true;
   1153			}
   1154		}
   1155	} else {
   1156		if (*convergence) {
   1157			tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
   1158			*convergence = 0;
   1159		}
   1160		tprintf("\n");
   1161	}
   1162
   1163	free(nodes);
   1164}
   1165
   1166static void show_summary(double runtime_ns_max, int l, double *convergence)
   1167{
   1168	tprintf("\r #  %5.1f%%  [%.1f mins]",
   1169		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
   1170
   1171	calc_convergence(runtime_ns_max, convergence);
   1172
   1173	if (g->p.show_details >= 0)
   1174		fflush(stdout);
   1175}
   1176
   1177static void *worker_thread(void *__tdata)
   1178{
   1179	struct thread_data *td = __tdata;
   1180	struct timeval start0, start, stop, diff;
   1181	int process_nr = td->process_nr;
   1182	int thread_nr = td->thread_nr;
   1183	unsigned long last_perturbance;
   1184	int task_nr = td->task_nr;
   1185	int details = g->p.show_details;
   1186	int first_task, last_task;
   1187	double convergence = 0;
   1188	u64 val = td->val;
   1189	double runtime_ns_max;
   1190	u8 *global_data;
   1191	u8 *process_data;
   1192	u8 *thread_data;
   1193	u64 bytes_done, secs;
   1194	long work_done;
   1195	u32 l;
   1196	struct rusage rusage;
   1197
   1198	bind_to_cpumask(td->bind_cpumask);
   1199	bind_to_memnode(td->bind_node);
   1200
   1201	set_taskname("thread %d/%d", process_nr, thread_nr);
   1202
   1203	global_data = g->data;
   1204	process_data = td->process_data;
   1205	thread_data = setup_private_data(g->p.bytes_thread);
   1206
   1207	bytes_done = 0;
   1208
   1209	last_task = 0;
   1210	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
   1211		last_task = 1;
   1212
   1213	first_task = 0;
   1214	if (process_nr == 0 && thread_nr == 0)
   1215		first_task = 1;
   1216
   1217	if (details >= 2) {
   1218		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
   1219			process_nr, thread_nr, global_data, process_data, thread_data);
   1220	}
   1221
   1222	if (g->p.serialize_startup) {
   1223		pthread_mutex_lock(&g->startup_mutex);
   1224		g->nr_tasks_started++;
   1225		/* The last thread wakes the main process. */
   1226		if (g->nr_tasks_started == g->p.nr_tasks)
   1227			pthread_cond_signal(&g->startup_cond);
   1228
   1229		pthread_mutex_unlock(&g->startup_mutex);
   1230
   1231		/* Here we will wait for the main process to start us all at once: */
   1232		pthread_mutex_lock(&g->start_work_mutex);
   1233		g->start_work = false;
   1234		g->nr_tasks_working++;
   1235		while (!g->start_work)
   1236			pthread_cond_wait(&g->start_work_cond, &g->start_work_mutex);
   1237
   1238		pthread_mutex_unlock(&g->start_work_mutex);
   1239	}
   1240
   1241	gettimeofday(&start0, NULL);
   1242
   1243	start = stop = start0;
   1244	last_perturbance = start.tv_sec;
   1245
   1246	for (l = 0; l < g->p.nr_loops; l++) {
   1247		start = stop;
   1248
   1249		if (g->stop_work)
   1250			break;
   1251
   1252		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
   1253		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
   1254		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
   1255
   1256		if (g->p.sleep_usecs) {
   1257			pthread_mutex_lock(td->process_lock);
   1258			usleep(g->p.sleep_usecs);
   1259			pthread_mutex_unlock(td->process_lock);
   1260		}
   1261		/*
   1262		 * Amount of work to be done under a process-global lock:
   1263		 */
   1264		if (g->p.bytes_process_locked) {
   1265			pthread_mutex_lock(td->process_lock);
   1266			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
   1267			pthread_mutex_unlock(td->process_lock);
   1268		}
   1269
   1270		work_done = g->p.bytes_global + g->p.bytes_process +
