cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

header.c (98069B)


      1// SPDX-License-Identifier: GPL-2.0
      2#include <errno.h>
      3#include <inttypes.h>
      4#include "string2.h"
      5#include <sys/param.h>
      6#include <sys/types.h>
      7#include <byteswap.h>
      8#include <unistd.h>
      9#include <stdio.h>
     10#include <stdlib.h>
     11#include <linux/compiler.h>
     12#include <linux/list.h>
     13#include <linux/kernel.h>
     14#include <linux/bitops.h>
     15#include <linux/string.h>
     16#include <linux/stringify.h>
     17#include <linux/zalloc.h>
     18#include <sys/stat.h>
     19#include <sys/utsname.h>
     20#include <linux/time64.h>
     21#include <dirent.h>
     22#ifdef HAVE_LIBBPF_SUPPORT
     23#include <bpf/libbpf.h>
     24#endif
     25#include <perf/cpumap.h>
     26
     27#include "dso.h"
     28#include "evlist.h"
     29#include "evsel.h"
     30#include "util/evsel_fprintf.h"
     31#include "header.h"
     32#include "memswap.h"
     33#include "trace-event.h"
     34#include "session.h"
     35#include "symbol.h"
     36#include "debug.h"
     37#include "cpumap.h"
     38#include "pmu.h"
     39#include "vdso.h"
     40#include "strbuf.h"
     41#include "build-id.h"
     42#include "data.h"
     43#include <api/fs/fs.h>
     44#include "asm/bug.h"
     45#include "tool.h"
     46#include "time-utils.h"
     47#include "units.h"
     48#include "util/util.h" // perf_exe()
     49#include "cputopo.h"
     50#include "bpf-event.h"
     51#include "bpf-utils.h"
     52#include "clockid.h"
     53#include "pmu-hybrid.h"
     54
     55#include <linux/ctype.h>
     56#include <internal/lib.h>
     57
     58/*
     59 * magic2 = "PERFILE2"
     60 * must be a numerical value to let the endianness
     61 * determine the memory layout. That way we are able
     62 * to detect endianness when reading the perf.data file
     63 * back.
     64 *
     65 * we check for legacy (PERFFILE) format.
     66 */
     67static const char *__perf_magic1 = "PERFFILE";
     68static const u64 __perf_magic2    = 0x32454c4946524550ULL;
     69static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
     70
     71#define PERF_MAGIC	__perf_magic2
     72
     73const char perf_version_string[] = PERF_VERSION;
     74
     75struct perf_file_attr {
     76	struct perf_event_attr	attr;
     77	struct perf_file_section	ids;
     78};
     79
     80void perf_header__set_feat(struct perf_header *header, int feat)
     81{
     82	set_bit(feat, header->adds_features);
     83}
     84
     85void perf_header__clear_feat(struct perf_header *header, int feat)
     86{
     87	clear_bit(feat, header->adds_features);
     88}
     89
     90bool perf_header__has_feat(const struct perf_header *header, int feat)
     91{
     92	return test_bit(feat, header->adds_features);
     93}
     94
     95static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
     96{
     97	ssize_t ret = writen(ff->fd, buf, size);
     98
     99	if (ret != (ssize_t)size)
    100		return ret < 0 ? (int)ret : -1;
    101	return 0;
    102}
    103
    104static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
    105{
    106	/* struct perf_event_header::size is u16 */
    107	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
    108	size_t new_size = ff->size;
    109	void *addr;
    110
    111	if (size + ff->offset > max_size)
    112		return -E2BIG;
    113
    114	while (size > (new_size - ff->offset))
    115		new_size <<= 1;
    116	new_size = min(max_size, new_size);
    117
    118	if (ff->size < new_size) {
    119		addr = realloc(ff->buf, new_size);
    120		if (!addr)
    121			return -ENOMEM;
    122		ff->buf = addr;
    123		ff->size = new_size;
    124	}
    125
    126	memcpy(ff->buf + ff->offset, buf, size);
    127	ff->offset += size;
    128
    129	return 0;
    130}
    131
    132/* Return: 0 if succeeded, -ERR if failed. */
    133int do_write(struct feat_fd *ff, const void *buf, size_t size)
    134{
    135	if (!ff->buf)
    136		return __do_write_fd(ff, buf, size);
    137	return __do_write_buf(ff, buf, size);
    138}
    139
    140/* Return: 0 if succeeded, -ERR if failed. */
    141static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
    142{
    143	u64 *p = (u64 *) set;
    144	int i, ret;
    145
    146	ret = do_write(ff, &size, sizeof(size));
    147	if (ret < 0)
    148		return ret;
    149
    150	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
    151		ret = do_write(ff, p + i, sizeof(*p));
    152		if (ret < 0)
    153			return ret;
    154	}
    155
    156	return 0;
    157}
    158
    159/* Return: 0 if succeeded, -ERR if failed. */
    160int write_padded(struct feat_fd *ff, const void *bf,
    161		 size_t count, size_t count_aligned)
    162{
    163	static const char zero_buf[NAME_ALIGN];
    164	int err = do_write(ff, bf, count);
    165
    166	if (!err)
    167		err = do_write(ff, zero_buf, count_aligned - count);
    168
    169	return err;
    170}
    171
    172#define string_size(str)						\
    173	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
    174
    175/* Return: 0 if succeeded, -ERR if failed. */
    176static int do_write_string(struct feat_fd *ff, const char *str)
    177{
    178	u32 len, olen;
    179	int ret;
    180
    181	olen = strlen(str) + 1;
    182	len = PERF_ALIGN(olen, NAME_ALIGN);
    183
    184	/* write len, incl. \0 */
    185	ret = do_write(ff, &len, sizeof(len));
    186	if (ret < 0)
    187		return ret;
    188
    189	return write_padded(ff, str, olen, len);
    190}
    191
    192static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
    193{
    194	ssize_t ret = readn(ff->fd, addr, size);
    195
    196	if (ret != size)
    197		return ret < 0 ? (int)ret : -1;
    198	return 0;
    199}
    200
    201static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
    202{
    203	if (size > (ssize_t)ff->size - ff->offset)
    204		return -1;
    205
    206	memcpy(addr, ff->buf + ff->offset, size);
    207	ff->offset += size;
    208
    209	return 0;
    210
    211}
    212
    213static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
    214{
    215	if (!ff->buf)
    216		return __do_read_fd(ff, addr, size);
    217	return __do_read_buf(ff, addr, size);
    218}
    219
    220static int do_read_u32(struct feat_fd *ff, u32 *addr)
    221{
    222	int ret;
    223
    224	ret = __do_read(ff, addr, sizeof(*addr));
    225	if (ret)
    226		return ret;
    227
    228	if (ff->ph->needs_swap)
    229		*addr = bswap_32(*addr);
    230	return 0;
    231}
    232
    233static int do_read_u64(struct feat_fd *ff, u64 *addr)
    234{
    235	int ret;
    236
    237	ret = __do_read(ff, addr, sizeof(*addr));
    238	if (ret)
    239		return ret;
    240
    241	if (ff->ph->needs_swap)
    242		*addr = bswap_64(*addr);
    243	return 0;
    244}
    245
    246static char *do_read_string(struct feat_fd *ff)
    247{
    248	u32 len;
    249	char *buf;
    250
    251	if (do_read_u32(ff, &len))
    252		return NULL;
    253
    254	buf = malloc(len);
    255	if (!buf)
    256		return NULL;
    257
    258	if (!__do_read(ff, buf, len)) {
    259		/*
    260		 * strings are padded by zeroes
    261		 * thus the actual strlen of buf
    262		 * may be less than len
    263		 */
    264		return buf;
    265	}
    266
    267	free(buf);
    268	return NULL;
    269}
    270
    271/* Return: 0 if succeeded, -ERR if failed. */
    272static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
    273{
    274	unsigned long *set;
    275	u64 size, *p;
    276	int i, ret;
    277
    278	ret = do_read_u64(ff, &size);
    279	if (ret)
    280		return ret;
    281
    282	set = bitmap_zalloc(size);
    283	if (!set)
    284		return -ENOMEM;
    285
    286	p = (u64 *) set;
    287
    288	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
    289		ret = do_read_u64(ff, p + i);
    290		if (ret < 0) {
    291			free(set);
    292			return ret;
    293		}
    294	}
    295
    296	*pset  = set;
    297	*psize = size;
    298	return 0;
    299}
    300
    301static int write_tracing_data(struct feat_fd *ff,
    302			      struct evlist *evlist)
    303{
    304	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
    305		return -1;
    306
    307	return read_tracing_data(ff->fd, &evlist->core.entries);
    308}
    309
    310static int write_build_id(struct feat_fd *ff,
    311			  struct evlist *evlist __maybe_unused)
    312{
    313	struct perf_session *session;
    314	int err;
    315
    316	session = container_of(ff->ph, struct perf_session, header);
    317
    318	if (!perf_session__read_build_ids(session, true))
    319		return -1;
    320
    321	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
    322		return -1;
    323
    324	err = perf_session__write_buildid_table(session, ff);
    325	if (err < 0) {
    326		pr_debug("failed to write buildid table\n");
    327		return err;
    328	}
    329	perf_session__cache_build_ids(session);
    330
    331	return 0;
    332}
    333
    334static int write_hostname(struct feat_fd *ff,
    335			  struct evlist *evlist __maybe_unused)
    336{
    337	struct utsname uts;
    338	int ret;
    339
    340	ret = uname(&uts);
    341	if (ret < 0)
    342		return -1;
    343
    344	return do_write_string(ff, uts.nodename);
    345}
    346
    347static int write_osrelease(struct feat_fd *ff,
    348			   struct evlist *evlist __maybe_unused)
    349{
    350	struct utsname uts;
    351	int ret;
    352
    353	ret = uname(&uts);
    354	if (ret < 0)
    355		return -1;
    356
    357	return do_write_string(ff, uts.release);
    358}
    359
    360static int write_arch(struct feat_fd *ff,