   1271			    g->p.bytes_process_locked + g->p.bytes_thread;
   1272
   1273		update_curr_cpu(task_nr, work_done);
   1274		bytes_done += work_done;
   1275
   1276		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
   1277			continue;
   1278
   1279		td->loops_done = l;
   1280
   1281		gettimeofday(&stop, NULL);
   1282
   1283		/* Check whether our max runtime timed out: */
   1284		if (g->p.nr_secs) {
   1285			timersub(&stop, &start0, &diff);
   1286			if ((u32)diff.tv_sec >= g->p.nr_secs) {
   1287				g->stop_work = true;
   1288				break;
   1289			}
   1290		}
   1291
   1292		/* Update the summary at most once per second: */
   1293		if (start.tv_sec == stop.tv_sec)
   1294			continue;
   1295
   1296		/*
   1297		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
   1298		 * by migrating to CPU#0:
   1299		 */
   1300		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
   1301			cpu_set_t *orig_mask;
   1302			int target_cpu;
   1303			int this_cpu;
   1304
   1305			last_perturbance = stop.tv_sec;
   1306
   1307			/*
   1308			 * Depending on where we are running, move into
   1309			 * the other half of the system, to create some
   1310			 * real disturbance:
   1311			 */
   1312			this_cpu = g->threads[task_nr].curr_cpu;
   1313			if (this_cpu < g->p.nr_cpus/2)
   1314				target_cpu = g->p.nr_cpus-1;
   1315			else
   1316				target_cpu = 0;
   1317
   1318			orig_mask = bind_to_cpu(target_cpu);
   1319
   1320			/* Here we are running on the target CPU already */
   1321			if (details >= 1)
   1322				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
   1323
   1324			bind_to_cpumask(orig_mask);
   1325			CPU_FREE(orig_mask);
   1326		}
   1327
   1328		if (details >= 3) {
   1329			timersub(&stop, &start, &diff);
   1330			runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
   1331			runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
   1332
   1333			if (details >= 0) {
   1334				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
   1335					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
   1336			}
   1337			fflush(stdout);
   1338		}
   1339		if (!last_task)
   1340			continue;
   1341
   1342		timersub(&stop, &start0, &diff);
   1343		runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
   1344		runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
   1345
   1346		show_summary(runtime_ns_max, l, &convergence);
   1347	}
   1348
   1349	gettimeofday(&stop, NULL);
   1350	timersub(&stop, &start0, &diff);
   1351	td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
   1352	td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
   1353	secs = td->runtime_ns / NSEC_PER_SEC;
   1354	td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
   1355
   1356	getrusage(RUSAGE_THREAD, &rusage);
   1357	td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
   1358	td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
   1359	td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
   1360	td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
   1361
   1362	free_data(thread_data, g->p.bytes_thread);
   1363
   1364	pthread_mutex_lock(&g->stop_work_mutex);
   1365	g->bytes_done += bytes_done;
   1366	pthread_mutex_unlock(&g->stop_work_mutex);
   1367
   1368	return NULL;
   1369}
   1370
   1371/*
   1372 * A worker process starts a couple of threads:
   1373 */
   1374static void worker_process(int process_nr)
   1375{
   1376	pthread_mutex_t process_lock;
   1377	struct thread_data *td;
   1378	pthread_t *pthreads;
   1379	u8 *process_data;
   1380	int task_nr;
   1381	int ret;
   1382	int t;
   1383
   1384	pthread_mutex_init(&process_lock, NULL);
   1385	set_taskname("process %d", process_nr);
   1386
   1387	/*
   1388	 * Pick up the memory policy and the CPU binding of our first thread,
   1389	 * so that we initialize memory accordingly:
   1390	 */
   1391	task_nr = process_nr*g->p.nr_threads;
   1392	td = g->threads + task_nr;
   1393
   1394	bind_to_memnode(td->bind_node);
   1395	bind_to_cpumask(td->bind_cpumask);
   1396
   1397	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
   1398	process_data = setup_private_data(g->p.bytes_process);
   1399
   1400	if (g->p.show_details >= 3) {
   1401		printf(" # process %2d global mem: %p, process mem: %p\n",
   1402			process_nr, g->data, process_data);
   1403	}
   1404
   1405	for (t = 0; t < g->p.nr_threads; t++) {
   1406		task_nr = process_nr*g->p.nr_threads + t;
   1407		td = g->threads + task_nr;
   1408
   1409		td->process_data = process_data;
   1410		td->process_nr   = process_nr;
   1411		td->thread_nr    = t;
   1412		td->task_nr	 = task_nr;
   1413		td->val          = rand();
   1414		td->curr_cpu	 = -1;
   1415		td->process_lock = &process_lock;
   1416
   1417		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
   1418		BUG_ON(ret);
   1419	}
   1420
   1421	for (t = 0; t < g->p.nr_threads; t++) {
   1422                ret = pthread_join(pthreads[t], NULL);
   1423		BUG_ON(ret);
   1424	}
   1425
   1426	free_data(process_data, g->p.bytes_process);
   1427	free(pthreads);
   1428}
   1429
   1430static void print_summary(void)
   1431{
   1432	if (g->p.show_details < 0)
   1433		return;
   1434
   1435	printf("\n ###\n");
   1436	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
   1437		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
   1438	printf(" #      %5dx %5ldMB global  shared mem operations\n",
   1439			g->p.nr_loops, g->p.bytes_global/1024/1024);
   1440	printf(" #      %5dx %5ldMB process shared mem operations\n",
   1441			g->p.nr_loops, g->p.bytes_process/1024/1024);
   1442	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
   1443			g->p.nr_loops, g->p.bytes_thread/1024/1024);
   1444
   1445	printf(" ###\n");
   1446
   1447	printf("\n ###\n"); fflush(stdout);
   1448}
   1449
   1450static void init_thread_data(void)
   1451{
   1452	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
   1453	int t;
   1454
   1455	g->threads = zalloc_shared_data(size);
   1456
   1457	for (t = 0; t < g->p.nr_tasks; t++) {
   1458		struct thread_data *td = g->threads + t;
   1459		size_t cpuset_size = CPU_ALLOC_SIZE(g->p.nr_cpus);
   1460		int cpu;
   1461
   1462		/* Allow all nodes by default: */
   1463		td->bind_node = NUMA_NO_NODE;
   1464
   1465		/* Allow all CPUs by default: */
   1466		td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus);
   1467		BUG_ON(!td->bind_cpumask);
   1468		CPU_ZERO_S(cpuset_size, td->bind_cpumask);
   1469		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
   1470			CPU_SET_S(cpu, cpuset_size, td->bind_cpumask);
   1471	}
   1472}
   1473
   1474static void deinit_thread_data(void)
   1475{
   1476	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
   1477	int t;
   1478
   1479	/* Free the bind_cpumask allocated for thread_data */
   1480	for (t = 0; t < g->p.nr_tasks; t++) {
   1481		struct thread_data *td = g->threads + t;
   1482		CPU_FREE(td->bind_cpumask);
   1483	}
   1484
   1485	free_data(g->threads, size);
   1486}
   1487
   1488static int init(void)
   1489{
   1490	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
   1491
   1492	/* Copy over options: */
   1493	g->p = p0;
   1494
   1495	g->p.nr_cpus = numa_num_configured_cpus();
   1496
   1497	g->p.nr_nodes = numa_max_node() + 1;
   1498
   1499	/* char array in count_process_nodes(): */
   1500	BUG_ON(g->p.nr_nodes < 0);
   1501
   1502	if (g->p.show_quiet && !g->p.show_details)