    361		      struct evlist *evlist __maybe_unused)
    362{
    363	struct utsname uts;
    364	int ret;
    365
    366	ret = uname(&uts);
    367	if (ret < 0)
    368		return -1;
    369
    370	return do_write_string(ff, uts.machine);
    371}
    372
    373static int write_version(struct feat_fd *ff,
    374			 struct evlist *evlist __maybe_unused)
    375{
    376	return do_write_string(ff, perf_version_string);
    377}
    378
    379static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
    380{
    381	FILE *file;
    382	char *buf = NULL;
    383	char *s, *p;
    384	const char *search = cpuinfo_proc;
    385	size_t len = 0;
    386	int ret = -1;
    387
    388	if (!search)
    389		return -1;
    390
    391	file = fopen("/proc/cpuinfo", "r");
    392	if (!file)
    393		return -1;
    394
    395	while (getline(&buf, &len, file) > 0) {
    396		ret = strncmp(buf, search, strlen(search));
    397		if (!ret)
    398			break;
    399	}
    400
    401	if (ret) {
    402		ret = -1;
    403		goto done;
    404	}
    405
    406	s = buf;
    407
    408	p = strchr(buf, ':');
    409	if (p && *(p+1) == ' ' && *(p+2))
    410		s = p + 2;
    411	p = strchr(s, '\n');
    412	if (p)
    413		*p = '\0';
    414
    415	/* squash extra space characters (branding string) */
    416	p = s;
    417	while (*p) {
    418		if (isspace(*p)) {
    419			char *r = p + 1;
    420			char *q = skip_spaces(r);
    421			*p = ' ';
    422			if (q != (p+1))
    423				while ((*r++ = *q++));
    424		}
    425		p++;
    426	}
    427	ret = do_write_string(ff, s);
    428done:
    429	free(buf);
    430	fclose(file);
    431	return ret;
    432}
    433
    434static int write_cpudesc(struct feat_fd *ff,
    435		       struct evlist *evlist __maybe_unused)
    436{
    437#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
    438#define CPUINFO_PROC	{ "cpu", }
    439#elif defined(__s390__)
    440#define CPUINFO_PROC	{ "vendor_id", }
    441#elif defined(__sh__)
    442#define CPUINFO_PROC	{ "cpu type", }
    443#elif defined(__alpha__) || defined(__mips__)
    444#define CPUINFO_PROC	{ "cpu model", }
    445#elif defined(__arm__)
    446#define CPUINFO_PROC	{ "model name", "Processor", }
    447#elif defined(__arc__)
    448#define CPUINFO_PROC	{ "Processor", }
    449#elif defined(__xtensa__)
    450#define CPUINFO_PROC	{ "core ID", }
    451#else
    452#define CPUINFO_PROC	{ "model name", }
    453#endif
    454	const char *cpuinfo_procs[] = CPUINFO_PROC;
    455#undef CPUINFO_PROC
    456	unsigned int i;
    457
    458	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
    459		int ret;
    460		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
    461		if (ret >= 0)
    462			return ret;
    463	}
    464	return -1;
    465}
    466
    467
    468static int write_nrcpus(struct feat_fd *ff,
    469			struct evlist *evlist __maybe_unused)
    470{
    471	long nr;
    472	u32 nrc, nra;
    473	int ret;
    474
    475	nrc = cpu__max_present_cpu().cpu;
    476
    477	nr = sysconf(_SC_NPROCESSORS_ONLN);
    478	if (nr < 0)
    479		return -1;
    480
    481	nra = (u32)(nr & UINT_MAX);
    482
    483	ret = do_write(ff, &nrc, sizeof(nrc));
    484	if (ret < 0)
    485		return ret;
    486
    487	return do_write(ff, &nra, sizeof(nra));
    488}
    489
    490static int write_event_desc(struct feat_fd *ff,
    491			    struct evlist *evlist)
    492{
    493	struct evsel *evsel;
    494	u32 nre, nri, sz;
    495	int ret;
    496
    497	nre = evlist->core.nr_entries;
    498
    499	/*
    500	 * write number of events
    501	 */
    502	ret = do_write(ff, &nre, sizeof(nre));
    503	if (ret < 0)
    504		return ret;
    505
    506	/*
    507	 * size of perf_event_attr struct
    508	 */
    509	sz = (u32)sizeof(evsel->core.attr);
    510	ret = do_write(ff, &sz, sizeof(sz));
    511	if (ret < 0)
    512		return ret;
    513
    514	evlist__for_each_entry(evlist, evsel) {
    515		ret = do_write(ff, &evsel->core.attr, sz);
    516		if (ret < 0)
    517			return ret;
    518		/*
    519		 * write number of unique id per event
    520		 * there is one id per instance of an event
    521		 *
    522		 * copy into an nri to be independent of the
    523		 * type of ids,
    524		 */
    525		nri = evsel->core.ids;
    526		ret = do_write(ff, &nri, sizeof(nri));
    527		if (ret < 0)
    528			return ret;
    529
    530		/*
    531		 * write event string as passed on cmdline
    532		 */
    533		ret = do_write_string(ff, evsel__name(evsel));
    534		if (ret < 0)
    535			return ret;
    536		/*
    537		 * write unique ids for this event
    538		 */
    539		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
    540		if (ret < 0)
    541			return ret;
    542	}
    543	return 0;
    544}
    545
    546static int write_cmdline(struct feat_fd *ff,
    547			 struct evlist *evlist __maybe_unused)
    548{
    549	char pbuf[MAXPATHLEN], *buf;
    550	int i, ret, n;
    551
    552	/* actual path to perf binary */
    553	buf = perf_exe(pbuf, MAXPATHLEN);
    554
    555	/* account for binary path */
    556	n = perf_env.nr_cmdline + 1;
    557
    558	ret = do_write(ff, &n, sizeof(n));
    559	if (ret < 0)
    560		return ret;
    561
    562	ret = do_write_string(ff, buf);
    563	if (ret < 0)
    564		return ret;
    565
    566	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
    567		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
    568		if (ret < 0)
    569			return ret;
    570	}
    571	return 0;
    572}
    573
    574
    575static int write_cpu_topology(struct feat_fd *ff,
    576			      struct evlist *evlist __maybe_unused)
    577{
    578	struct cpu_topology *tp;
    579	u32 i;
    580	int ret, j;
    581
    582	tp = cpu_topology__new();
    583	if (!tp)
    584		return -1;
    585
    586	ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
    587	if (ret < 0)
    588		goto done;
    589
    590	for (i = 0; i < tp->package_cpus_lists; i++) {
    591		ret = do_write_string(ff, tp->package_cpus_list[i]);
    592		if (ret < 0)
    593			goto done;
    594	}
    595	ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
    596	if (ret < 0)
    597		goto done;
    598
    599	for (i = 0; i < tp->core_cpus_lists; i++) {
    600		ret = do_write_string(ff, tp->core_cpus_list[i]);
    601		if (ret < 0)
    602			break;
    603	}
    604
    605	ret = perf_env__read_cpu_topology_map(&perf_env);
    606	if (ret < 0)
    607		goto done;
    608
    609	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
    610		ret = do_write(ff, &perf_env.cpu[j].core_id,
    611			       sizeof(perf_env.cpu[j].core_id));
    612		if (ret < 0)
    613			return ret;
    614		ret = do_write(ff, &perf_env.cpu[j].socket_id,
    615			       sizeof(perf_env.cpu[j].socket_id));
    616		if (ret < 0)
    617			return ret;
    618	}
    619
    620	if (!tp->die_cpus_lists)
    621		goto done;
    622
    623	ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
    624	if (ret < 0)
    625		goto done;
    626
    627	for (i = 0; i < tp->die_cpus_lists; i++) {
    628		ret = do_write_string(ff, tp->die_cpus_list[i]);
    629		if (ret < 0)
    630			goto done;
    631	}
    632
    633	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
    634		ret = do_write(ff, &perf_env.cpu[j].die_id,
    635			       sizeof(perf_env.cpu[j].die_id));
    636		if (ret < 0)
    637			return ret;
    638	}
    639
    640done:
    641	cpu_topology__delete(tp);
    642	return ret;
    643}
    644
    645
    646
    647static int write_total_mem(struct feat_fd *ff,
    648			   struct evlist *evlist __maybe_unused)
    649{
    650	char *buf = NULL;
    651	FILE *fp;
    652	size_t len = 0;
    653	int ret = -1, n;
    654	uint64_t mem;
    655
    656	fp = fopen("/proc/meminfo", "r");
    657	if (!fp)
    658		return -1;
    659
    660	while (getline(&buf, &len, fp) > 0) {
    661		ret = strncmp(buf, "MemTotal:", 9);
    662		if (!ret)
    663			break;
    664	}
    665	if (!ret) {
    666		n = sscanf(buf, "%*s %"PRIu64, &mem);
    667		if (n == 1)
    668			ret = do_write(ff, &mem, sizeof(mem));
    669	} else
    670		ret = -1;
    671	free(buf);
    672	fclose(fp);
    673	return ret;
    674}
    675
    676static int write_numa_topology(struct feat_fd *ff,
    677			       struct evlist *evlist __maybe_unused)
    678{
    679	struct numa_topology *tp;
    680	int ret = -1;
    681	u32 i;
    682
    683	tp = numa_topology__new();
    684	if (!tp)
    685		return -ENOMEM;
    686
    687	ret = do_write(ff, &tp->nr, sizeof(u32));
    688	if (ret < 0)
    689		goto err;
    690
    691	for (i = 0; i < tp->nr; i++) {
    692		struct numa_topology_node *n = &tp->nodes[i];
    693
    694		ret = do_write(ff, &n->node, sizeof(u32));
    695		if (ret < 0)
    696			goto err;
    697
    698		ret = do_write(ff, &n->mem_total, sizeof(u64));
    699		if (ret)
    700			goto err;
    701
    702		ret = do_write(ff, &n->mem_free, sizeof(u64));
    703		if (ret)
    704			goto err;
    705
    706		ret = do_write_string(ff, n->cpus);
    707		if (ret < 0)
    708			goto err;
    709	}
    710
    711	ret = 0;
    712
    713err:
    714	numa_topology__delete(tp);
    715	return ret;
    716}
    717
    718/*
    719 * File format:
    720 *
    721 * struct pmu_mappings {
    722 *	u32	pmu_num;
    723 *	struct pmu_map {
    724 *		u32	type;
    725 *		char	name[];
    726 *	}[pmu_num];
    727 * };
    728 */
    729
    730static int write_pmu_mappings(struct feat_fd *ff,
    731			      struct evlist *evlist __maybe_unused)
    732{
    733	struct perf_pmu *pmu = NULL;
    734	u32 pmu_num = 0;
    735	int ret;
    736
    737	/*
    738	 * Do a first pass to count number of pmu to avoid lseek so this
    739	 * works in pipe mode as well.