   1503		g->p.show_details = -1;
   1504
   1505	/* Some memory should be specified: */
   1506	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
   1507		return -1;
   1508
   1509	if (g->p.mb_global_str) {
   1510		g->p.mb_global = atof(g->p.mb_global_str);
   1511		BUG_ON(g->p.mb_global < 0);
   1512	}
   1513
   1514	if (g->p.mb_proc_str) {
   1515		g->p.mb_proc = atof(g->p.mb_proc_str);
   1516		BUG_ON(g->p.mb_proc < 0);
   1517	}
   1518
   1519	if (g->p.mb_proc_locked_str) {
   1520		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
   1521		BUG_ON(g->p.mb_proc_locked < 0);
   1522		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
   1523	}
   1524
   1525	if (g->p.mb_thread_str) {
   1526		g->p.mb_thread = atof(g->p.mb_thread_str);
   1527		BUG_ON(g->p.mb_thread < 0);
   1528	}
   1529
   1530	BUG_ON(g->p.nr_threads <= 0);
   1531	BUG_ON(g->p.nr_proc <= 0);
   1532
   1533	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
   1534
   1535	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
   1536	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
   1537	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
   1538	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
   1539
   1540	g->data = setup_shared_data(g->p.bytes_global);
   1541
   1542	/* Startup serialization: */
   1543	init_global_mutex(&g->start_work_mutex);
   1544	init_global_cond(&g->start_work_cond);
   1545	init_global_mutex(&g->startup_mutex);
   1546	init_global_cond(&g->startup_cond);
   1547	init_global_mutex(&g->stop_work_mutex);
   1548
   1549	init_thread_data();
   1550
   1551	tprintf("#\n");
   1552	if (parse_setup_cpu_list() || parse_setup_node_list())
   1553		return -1;
   1554	tprintf("#\n");
   1555
   1556	print_summary();
   1557
   1558	return 0;
   1559}
   1560
   1561static void deinit(void)
   1562{
   1563	free_data(g->data, g->p.bytes_global);
   1564	g->data = NULL;
   1565
   1566	deinit_thread_data();
   1567
   1568	free_data(g, sizeof(*g));
   1569	g = NULL;
   1570}
   1571
   1572/*
   1573 * Print a short or long result, depending on the verbosity setting:
   1574 */
   1575static void print_res(const char *name, double val,
   1576		      const char *txt_unit, const char *txt_short, const char *txt_long)
   1577{
   1578	if (!name)
   1579		name = "main,";
   1580
   1581	if (!g->p.show_quiet)
   1582		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
   1583	else
   1584		printf(" %14.3f %s\n", val, txt_long);
   1585}
   1586
   1587static int __bench_numa(const char *name)
   1588{
   1589	struct timeval start, stop, diff;
   1590	u64 runtime_ns_min, runtime_ns_sum;
   1591	pid_t *pids, pid, wpid;
   1592	double delta_runtime;
   1593	double runtime_avg;
   1594	double runtime_sec_max;
   1595	double runtime_sec_min;
   1596	int wait_stat;
   1597	double bytes;
   1598	int i, t, p;
   1599
   1600	if (init())
   1601		return -1;
   1602
   1603	pids = zalloc(g->p.nr_proc * sizeof(*pids));
   1604	pid = -1;
   1605
   1606	if (g->p.serialize_startup) {
   1607		tprintf(" #\n");
   1608		tprintf(" # Startup synchronization: ..."); fflush(stdout);
   1609	}
   1610
   1611	gettimeofday(&start, NULL);
   1612
   1613	for (i = 0; i < g->p.nr_proc; i++) {
   1614		pid = fork();
   1615		dprintf(" # process %2d: PID %d\n", i, pid);
   1616
   1617		BUG_ON(pid < 0);
   1618		if (!pid) {
   1619			/* Child process: */
   1620			worker_process(i);
   1621
   1622			exit(0);
   1623		}
   1624		pids[i] = pid;
   1625
   1626	}
   1627
   1628	if (g->p.serialize_startup) {
   1629		bool threads_ready = false;
   1630		double startup_sec;
   1631
   1632		/*
   1633		 * Wait for all the threads to start up. The last thread will
   1634		 * signal this process.