    740	 */
    741	while ((pmu = perf_pmu__scan(pmu))) {
    742		if (!pmu->name)
    743			continue;
    744		pmu_num++;
    745	}
    746
    747	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
    748	if (ret < 0)
    749		return ret;
    750
    751	while ((pmu = perf_pmu__scan(pmu))) {
    752		if (!pmu->name)
    753			continue;
    754
    755		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
    756		if (ret < 0)
    757			return ret;
    758
    759		ret = do_write_string(ff, pmu->name);
    760		if (ret < 0)
    761			return ret;
    762	}
    763
    764	return 0;
    765}
    766
    767/*
    768 * File format:
    769 *
    770 * struct group_descs {
    771 *	u32	nr_groups;
    772 *	struct group_desc {
    773 *		char	name[];
    774 *		u32	leader_idx;
    775 *		u32	nr_members;
    776 *	}[nr_groups];
    777 * };
    778 */
    779static int write_group_desc(struct feat_fd *ff,
    780			    struct evlist *evlist)
    781{
    782	u32 nr_groups = evlist->core.nr_groups;
    783	struct evsel *evsel;
    784	int ret;
    785
    786	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
    787	if (ret < 0)
    788		return ret;
    789
    790	evlist__for_each_entry(evlist, evsel) {
    791		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
    792			const char *name = evsel->group_name ?: "{anon_group}";
    793			u32 leader_idx = evsel->core.idx;
    794			u32 nr_members = evsel->core.nr_members;
    795
    796			ret = do_write_string(ff, name);
    797			if (ret < 0)
    798				return ret;
    799
    800			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
    801			if (ret < 0)
    802				return ret;
    803
    804			ret = do_write(ff, &nr_members, sizeof(nr_members));
    805			if (ret < 0)
    806				return ret;
    807		}
    808	}
    809	return 0;
    810}
    811
    812/*
    813 * Return the CPU id as a raw string.
    814 *
    815 * Each architecture should provide a more precise id string that
    816 * can be use to match the architecture's "mapfile".
    817 */
    818char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
    819{
    820	return NULL;
    821}
    822
    823/* Return zero when the cpuid from the mapfile.csv matches the
    824 * cpuid string generated on this platform.
    825 * Otherwise return non-zero.
    826 */
    827int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
    828{
    829	regex_t re;
    830	regmatch_t pmatch[1];
    831	int match;
    832
    833	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
    834		/* Warn unable to generate match particular string. */
    835		pr_info("Invalid regular expression %s\n", mapcpuid);
    836		return 1;
    837	}
    838
    839	match = !regexec(&re, cpuid, 1, pmatch, 0);
    840	regfree(&re);
    841	if (match) {
    842		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
    843
    844		/* Verify the entire string matched. */
    845		if (match_len == strlen(cpuid))
    846			return 0;
    847	}
    848	return 1;
    849}
    850
    851/*
    852 * default get_cpuid(): nothing gets recorded
    853 * actual implementation must be in arch/$(SRCARCH)/util/header.c
    854 */
    855int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
    856{
    857	return ENOSYS; /* Not implemented */
    858}
    859
    860static int write_cpuid(struct feat_fd *ff,
    861		       struct evlist *evlist __maybe_unused)
    862{
    863	char buffer[64];
    864	int ret;
    865
    866	ret = get_cpuid(buffer, sizeof(buffer));
    867	if (ret)
    868		return -1;
    869
    870	return do_write_string(ff, buffer);
    871}
    872
    873static int write_branch_stack(struct feat_fd *ff __maybe_unused,
    874			      struct evlist *evlist __maybe_unused)
    875{
    876	return 0;
    877}
    878
    879static int write_auxtrace(struct feat_fd *ff,
    880			  struct evlist *evlist __maybe_unused)
    881{
    882	struct perf_session *session;
    883	int err;
    884
    885	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
    886		return -1;
    887
    888	session = container_of(ff->ph, struct perf_session, header);
    889
    890	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
    891	if (err < 0)
    892		pr_err("Failed to write auxtrace index\n");
    893	return err;
    894}
    895
    896static int write_clockid(struct feat_fd *ff,
    897			 struct evlist *evlist __maybe_unused)
    898{
    899	return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
    900			sizeof(ff->ph->env.clock.clockid_res_ns));
    901}
    902
    903static int write_clock_data(struct feat_fd *ff,
    904			    struct evlist *evlist __maybe_unused)
    905{
    906	u64 *data64;
    907	u32 data32;
    908	int ret;
    909
    910	/* version */
    911	data32 = 1;
    912
    913	ret = do_write(ff, &data32, sizeof(data32));
    914	if (ret < 0)
    915		return ret;
    916
    917	/* clockid */
    918	data32 = ff->ph->env.clock.clockid;
    919
    920	ret = do_write(ff, &data32, sizeof(data32));
    921	if (ret < 0)
    922		return ret;
    923
    924	/* TOD ref time */
    925	data64 = &ff->ph->env.clock.tod_ns;
    926
    927	ret = do_write(ff, data64, sizeof(*data64));
    928	if (ret < 0)
    929		return ret;
    930
    931	/* clockid ref time */
    932	data64 = &ff->ph->env.clock.clockid_ns;
    933
    934	return do_write(ff, data64, sizeof(*data64));
    935}
    936
    937static int write_hybrid_topology(struct feat_fd *ff,
    938				 struct evlist *evlist __maybe_unused)
    939{
    940	struct hybrid_topology *tp;
    941	int ret;
    942	u32 i;
    943
    944	tp = hybrid_topology__new();
    945	if (!tp)
    946		return -ENOENT;
    947
    948	ret = do_write(ff, &tp->nr, sizeof(u32));
    949	if (ret < 0)
    950		goto err;
    951
    952	for (i = 0; i < tp->nr; i++) {
    953		struct hybrid_topology_node *n = &tp->nodes[i];
    954
    955		ret = do_write_string(ff, n->pmu_name);
    956		if (ret < 0)
    957			goto err;
    958
    959		ret = do_write_string(ff, n->cpus);
    960		if (ret < 0)
    961			goto err;
    962	}
    963
    964	ret = 0;
    965
    966err:
    967	hybrid_topology__delete(tp);
    968	return ret;
    969}
    970
    971static int write_dir_format(struct feat_fd *ff,
    972			    struct evlist *evlist __maybe_unused)
    973{
    974	struct perf_session *session;
    975	struct perf_data *data;
    976
    977	session = container_of(ff->ph, struct perf_session, header);
    978	data = session->data;
    979
    980	if (WARN_ON(!perf_data__is_dir(data)))
    981		return -1;
    982
    983	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
    984}
    985
    986/*
    987 * Check whether a CPU is online
    988 *
    989 * Returns:
    990 *     1 -> if CPU is online
    991 *     0 -> if CPU is offline
    992 *    -1 -> error case
    993 */
    994int is_cpu_online(unsigned int cpu)
    995{
    996	char *str;
    997	size_t strlen;
    998	char buf[256];
    999	int status = -1;
   1000	struct stat statbuf;
   1001
   1002	snprintf(buf, sizeof(buf),
   1003		"/sys/devices/system/cpu/cpu%d", cpu);
   1004	if (stat(buf, &statbuf) != 0)
   1005		return 0;
   1006
   1007	/*
   1008	 * Check if /sys/devices/system/cpu/cpux/online file
   1009	 * exists. Some cases cpu0 won't have online file since
   1010	 * it is not expected to be turned off generally.
   1011	 * In kernels without CONFIG_HOTPLUG_CPU, this
   1012	 * file won't exist
   1013	 */
   1014	snprintf(buf, sizeof(buf),
   1015		"/sys/devices/system/cpu/cpu%d/online", cpu);
   1016	if (stat(buf, &statbuf) != 0)
   1017		return 1;
   1018
   1019	/*
   1020	 * Read online file using sysfs__read_str.
   1021	 * If read or open fails, return -1.
   1022	 * If read succeeds, return value from file
   1023	 * which gets stored in "str"
   1024	 */
   1025	snprintf(buf, sizeof(buf),
   1026		"devices/system/cpu/cpu%d/online", cpu);
   1027
   1028	if (sysfs__read_str(buf, &str, &strlen) < 0)
   1029		return status;
   1030
   1031	status = atoi(str);
   1032
   1033	free(str);
   1034	return status;
   1035}
   1036
   1037#ifdef HAVE_LIBBPF_SUPPORT
   1038static int write_bpf_prog_info(struct feat_fd *ff,
   1039			       struct evlist *evlist __maybe_unused)
   1040{
   1041	struct perf_env *env = &ff->ph->env;
   1042	struct rb_root *root;
   1043	struct rb_node *next;
   1044	int ret;
   1045
   1046	down_read(&env->bpf_progs.lock);
   1047
   1048	ret = do_write(ff, &env->bpf_progs.infos_cnt,
   1049		       sizeof(env->bpf_progs.infos_cnt));
   1050	if (ret < 0)
   1051		goto out;
   1052
   1053	root = &env->bpf_progs.infos;
   1054	next = rb_first(root);
   1055	while (next) {
   1056		struct bpf_prog_info_node *node;
   1057		size_t len;
   1058
   1059		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
   1060		next = rb_next(&node->rb_node);
   1061		len = sizeof(struct perf_bpil) +
   1062			node->info_linear->data_len;
   1063
   1064		/* before writing to file, translate address to offset */
   1065		bpil_addr_to_offs(node->info_linear);
   1066		ret = do_write(ff, node->info_linear, len);
   1067		/*
   1068		 * translate back to address even when do_write() fails,
   1069		 * so that this function never changes the data.
   1070		 */
   1071		bpil_offs_to_addr(node->info_linear);
   1072		if (ret < 0)
   1073			goto out;
   1074	}
   1075out:
   1076	up_read(&env->bpf_progs.lock);
   1077	return ret;
   1078}
   1079
   1080static int write_bpf_btf(struct feat_fd *ff,
   1081			 struct evlist *evlist __maybe_unused)
   1082{
   1083	struct perf_env *env = &ff->ph->env;
   1084	struct rb_root *root;
   1085	struct rb_node *next;
   1086	int ret;
   1087
   1088	down_read(&env->bpf_progs.lock);
   1089
   1090	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
   1091		       sizeof(env->bpf_progs.btfs_cnt));
   1092
   1093	if (ret < 0)
   1094		goto out;
   1095
   1096	root = &env->bpf_progs.btfs;
   1097	next = rb_first(root);
   1098	while (next) {
   1099		struct btf_node *node;
   1100
   1101		node = rb_entry(next, struct btf_node, rb_node);
   1102		next = rb_next(&node->rb_node);
   1103		ret = do_write(ff, &node->id,
   1104			       sizeof(u32) * 2 + node->data_size);
   1105		if (ret < 0)
   1106			goto out;
   1107	}
   1108out:
   1109	up_read(&env->bpf_progs.lock);
   1110	return ret;
   1111}
   1112#endif // HAVE_LIBBPF_SUPPORT
   1113
   1114static int cpu_cache_level__sort(const void *a, const void *b)
   1115{
   1116	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
   1117	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
   1118
   1119	return cache_a->level - cache_b->level;
   1120}
   1121
   1122static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
   1123{
   1124	if (a->level != b->level)
   1125		return false;
   1126
   1127	if (a->line_size != b->line_size)
   1128		return false;
   1129
   1130	if (a->sets != b->sets)
   1131		return false;
   1132
   1133	if (a->ways != b->ways)
   1134		return false;
   1135
   1136	if (strcmp(a->type, b->type))
   1137		return false;
   1138
   1139	if (strcmp(a->size, b->size))
   1140		return false;
   1141
   1142	if (strcmp(a->map, b->map))
   1143		return false;
   1144
   1145	return true;
   1146}
   1147
   1148static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
   1149{
   1150	char path[PATH_MAX], file[PATH_MAX];
   1151	struct stat st;
   1152	size_t len;
   1153
   1154	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
   1155	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
   1156
   1157	if (stat(file, &st))
   1158		return 1;
   1159
   1160	scnprintf(file, PATH_MAX, "%s/level", path);
   1161	if (sysfs__read_int(file, (int *) &cache->level))
   1162		return -1;
   1163
   1164	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
   1165	if (sysfs__read_int(file, (int *) &cache->line_size))
   1166		return -1;
   1167
   1168	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
   1169	if (sysfs__read_int(file, (int *) &cache->sets))
   1170		return -1;
   1171
   1172	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
   1173	if (sysfs__read_int(file, (int *) &cache->ways))
   1174		return -1;
   1175
   1176	scnprintf(file, PATH_MAX, "%s/type", path);
   1177	if (sysfs__read_str(file, &cache->type, &len))
   1178		return -1;
   1179
   1180	cache->type[len] = 0;
   1181	cache->type = strim(cache->type);
   1182
   1183	scnprintf(file, PATH_MAX, "%s/size", path);
   1184	if (sysfs__read_str(file, &cache->size, &len)) {
   1185		zfree(&cache->type);
   1186		return -1;
   1187	}
   1188
   1189	cache->size[len] = 0;
   1190	cache->size = strim(cache->size);
   1191
   1192	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
   1193	if (sysfs__read_str(file, &cache->map, &len)) {
   1194		zfree(&cache->size);
   1195		zfree(&cache->type);
   1196		return -1;
   1197	}
   1198
   1199	cache->map[len] = 0;
   1200	cache->map = strim(cache->map);
   1201	return 0;
   1202}
   1203
   1204static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
   1205{
   1206	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
   1207}
   1208
   1209#define MAX_CACHE_LVL 4
   1210
   1211static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
   1212{
   1213	u32 i, cnt = 0;
   1214	u32 nr, cpu;
   1215	u16 level;
   1216
   1217	nr = cpu__max_cpu().cpu;
   1218
   1219	for (cpu = 0; cpu < nr; cpu++) {
   1220		for (level = 0; level < MAX_CACHE_LVL; level++) {
   1221			struct cpu_cache_level c;
   1222			int err;
   1223
   1224			err = cpu_cache_level__read(&c, cpu, level);
   1225			if (err < 0)
   1226				return err;
   1227
   1228			if (err == 1)
   1229				break;
   1230
   1231			for (i = 0; i < cnt; i++) {
   1232				if (cpu_cache_level__cmp(&c, &caches[i]))
   1233					break;
   1234			}
   1235
   1236			if (i == cnt)
   1237				caches[cnt++] = c;
   1238			else
   1239				cpu_cache_level__free(&c);
   1240		}
   1241	}
   1242	*cntp = cnt;
   1243	return 0;
   1244}
   1245
   1246static int write_cache(struct feat_fd *ff,
   1247		       struct evlist *evlist __maybe_unused)
   1248{
   1249	u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
   1250	struct cpu_cache_level caches[max_caches];
   1251	u32 cnt = 0, i, version = 1;
   1252	int ret;
   1253
   1254	ret = build_caches(caches, &cnt);
   1255	if (ret)
   1256		goto out;
   1257
   1258	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
   1259
   1260	ret = do_write(ff, &version, sizeof(u32));
   1261	if (ret < 0)
   1262		goto out;
   1263
   1264	ret = do_write(ff, &cnt, sizeof(u32));
   1265	if (ret < 0)
   1266		goto out;
   1267
   1268	for (i = 0; i < cnt; i++) {
   1269		struct cpu_cache_level *c = &caches[i];
   1270
   1271		#define _W(v)					\
   1272			ret = do_write(ff, &c->v, sizeof(u32));	\
   1273			if (ret < 0)				\
   1274				goto out;
   1275
   1276		_W(level)
   1277		_W(line_size)
   1278		_W(sets)
   1279		_W(ways)
   1280		#undef _W
   1281
   1282		#define _W(v)						\
   1283			ret = do_write_string(ff, (const char *) c->v);	\
   1284			if (ret < 0)					\
   1285				goto out;
   1286
   1287		_W(type)
   1288		_W(size)
   1289		_W(map)
   1290		#undef _W
   1291	}
   1292
   1293out:
   1294	for (i = 0; i < cnt; i++)
   1295		cpu_cache_level__free(&caches[i]);
   1296	return ret;
   1297}
   1298
   1299static int write_stat(struct feat_fd *ff __maybe_unused,
   1300		      struct evlist *evlist __maybe_unused)
   1301{
   1302	return 0;
   1303}
   1304
   1305static int write_sample_time(struct feat_fd *ff,
   1306			     struct evlist *evlist)
   1307{
   1308	int ret;
   1309
   1310	ret = do_write(ff, &evlist->first_sample_time,
   1311		       sizeof(evlist->first_sample_time));
   1312	if (ret < 0)
   1313		return ret;
   1314
   1315	return do_write(ff, &evlist->last_sample_time,
   1316			sizeof(evlist->last_sample_time));
   1317}
   1318
   1319
   1320static int memory_node__read(struct memory_node *n, unsigned long idx)
   1321{
   1322	unsigned int phys, size = 0;
   1323	char path[PATH_MAX];
   1324	struct dirent *ent;
   1325	DIR *dir;
   1326
   1327#define for_each_memory(mem, dir)					\
   1328	while ((ent = readdir(dir)))					\
   1329		if (strcmp(ent->d_name, ".") &&				\
   1330		    strcmp(ent->d_name, "..") &&			\
   1331		    sscanf(ent->d_name, "memory%u", &mem) == 1)
   1332
   1333	scnprintf(path, PATH_MAX,
   1334		  "%s/devices/system/node/node%lu",
   1335		  sysfs__mountpoint(), idx);
   1336
   1337	dir = opendir(path);
   1338	if (!dir) {
   1339		pr_warning("failed: can't open memory sysfs data\n");
   1340		return -1;
   1341	}
   1342
   1343	for_each_memory(phys, dir) {
   1344		size = max(phys, size);
   1345	}
   1346
   1347	size++;
   1348
   1349	n->set = bitmap_zalloc(size);
   1350	if (!n->set) {
   1351		closedir(dir);
   1352		return -ENOMEM;
   1353	}
   1354
   1355	n->node = idx;
   1356	n->size = size;
   1357
   1358	rewinddir(dir);
   1359
   1360	for_each_memory(phys, dir) {
   1361		set_bit(phys, n->set);
   1362	}
   1363
   1364	closedir(dir);
   1365	return 0;
   1366}
   1367
   1368static int memory_node__sort(const void *a, const void *b)
   1369{
   1370	const struct memory_node *na = a;
   1371	const struct memory_node *nb = b;
   1372
   1373	return na->node - nb->node;
   1374}
   1375
   1376static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
   1377{
   1378	char path[PATH_MAX];
   1379	struct dirent *ent;
   1380	DIR *dir;
   1381	u64 cnt = 0;
   1382	int ret = 0;
   1383
   1384	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
   1385		  sysfs__mountpoint());
   1386
   1387	dir = opendir(path);
   1388	if (!dir) {
   1389		pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
   1390			  __func__, path);
   1391		return -1;
   1392	}
   1393
   1394	while (!ret && (ent = readdir(dir))) {
   1395		unsigned int idx;
   1396		int r;
   1397
   1398		if (!strcmp(ent->d_name, ".") ||
   1399		    !strcmp(ent->d_name, ".."))