   1635		 */
   1636		pthread_mutex_lock(&g->startup_mutex);
   1637		while (g->nr_tasks_started != g->p.nr_tasks)
   1638			pthread_cond_wait(&g->startup_cond, &g->startup_mutex);
   1639
   1640		pthread_mutex_unlock(&g->startup_mutex);
   1641
   1642		/* Wait for all threads to be at the start_work_cond. */
   1643		while (!threads_ready) {
   1644			pthread_mutex_lock(&g->start_work_mutex);
   1645			threads_ready = (g->nr_tasks_working == g->p.nr_tasks);
   1646			pthread_mutex_unlock(&g->start_work_mutex);
   1647			if (!threads_ready)
   1648				usleep(1);
   1649		}
   1650
   1651		gettimeofday(&stop, NULL);
   1652
   1653		timersub(&stop, &start, &diff);
   1654
   1655		startup_sec = diff.tv_sec * NSEC_PER_SEC;
   1656		startup_sec += diff.tv_usec * NSEC_PER_USEC;
   1657		startup_sec /= NSEC_PER_SEC;
   1658
   1659		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
   1660		tprintf(" #\n");
   1661
   1662		start = stop;
   1663		/* Start all threads running. */
   1664		pthread_mutex_lock(&g->start_work_mutex);
   1665		g->start_work = true;
   1666		pthread_mutex_unlock(&g->start_work_mutex);
   1667		pthread_cond_broadcast(&g->start_work_cond);
   1668	} else {
   1669		gettimeofday(&start, NULL);
   1670	}
   1671
   1672	/* Parent process: */
   1673
   1674
   1675	for (i = 0; i < g->p.nr_proc; i++) {
   1676		wpid = waitpid(pids[i], &wait_stat, 0);
   1677		BUG_ON(wpid < 0);
   1678		BUG_ON(!WIFEXITED(wait_stat));
   1679
   1680	}
   1681
   1682	runtime_ns_sum = 0;
   1683	runtime_ns_min = -1LL;
   1684
   1685	for (t = 0; t < g->p.nr_tasks; t++) {
   1686		u64 thread_runtime_ns = g->threads[t].runtime_ns;
   1687
   1688		runtime_ns_sum += thread_runtime_ns;
   1689		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
   1690	}
   1691
   1692	gettimeofday(&stop, NULL);
   1693	timersub(&stop, &start, &diff);
   1694
   1695	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
   1696
   1697	tprintf("\n ###\n");
   1698	tprintf("\n");
   1699
   1700	runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
   1701	runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
   1702	runtime_sec_max /= NSEC_PER_SEC;
   1703
   1704	runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
   1705
   1706	bytes = g->bytes_done;
   1707	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
   1708
   1709	if (g->p.measure_convergence) {
   1710		print_res(name, runtime_sec_max,
   1711			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
   1712	}
   1713
   1714	print_res(name, runtime_sec_max,
   1715		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
   1716
   1717	print_res(name, runtime_sec_min,
   1718		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
   1719
   1720	print_res(name, runtime_avg,
   1721		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
   1722
   1723	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
   1724	print_res(name, delta_runtime / runtime_sec_max * 100.0,
   1725		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
   1726
   1727	print_res(name, bytes / g->p.nr_tasks / 1e9,
   1728		"GB,", "data/thread",		"GB data processed, per thread");
   1729
   1730	print_res(name, bytes / 1e9,
   1731		"GB,", "data-total",		"GB data processed, total");
   1732
   1733	print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
   1734		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
   1735
   1736	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
   1737		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
   1738
   1739	print_res(name, bytes / runtime_sec_max / 1e9,
   1740		"GB/sec,", "total-speed",	"GB/sec total speed");
   1741
   1742	if (g->p.show_details >= 2) {
   1743		char tname[14 + 2 * 11 + 1];
   1744		struct thread_data *td;
   1745		for (p = 0; p < g->p.nr_proc; p++) {
   1746			for (t = 0; t < g->p.nr_threads; t++) {
   1747				memset(tname, 0, sizeof(tname));
   1748				td = g->threads + p*g->p.nr_threads + t;
   1749				snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
   1750				print_res(tname, td->speed_gbs,
   1751					"GB/sec",	"thread-speed", "GB/sec/thread speed");
   1752				print_res(tname, td->system_time_ns / NSEC_PER_SEC,
   1753					"secs",	"thread-system-time", "system CPU time/thread");
   1754				print_res(tname, td->user_time_ns / NSEC_PER_SEC,
   1755					"secs",	"thread-user-time", "user CPU time/thread");
   1756			}
   1757		}
   1758	}
   1759
   1760	free(pids);
   1761
   1762	deinit();
   1763
   1764	return 0;
   1765}
   1766
   1767#define MAX_ARGS 50
   1768
   1769static int command_size(const char **argv)
   1770{
   1771	int size = 0;
   1772
   1773	while (*argv) {
   1774		size++;
   1775		argv++;
   1776	}
   1777
   1778	BUG_ON(size >= MAX_ARGS);
   1779
   1780	return size;
   1781}
   1782
   1783static void init_params(struct params *p, const char *name, int argc, const char **argv)
   1784{
   1785	int i;
   1786
   1787	printf("\n # Running %s \"perf bench numa", name);
   1788
   1789	for (i = 0; i < argc; i++)
   1790		printf(" %s", argv[i]);
   1791
   1792	printf("\"\n");
   1793
   1794	memset(p, 0, sizeof(*p));
   1795
   1796	/* Initialize nonzero defaults: */
   1797
   1798	p->serialize_startup		= 1;
   1799	p->data_reads			= true;
   1800	p->data_writes			= true;
   1801	p->data_backwards		= true;
   1802	p->data_rand_walk		= true;
   1803	p->nr_loops			= -1;
   1804	p->init_random			= true;
   1805	p->mb_global_str		= "1";
   1806	p->nr_proc			= 1;
   1807	p->nr_threads			= 1;
   1808	p->nr_secs			= 5;
   1809	p->run_all			= argc == 1;
   1810}
   1811
   1812static int run_bench_numa(const char *name, const char **argv)
   1813{
   1814	int argc = command_size(argv);
   1815
   1816	init_params(&p0, name, argc, argv);
   1817	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
   1818	if (argc)
   1819		goto err;
   1820
   1821	if (__bench_numa(name))
   1822		goto err;
   1823
   1824	return 0;
   1825
   1826err:
   1827	return -1;
   1828}
   1829
   1830#define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
   1831#define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
   1832
   1833#define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
   1834#define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
   1835
   1836#define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
   1837#define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
   1838
   1839/*
   1840 * The built-in test-suite executed by "perf bench numa -a".