   1400			continue;
   1401
   1402		r = sscanf(ent->d_name, "node%u", &idx);
   1403		if (r != 1)
   1404			continue;
   1405
   1406		if (WARN_ONCE(cnt >= size,
   1407			"failed to write MEM_TOPOLOGY, way too many nodes\n")) {
   1408			closedir(dir);
   1409			return -1;
   1410		}
   1411
   1412		ret = memory_node__read(&nodes[cnt++], idx);
   1413	}
   1414
   1415	*cntp = cnt;
   1416	closedir(dir);
   1417
   1418	if (!ret)
   1419		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
   1420
   1421	return ret;
   1422}
   1423
   1424#define MAX_MEMORY_NODES 2000
   1425
   1426/*
   1427 * The MEM_TOPOLOGY holds physical memory map for every
   1428 * node in system. The format of data is as follows:
   1429 *
   1430 *  0 - version          | for future changes
   1431 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
   1432 * 16 - count            | number of nodes
   1433 *
   1434 * For each node we store map of physical indexes for
   1435 * each node:
   1436 *
   1437 * 32 - node id          | node index
   1438 * 40 - size             | size of bitmap
   1439 * 48 - bitmap           | bitmap of memory indexes that belongs to node
   1440 */
   1441static int write_mem_topology(struct feat_fd *ff __maybe_unused,
   1442			      struct evlist *evlist __maybe_unused)
   1443{
   1444	static struct memory_node nodes[MAX_MEMORY_NODES];
   1445	u64 bsize, version = 1, i, nr;
   1446	int ret;
   1447
   1448	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
   1449			      (unsigned long long *) &bsize);
   1450	if (ret)
   1451		return ret;
   1452
   1453	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
   1454	if (ret)
   1455		return ret;
   1456
   1457	ret = do_write(ff, &version, sizeof(version));
   1458	if (ret < 0)
   1459		goto out;
   1460
   1461	ret = do_write(ff, &bsize, sizeof(bsize));
   1462	if (ret < 0)
   1463		goto out;
   1464
   1465	ret = do_write(ff, &nr, sizeof(nr));
   1466	if (ret < 0)
   1467		goto out;
   1468
   1469	for (i = 0; i < nr; i++) {
   1470		struct memory_node *n = &nodes[i];
   1471
   1472		#define _W(v)						\
   1473			ret = do_write(ff, &n->v, sizeof(n->v));	\
   1474			if (ret < 0)					\
   1475				goto out;
   1476
   1477		_W(node)
   1478		_W(size)
   1479
   1480		#undef _W
   1481
   1482		ret = do_write_bitmap(ff, n->set, n->size);
   1483		if (ret < 0)
   1484			goto out;
   1485	}
   1486
   1487out:
   1488	return ret;
   1489}
   1490
   1491static int write_compressed(struct feat_fd *ff __maybe_unused,
   1492			    struct evlist *evlist __maybe_unused)
   1493{
   1494	int ret;
   1495
   1496	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
   1497	if (ret)
   1498		return ret;
   1499
   1500	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
   1501	if (ret)
   1502		return ret;
   1503
   1504	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
   1505	if (ret)
   1506		return ret;
   1507
   1508	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
   1509	if (ret)
   1510		return ret;
   1511
   1512	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
   1513}
   1514
   1515static int write_per_cpu_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
   1516				  bool write_pmu)
   1517{
   1518	struct perf_pmu_caps *caps = NULL;
   1519	int nr_caps;
   1520	int ret;
   1521
   1522	nr_caps = perf_pmu__caps_parse(pmu);
   1523	if (nr_caps < 0)
   1524		return nr_caps;
   1525
   1526	ret = do_write(ff, &nr_caps, sizeof(nr_caps));
   1527	if (ret < 0)
   1528		return ret;
   1529
   1530	list_for_each_entry(caps, &pmu->caps, list) {
   1531		ret = do_write_string(ff, caps->name);
   1532		if (ret < 0)
   1533			return ret;
   1534
   1535		ret = do_write_string(ff, caps->value);
   1536		if (ret < 0)
   1537			return ret;
   1538	}
   1539
   1540	if (write_pmu) {
   1541		ret = do_write_string(ff, pmu->name);
   1542		if (ret < 0)
   1543			return ret;
   1544	}
   1545
   1546	return ret;
   1547}
   1548
   1549static int write_cpu_pmu_caps(struct feat_fd *ff,
   1550			      struct evlist *evlist __maybe_unused)
   1551{
   1552	struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
   1553
   1554	if (!cpu_pmu)
   1555		return -ENOENT;
   1556
   1557	return write_per_cpu_pmu_caps(ff, cpu_pmu, false);
   1558}
   1559
   1560static int write_hybrid_cpu_pmu_caps(struct feat_fd *ff,
   1561				     struct evlist *evlist __maybe_unused)
   1562{
   1563	struct perf_pmu *pmu;
   1564	u32 nr_pmu = perf_pmu__hybrid_pmu_num();
   1565	int ret;
   1566
   1567	if (nr_pmu == 0)
   1568		return -ENOENT;
   1569
   1570	ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
   1571	if (ret < 0)
   1572		return ret;
   1573
   1574	perf_pmu__for_each_hybrid_pmu(pmu) {
   1575		ret = write_per_cpu_pmu_caps(ff, pmu, true);
   1576		if (ret < 0)
   1577			return ret;
   1578	}
   1579
   1580	return 0;
   1581}
   1582
   1583static void print_hostname(struct feat_fd *ff, FILE *fp)
   1584{
   1585	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
   1586}
   1587
   1588static void print_osrelease(struct feat_fd *ff, FILE *fp)
   1589{
   1590	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
   1591}
   1592
   1593static void print_arch(struct feat_fd *ff, FILE *fp)
   1594{
   1595	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
   1596}
   1597
   1598static void print_cpudesc(struct feat_fd *ff, FILE *fp)
   1599{
   1600	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
   1601}
   1602
   1603static void print_nrcpus(struct feat_fd *ff, FILE *fp)
   1604{
   1605	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
   1606	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
   1607}
   1608
   1609static void print_version(struct feat_fd *ff, FILE *fp)
   1610{
   1611	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
   1612}
   1613
   1614static void print_cmdline(struct feat_fd *ff, FILE *fp)
   1615{
   1616	int nr, i;
   1617
   1618	nr = ff->ph->env.nr_cmdline;
   1619
   1620	fprintf(fp, "# cmdline : ");
   1621
   1622	for (i = 0; i < nr; i++) {
   1623		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
   1624		if (!argv_i) {
   1625			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
   1626		} else {
   1627			char *mem = argv_i;
   1628			do {
   1629				char *quote = strchr(argv_i, '\'');
   1630				if (!quote)
   1631					break;
   1632				*quote++ = '\0';
   1633				fprintf(fp, "%s\\\'", argv_i);
   1634				argv_i = quote;
   1635			} while (1);
   1636			fprintf(fp, "%s ", argv_i);
   1637			free(mem);
   1638		}
   1639	}
   1640	fputc('\n', fp);
   1641}
   1642
   1643static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
   1644{
   1645	struct perf_header *ph = ff->ph;
   1646	int cpu_nr = ph->env.nr_cpus_avail;
   1647	int nr, i;
   1648	char *str;
   1649
   1650	nr = ph->env.nr_sibling_cores;
   1651	str = ph->env.sibling_cores;
   1652
   1653	for (i = 0; i < nr; i++) {
   1654		fprintf(fp, "# sibling sockets : %s\n", str);
   1655		str += strlen(str) + 1;
   1656	}
   1657
   1658	if (ph->env.nr_sibling_dies) {
   1659		nr = ph->env.nr_sibling_dies;
   1660		str = ph->env.sibling_dies;
   1661
   1662		for (i = 0; i < nr; i++) {
   1663			fprintf(fp, "# sibling dies    : %s\n", str);
   1664			str += strlen(str) + 1;