   1841 *
   1842 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
   1843 */
   1844static const char *tests[][MAX_ARGS] = {
   1845   /* Basic single-stream NUMA bandwidth measurements: */
   1846   { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
   1847			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
   1848   { "RAM-bw-local-NOTHP,",
   1849			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
   1850			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
   1851   { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
   1852			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
   1853
   1854   /* 2-stream NUMA bandwidth measurements: */
   1855   { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
   1856			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
   1857   { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
   1858		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
   1859
   1860   /* Cross-stream NUMA bandwidth measurement: */
   1861   { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
   1862		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
   1863
   1864   /* Convergence latency measurements: */
   1865   { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
   1866   { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
   1867   { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
   1868   { " 2x3-convergence,", "mem",  "-p",  "2", "-t",  "3", "-P", "1020", OPT_CONV },
   1869   { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
   1870   { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
   1871   { " 4x4-convergence-NOTHP,",
   1872			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
   1873   { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
   1874   { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
   1875   { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
   1876   { " 8x4-convergence-NOTHP,",
   1877			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
   1878   { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
   1879   { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
   1880   { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
   1881   { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
   1882   { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
   1883
   1884   /* Various NUMA process/thread layout bandwidth measurements: */
   1885   { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
   1886   { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
   1887   { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
   1888   { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
   1889   { " 8x1-bw-process-NOTHP,",
   1890			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
   1891   { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
   1892
   1893   { " 1x4-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
   1894   { " 1x8-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
   1895   { "1x16-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
   1896   { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
   1897
   1898   { " 2x3-bw-process,",  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
   1899   { " 4x4-bw-process,",  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
   1900   { " 4x6-bw-process,",  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
   1901   { " 4x8-bw-process,",  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
   1902   { " 4x8-bw-process-NOTHP,",
   1903			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
   1904   { " 3x3-bw-process,",  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
   1905   { " 5x5-bw-process,",  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
   1906
   1907   { "2x16-bw-process,",  "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
   1908   { "1x32-bw-process,",  "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
   1909
   1910   { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
   1911   { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
   1912   { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
   1913   { "numa01-bw-thread-NOTHP,",
   1914			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
   1915};
   1916
   1917static int bench_all(void)
   1918{
   1919	int nr = ARRAY_SIZE(tests);
   1920	int ret;
   1921	int i;
   1922
   1923	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
   1924	BUG_ON(ret < 0);
   1925
   1926	for (i = 0; i < nr; i++) {
   1927		run_bench_numa(tests[i][0], tests[i] + 1);
   1928	}
   1929
   1930	printf("\n");
   1931
   1932	return 0;
   1933}
   1934
   1935int bench_numa(int argc, const char **argv)
   1936{
   1937	init_params(&p0, "main,", argc, argv);
   1938	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
   1939	if (argc)
   1940		goto err;
   1941
   1942	if (p0.run_all)
   1943		return bench_all();
   1944
   1945	if (__bench_numa(NULL))
   1946		goto err;
   1947
   1948	return 0;
   1949
   1950err:
   1951	usage_with_options(numa_usage, options);
   1952	return -1;
   1953}