   1665		}
   1666	}
   1667
   1668	nr = ph->env.nr_sibling_threads;
   1669	str = ph->env.sibling_threads;
   1670
   1671	for (i = 0; i < nr; i++) {
   1672		fprintf(fp, "# sibling threads : %s\n", str);
   1673		str += strlen(str) + 1;
   1674	}
   1675
   1676	if (ph->env.nr_sibling_dies) {
   1677		if (ph->env.cpu != NULL) {
   1678			for (i = 0; i < cpu_nr; i++)
   1679				fprintf(fp, "# CPU %d: Core ID %d, "
   1680					    "Die ID %d, Socket ID %d\n",
   1681					    i, ph->env.cpu[i].core_id,
   1682					    ph->env.cpu[i].die_id,
   1683					    ph->env.cpu[i].socket_id);
   1684		} else
   1685			fprintf(fp, "# Core ID, Die ID and Socket ID "
   1686				    "information is not available\n");
   1687	} else {
   1688		if (ph->env.cpu != NULL) {
   1689			for (i = 0; i < cpu_nr; i++)
   1690				fprintf(fp, "# CPU %d: Core ID %d, "
   1691					    "Socket ID %d\n",
   1692					    i, ph->env.cpu[i].core_id,
   1693					    ph->env.cpu[i].socket_id);
   1694		} else
   1695			fprintf(fp, "# Core ID and Socket ID "
   1696				    "information is not available\n");
   1697	}
   1698}
   1699
   1700static void print_clockid(struct feat_fd *ff, FILE *fp)
   1701{
   1702	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
   1703		ff->ph->env.clock.clockid_res_ns * 1000);
   1704}
   1705
   1706static void print_clock_data(struct feat_fd *ff, FILE *fp)
   1707{
   1708	struct timespec clockid_ns;
   1709	char tstr[64], date[64];
   1710	struct timeval tod_ns;
   1711	clockid_t clockid;
   1712	struct tm ltime;
   1713	u64 ref;
   1714
   1715	if (!ff->ph->env.clock.enabled) {
   1716		fprintf(fp, "# reference time disabled\n");
   1717		return;
   1718	}
   1719
   1720	/* Compute TOD time. */
   1721	ref = ff->ph->env.clock.tod_ns;
   1722	tod_ns.tv_sec = ref / NSEC_PER_SEC;
   1723	ref -= tod_ns.tv_sec * NSEC_PER_SEC;
   1724	tod_ns.tv_usec = ref / NSEC_PER_USEC;
   1725
   1726	/* Compute clockid time. */
   1727	ref = ff->ph->env.clock.clockid_ns;
   1728	clockid_ns.tv_sec = ref / NSEC_PER_SEC;
   1729	ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
   1730	clockid_ns.tv_nsec = ref;
   1731
   1732	clockid = ff->ph->env.clock.clockid;
   1733
   1734	if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
   1735		snprintf(tstr, sizeof(tstr), "<error>");
   1736	else {
   1737		strftime(date, sizeof(date), "%F %T", &ltime);
   1738		scnprintf(tstr, sizeof(tstr), "%s.%06d",
   1739			  date, (int) tod_ns.tv_usec);
   1740	}
   1741
   1742	fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
   1743	fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
   1744		    tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
   1745		    (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
   1746		    clockid_name(clockid));
   1747}
   1748
   1749static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
   1750{
   1751	int i;
   1752	struct hybrid_node *n;
   1753
   1754	fprintf(fp, "# hybrid cpu system:\n");
   1755	for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
   1756		n = &ff->ph->env.hybrid_nodes[i];
   1757		fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
   1758	}
   1759}
   1760
   1761static void print_dir_format(struct feat_fd *ff, FILE *fp)
   1762{
   1763	struct perf_session *session;
   1764	struct perf_data *data;
   1765
   1766	session = container_of(ff->ph, struct perf_session, header);
   1767	data = session->data;
   1768
   1769	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
   1770}
   1771
   1772#ifdef HAVE_LIBBPF_SUPPORT
   1773static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
   1774{
   1775	struct perf_env *env = &ff->ph->env;
   1776	struct rb_root *root;
   1777	struct rb_node *next;
   1778
   1779	down_read(&env->bpf_progs.lock);
   1780
   1781	root = &env->bpf_progs.infos;
   1782	next = rb_first(root);
   1783
   1784	while (next) {
   1785		struct bpf_prog_info_node *node;
   1786
   1787		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
   1788		next = rb_next(&node->rb_node);
   1789
   1790		bpf_event__print_bpf_prog_info(&node->info_linear->info,
   1791					       env, fp);
   1792	}
   1793
   1794	up_read(&env->bpf_progs.lock);
   1795}
   1796
   1797static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
   1798{
   1799	struct perf_env *env = &ff->ph->env;
   1800	struct rb_root *root;
   1801	struct rb_node *next;
   1802
   1803	down_read(&env->bpf_progs.lock);
   1804
   1805	root = &env->bpf_progs.btfs;
   1806	next = rb_first(root);
   1807
   1808	while (next) {
   1809		struct btf_node *node;
   1810
   1811		node = rb_entry(next, struct btf_node, rb_node);
   1812		next = rb_next(&node->rb_node);
   1813		fprintf(fp, "# btf info of id %u\n", node->id);
   1814	}
   1815
   1816	up_read(&env->bpf_progs.lock);
   1817}
   1818#endif // HAVE_LIBBPF_SUPPORT
   1819
   1820static void free_event_desc(struct evsel *events)
   1821{
   1822	struct evsel *evsel;
   1823
   1824	if (!events)
   1825		return;
   1826
   1827	for (evsel = events; evsel->core.attr.size; evsel++) {
   1828		zfree(&evsel->name);
   1829		zfree(&evsel->core.id);
   1830	}
   1831
   1832	free(events);
   1833}
   1834
   1835static bool perf_attr_check(struct perf_event_attr *attr)
   1836{
   1837	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
   1838		pr_warning("Reserved bits are set unexpectedly. "
   1839			   "Please update perf tool.\n");
   1840		return false;
   1841	}
   1842
   1843	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
   1844		pr_warning("Unknown sample type (0x%llx) is detected. "
   1845			   "Please update perf tool.\n",
   1846			   attr->sample_type);
   1847		return false;
   1848	}
   1849
   1850	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
   1851		pr_warning("Unknown read format (0x%llx) is detected. "
   1852			   "Please update perf tool.\n",
   1853			   attr->read_format);
   1854		return false;
   1855	}
   1856
   1857	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
   1858	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
   1859		pr_warning("Unknown branch sample type (0x%llx) is detected. "
   1860			   "Please update perf tool.\n",
   1861			   attr->branch_sample_type);
   1862
   1863		return false;
   1864	}
   1865
   1866	return true;
   1867}
   1868
   1869static struct evsel *read_event_desc(struct feat_fd *ff)
   1870{
   1871	struct evsel *evsel, *events = NULL;
   1872	u64 *id;
   1873	void *buf = NULL;
   1874	u32 nre, sz, nr, i, j;
   1875	size_t msz;
   1876
   1877	/* number of events */
   1878	if (do_read_u32(ff, &nre))
   1879		goto error;
   1880
   1881	if (do_read_u32(ff, &sz))
   1882		goto error;
   1883
   1884	/* buffer to hold on file attr struct */
   1885	buf = malloc(sz);
   1886	if (!buf)
   1887		goto error;
   1888
   1889	/* the last event terminates with evsel->core.attr.size == 0: */
   1890	events = calloc(nre + 1, sizeof(*events));
   1891	if (!events)
   1892		goto error;
   1893
   1894	msz = sizeof(evsel->core.attr);
   1895	if (sz < msz)
   1896		msz = sz;
   1897
   1898	for (i = 0, evsel = events; i < nre; evsel++, i++) {
   1899		evsel->core.idx = i;
   1900
   1901		/*
   1902		 * must read entire on-file attr struct to
   1903		 * sync up with layout.
   1904		 */
   1905		if (__do_read(ff, buf, sz))
   1906			goto error;
   1907
   1908		if (ff->ph->needs_swap)
   1909			perf_event__attr_swap(buf);
   1910
   1911		memcpy(&evsel->core.attr, buf, msz);
   1912
   1913		if (!perf_attr_check(&evsel->core.attr))
   1914			goto error;
   1915
   1916		if (do_read_u32(ff, &nr))
   1917			goto error;
   1918
   1919		if (ff->ph->needs_swap)
   1920			evsel->needs_swap = true;
   1921
   1922		evsel->name = do_read_string(ff);
   1923		if (!evsel->name)
   1924			goto error;
   1925
   1926		if (!nr)
   1927			continue;
   1928
   1929		id = calloc(nr, sizeof(*id));
   1930		if (!id)
   1931			goto error;
   1932		evsel->core.ids = nr;
   1933		evsel->core.id = id;
   1934
   1935		for (j = 0 ; j < nr; j++) {
   1936			if (do_read_u64(ff, id))
   1937				goto error;
   1938			id++;
   1939		}
   1940	}
   1941out:
   1942	free(buf);
   1943	return events;
   1944error:
   1945	free_event_desc(events);
   1946	events = NULL;
   1947	goto out;
   1948}
   1949
   1950static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
   1951				void *priv __maybe_unused)
   1952{
   1953	return fprintf(fp, ", %s = %s", name, val);
   1954}
   1955
   1956static void print_event_desc(struct feat_fd *ff, FILE *fp)
   1957{
   1958	struct evsel *evsel, *events;
   1959	u32 j;
   1960	u64 *id;
   1961
   1962	if (ff->events)
   1963		events = ff->events;
   1964	else
   1965		events = read_event_desc(ff);
   1966
   1967	if (!events) {
   1968		fprintf(fp, "# event desc: not available or unable to read\n");
   1969		return;
   1970	}
   1971
   1972	for (evsel = events; evsel->core.attr.size; evsel++) {
   1973		fprintf(fp, "# event : name = %s, ", evsel->name);
   1974
   1975		if (evsel->core.ids) {
   1976			fprintf(fp, ", id = {");
   1977			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
   1978				if (j)
   1979					fputc(',', fp);
   1980				fprintf(fp, " %"PRIu64, *id);
   1981			}
   1982			fprintf(fp, " }");
   1983		}
   1984
   1985		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
   1986
   1987		fputc('\n', fp);
   1988	}
   1989
   1990	free_event_desc(events);
   1991	ff->events = NULL;
   1992}
   1993
   1994static void print_total_mem(struct feat_fd *ff, FILE *fp)
   1995{
   1996	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
   1997}
   1998
   1999static void print_numa_topology(struct feat_fd *ff, FILE *fp)
   2000{
   2001	int i;
   2002	struct numa_node *n;
   2003
   2004	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
   2005		n = &ff->ph->env.numa_nodes[i];
   2006
   2007		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
   2008			    " free = %"PRIu64" kB\n",
   2009			n->node, n->mem_total, n->mem_free);
   2010
   2011		fprintf(fp, "# node%u cpu list : ", n->node);
   2012		cpu_map__fprintf(n->map, fp);
   2013	}
   2014}
   2015
   2016static void print_cpuid(struct feat_fd *ff, FILE *fp)
   2017{
   2018	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
   2019}
   2020
   2021static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
   2022{
   2023	fprintf(fp, "# contains samples with branch stack\n");
   2024}
   2025
   2026static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
   2027{
   2028	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
   2029}
   2030
   2031static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
   2032{
   2033	fprintf(fp, "# contains stat data\n");
   2034}
   2035
   2036static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
   2037{
   2038	int i;
   2039
   2040	fprintf(fp, "# CPU cache info:\n");
   2041	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
   2042		fprintf(fp, "#  ");
   2043		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
   2044	}
   2045}
   2046
   2047static void print_compressed(struct feat_fd *ff, FILE *fp)
   2048{
   2049	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
   2050		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
   2051		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
   2052}
   2053
   2054static void print_per_cpu_pmu_caps(FILE *fp, int nr_caps, char *cpu_pmu_caps,
   2055				   char *pmu_name)
   2056{
   2057	const char *delimiter;
   2058	char *str, buf[128];
   2059
   2060	if (!nr_caps) {
   2061		if (!pmu_name)
   2062			fprintf(fp, "# cpu pmu capabilities: not available\n");
   2063		else
   2064			fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
   2065		return;
   2066	}
   2067
   2068	if (!pmu_name)
   2069		scnprintf(buf, sizeof(buf), "# cpu pmu capabilities: ");
   2070	else
   2071		scnprintf(buf, sizeof(buf), "# %s pmu capabilities: ", pmu_name);
   2072
   2073	delimiter = buf;
   2074
   2075	str = cpu_pmu_caps;
   2076	while (nr_caps--) {
   2077		fprintf(fp, "%s%s", delimiter, str);
   2078		delimiter = ", ";
   2079		str += strlen(str) + 1;
   2080	}
   2081
   2082	fprintf(fp, "\n");
   2083}
   2084
   2085static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
   2086{
   2087	print_per_cpu_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
   2088			       ff->ph->env.cpu_pmu_caps, NULL);
   2089}
   2090
   2091static void print_hybrid_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
   2092{
   2093	struct hybrid_cpc_node *n;
   2094
   2095	for (int i = 0; i < ff->ph->env.nr_hybrid_cpc_nodes; i++) {
   2096		n = &ff->ph->env.hybrid_cpc_nodes[i];
   2097		print_per_cpu_pmu_caps(fp, n->nr_cpu_pmu_caps,
   2098				       n->cpu_pmu_caps,
   2099				       n->pmu_name);
   2100	}
   2101}
   2102
   2103static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
   2104{
   2105	const char *delimiter = "# pmu mappings: ";
   2106	char *str, *tmp;
   2107	u32 pmu_num;
   2108	u32 type;
   2109
   2110	pmu_num = ff->ph->env.nr_pmu_mappings;
   2111	if (!pmu_num) {
   2112		fprintf(fp, "# pmu mappings: not available\n");
   2113		return;
   2114	}
   2115
   2116	str = ff->ph->env.pmu_mappings;
   2117
   2118	while (pmu_num) {
   2119		type = strtoul(str, &tmp, 0);
   2120		if (*tmp != ':')
   2121			goto error;
   2122
   2123		str = tmp + 1;
   2124		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
   2125
   2126		delimiter = ", ";
   2127		str += strlen(str) + 1;
   2128		pmu_num--;
   2129	}
   2130
   2131	fprintf(fp, "\n");
   2132
   2133	if (!pmu_num)
   2134		return;
   2135error:
   2136	fprintf(fp, "# pmu mappings: unable to read\n");
   2137}
   2138
   2139static void print_group_desc(struct feat_fd *ff, FILE *fp)
   2140{
   2141	struct perf_session *session;
   2142	struct evsel *evsel;
   2143	u32 nr = 0;
   2144
   2145	session = container_of(ff->ph, struct perf_session, header);
   2146
   2147	evlist__for_each_entry(session->evlist, evsel) {
   2148		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
   2149			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
   2150
   2151			nr = evsel->core.nr_members - 1;
   2152		} else if (nr) {
   2153			fprintf(fp, ",%s", evsel__name(evsel));
   2154
   2155			if (--nr == 0)
   2156				fprintf(fp, "}\n");
   2157		}
   2158	}
   2159}
   2160
   2161static void print_sample_time(struct feat_fd *ff, FILE *fp)
   2162{
   2163	struct perf_session *session;
   2164	char time_buf[32];
   2165	double d;
   2166
   2167	session = container_of(ff->ph, struct perf_session, header);
   2168
   2169	timestamp__scnprintf_usec(session->evlist->first_sample_time,
   2170				  time_buf, sizeof(time_buf));
   2171	fprintf(fp, "# time of first sample : %s\n", time_buf);
   2172
   2173	timestamp__scnprintf_usec(session->evlist->last_sample_time,
   2174				  time_buf, sizeof(time_buf));
   2175	fprintf(fp, "# time of last sample : %s\n", time_buf);
   2176
   2177	d = (double)(session->evlist->last_sample_time -
   2178		session->evlist->first_sample_time) / NSEC_PER_MSEC;
   2179
   2180	fprintf(fp, "# sample duration : %10.3f ms\n", d);
   2181}
   2182
   2183static void memory_node__fprintf(struct memory_node *n,
   2184				 unsigned long long bsize, FILE *fp)
   2185{
   2186	char buf_map[100], buf_size[50];
   2187	unsigned long long size;
   2188
   2189	size = bsize * bitmap_weight(n->set, n->size);
   2190	unit_number__scnprintf(buf_size, 50, size);
   2191
   2192	bitmap_scnprintf(n->set, n->size, buf_map, 100);
   2193	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
   2194}
   2195
   2196static void print_mem_topology(struct feat_fd *ff, FILE *fp)
   2197{
   2198	struct memory_node *nodes;
   2199	int i, nr;
   2200
   2201	nodes = ff->ph->env.memory_nodes;
   2202	nr    = ff->ph->env.nr_memory_nodes;
   2203
   2204	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
   2205		nr, ff->ph->env.memory_bsize);
   2206
   2207	for (i = 0; i < nr; i++) {
   2208		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
   2209	}
   2210}
   2211
   2212static int __event_process_build_id(struct perf_record_header_build_id *bev,
   2213				    char *filename,
   2214				    struct perf_session *session)
   2215{
   2216	int err = -1;
   2217	struct machine *machine;
   2218	u16 cpumode;
   2219	struct dso *dso;
   2220	enum dso_space_type dso_space;
   2221
   2222	machine = perf_session__findnew_machine(session, bev->pid);
   2223	if (!machine)
   2224		goto out;
   2225
   2226	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
   2227
   2228	switch (cpumode) {
   2229	case PERF_RECORD_MISC_KERNEL:
   2230		dso_space = DSO_SPACE__KERNEL;
   2231		break;
   2232	case PERF_RECORD_MISC_GUEST_KERNEL:
   2233		dso_space = DSO_SPACE__KERNEL_GUEST;
   2234		break;
   2235	case PERF_RECORD_MISC_USER:
   2236	case PERF_RECORD_MISC_GUEST_USER:
   2237		dso_space = DSO_SPACE__USER;
   2238		break;
   2239	default:
   2240		goto out;
   2241	}
   2242
   2243	dso = machine__findnew_dso(machine, filename);
   2244	if (dso != NULL) {
   2245		char sbuild_id[SBUILD_ID_SIZE];
   2246		struct build_id bid;
   2247		size_t size = BUILD_ID_SIZE;
   2248
   2249		if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
   2250			size = bev->size;
   2251
   2252		build_id__init(&bid, bev->data, size);
   2253		dso__set_build_id(dso, &bid);
   2254		dso->header_build_id = 1;
   2255
   2256		if (dso_space != DSO_SPACE__USER) {
   2257			struct kmod_path m = { .name = NULL, };
   2258
   2259			if (!kmod_path__parse_name(&m, filename) && m.kmod)
   2260				dso__set_module_info(dso, &m, machine);
   2261
   2262			dso->kernel = dso_space;
   2263			free(m.name);
   2264		}
   2265
   2266		build_id__sprintf(&dso->bid, sbuild_id);
   2267		pr_debug("build id event received for %s: %s [%zu]\n",
   2268			 dso->long_name, sbuild_id, size);
   2269		dso__put(dso);
   2270	}
   2271
   2272	err = 0;
   2273out:
   2274	return err;
   2275}
   2276
   2277static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
   2278						 int input, u64 offset, u64 size)
   2279{
   2280	struct perf_session *session = container_of(header, struct perf_session, header);
   2281	struct {
   2282		struct perf_event_header   header;
   2283		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
   2284		char			   filename[0];
   2285	} old_bev;
   2286	struct perf_record_header_build_id bev;
   2287	char filename[PATH_MAX];
   2288	u64 limit = offset + size;
   2289
   2290	while (offset < limit) {
   2291		ssize_t len;
   2292
   2293		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
   2294			return -1;
   2295
   2296		if (header->needs_swap)
   2297			perf_event_header__bswap(&old_bev.header);
   2298
   2299		len = old_bev.header.size - sizeof(old_bev);
   2300		if (readn(input, filename, len) != len)
   2301			return -1;
   2302
   2303		bev.header = old_bev.header;
   2304
   2305		/*
   2306		 * As the pid is the missing value, we need to fill
   2307		 * it properly. The header.misc value give us nice hint.
   2308		 */
   2309		bev.pid	= HOST_KERNEL_ID;
   2310		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
   2311		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
   2312			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
   2313
   2314		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
   2315		__event_process_build_id(&bev, filename, session);
   2316
   2317		offset += bev.header.size;
   2318	}
   2319
   2320	return 0;
   2321}
   2322
   2323static int perf_header__read_build_ids(struct perf_header *header,
   2324				       int input, u64 offset, u64 size)
   2325{
   2326	struct perf_session *session = container_of(header, struct perf_session, header);
   2327	struct perf_record_header_build_id bev;
   2328	char filename[PATH_MAX];
   2329	u64 limit = offset + size, orig_offset = offset;
   2330	int err = -1;
   2331
   2332	while (offset < limit) {
   2333		ssize_t len;
   2334
   2335		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
   2336			goto out;
   2337
   2338		if (header->needs_swap)
   2339			perf_event_header__bswap(&bev.header);
   2340
   2341		len = bev.header.size - sizeof(bev);
   2342		if (readn(input, filename, len) != len)
   2343			goto out;
   2344		/*
   2345		 * The a1645ce1 changeset:
   2346		 *
   2347		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
   2348		 *
   2349		 * Added a field to struct perf_record_header_build_id that broke the file
   2350		 * format.
   2351		 *
   2352		 * Since the kernel build-id is the first entry, process the
   2353		 * table using the old format if the well known
   2354		 * '[kernel.kallsyms]' string for the kernel build-id has the
   2355		 * first 4 characters chopped off (where the pid_t sits).
   2356		 */
   2357		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
   2358			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
   2359				return -1;
   2360			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
   2361		}
   2362
   2363		__event_process_build_id(&bev, filename, session);
   2364
   2365		offset += bev.header.size;
   2366	}
   2367	err = 0;
   2368out:
   2369	return err;
   2370}
   2371
   2372/* Macro for features that simply need to read and store a string. */
   2373#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
   2374static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
   2375{\
   2376	free(ff->ph->env.__feat_env);		     \
   2377	ff->ph->env.__feat_env = do_read_string(ff); \
   2378	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
   2379}
   2380
   2381FEAT_PROCESS_STR_FUN(hostname, hostname);
   2382FEAT_PROCESS_STR_FUN(osrelease, os_release);
   2383FEAT_PROCESS_STR_FUN(version, version);
   2384FEAT_PROCESS_STR_FUN(arch, arch);
   2385FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
   2386FEAT_PROCESS_STR_FUN(cpuid, cpuid);
   2387
   2388static int process_tracing_data(struct feat_fd *ff, void *data)
   2389{
   2390	ssize_t ret = trace_report(ff->fd, data, false);
   2391
   2392	return ret < 0 ? -1 : 0;
   2393}
   2394
   2395static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
   2396{
   2397	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
   2398		pr_debug("Failed to read buildids, continuing...\n");
   2399	return 0;
   2400}
   2401
   2402static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
   2403{
   2404	int ret;
   2405	u32 nr_cpus_avail, nr_cpus_online;
   2406
   2407	ret = do_read_u32(ff, &nr_cpus_avail);
   2408	if (ret)
   2409		return ret;
   2410
   2411	ret = do_read_u32(ff, &nr_cpus_online);
   2412	if (ret)
   2413		return ret;
   2414	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
   2415	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
   2416	return 0;
   2417}
   2418
   2419static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
   2420{
   2421	u64 total_mem;
   2422	int ret;
   2423
   2424	ret = do_read_u64(ff, &total_mem);
   2425	if (ret)
   2426		return -1;
   2427	ff->ph->env.total_mem = (unsigned long long)total_mem;
   2428	return 0;
   2429}
   2430
   2431static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
   2432{
   2433	struct evsel *evsel;
   2434
   2435	evlist__for_each_entry(evlist, evsel) {
   2436		if (evsel->core.idx == idx)
   2437			return evsel;
   2438	}
   2439
   2440	return NULL;
   2441}
   2442
   2443static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
   2444{
   2445	struct evsel *evsel;
   2446
   2447	if (!event->name)
   2448		return;
   2449
   2450	evsel = evlist__find_by_index(evlist, event->core.idx);
   2451	if (!evsel)
   2452		return;
   2453
   2454	if (evsel->name)
   2455		return;
   2456
   2457	evsel->name = strdup(event->name);
   2458}
   2459
   2460static int
   2461process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
   2462{
   2463	struct perf_session *session;
   2464	struct evsel *evsel, *events = read_event_desc(ff);
   2465
   2466	if (!events)
   2467		return 0;
   2468
   2469	session = container_of(ff->ph, struct perf_session, header);
   2470
   2471	if (session->data->is_pipe) {
   2472		/* Save events for reading later by print_event_desc,
   2473		 * since they can't be read again in pipe mode. */
   2474		ff->events = events;
   2475	}
   2476
   2477	for (evsel = events; evsel->core.attr.size; evsel++)
   2478		evlist__set_event_name(session->evlist, evsel);
   2479
   2480	if (!session->data->is_pipe)
   2481		free_event_desc(events);
   2482
   2483	return 0;
   2484}
   2485
   2486static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
   2487{
   2488	char *str, *cmdline = NULL, **argv = NULL;
   2489	u32 nr, i, len = 0;
   2490
   2491	if (do_read_u32(ff, &nr))
   2492		return -1;
   2493
   2494	ff->ph->env.nr_cmdline = nr;
   2495
   2496	cmdline = zalloc(ff->size + nr + 1);
   2497	if (!cmdline)
   2498		return -1;
   2499
   2500	argv = zalloc(sizeof(char *) * (nr + 1));
   2501	if (!argv)
   2502		goto error;
   2503
   2504	for (i = 0; i < nr; i++) {
   2505		str = do_read_string(ff);
   2506		if (!str)
   2507			goto error;
   2508
   2509		argv[i] = cmdline + len;
   2510		memcpy(argv[i], str, strlen(str) + 1);
   2511		len += strlen(str) + 1;
   2512		free(str);
   2513	}
   2514	ff->ph->env.cmdline = cmdline;
   2515	ff->ph->env.cmdline_argv = (const char **) argv;
   2516	return 0;
   2517
   2518error:
   2519	free(argv);
   2520	free(cmdline);
   2521	return -1;
   2522}
   2523
   2524static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
   2525{
   2526	u32 nr, i;
   2527	char *str;
   2528	struct strbuf sb;
   2529	int cpu_nr = ff->ph->env.nr_cpus_avail;
   2530	u64 size = 0;
   2531	struct perf_header *ph = ff->ph;
   2532	bool do_core_id_test = true;
   2533
   2534	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
   2535	if (!ph->env.cpu)
   2536		return -1;
   2537
   2538	if (do_read_u32(ff, &nr))
   2539		goto free_cpu;
   2540
   2541	ph->env.nr_sibling_cores = nr;
   2542	size += sizeof(u32);
   2543	if (strbuf_init(&sb, 128) < 0)
   2544		goto free_cpu;
   2545
   2546	for (i = 0; i < nr; i++) {
   2547		str = do_read_string(ff);
   2548		if (!str)
   2549			goto error;
   2550
   2551		/* include a NULL character at the end */
   2552		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
   2553			goto error;
   2554		size += string_size(str);
   2555		free(str);
   2556	}
   2557	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
   2558
   2559	if (do_read_u32(ff, &nr))
   2560		return -1;
   2561
   2562	ph->env.nr_sibling_threads = nr;
   2563	size += sizeof(u32);
   2564
   2565	for (i = 0; i < nr; i++) {
   2566		str = do_read_string(ff);
   2567		if (!str)
   2568			goto error;
   2569
   2570		/* include a NULL character at the end */
   2571		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
   2572			goto error;
   2573		size += string_size(str);
   2574		free(str);
   2575	}
   2576	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
   2577
   2578	/*
   2579	 * The header may be from old perf,
   2580	 * which doesn't include core id and socket id information.
   2581	 */
   2582	if (ff->size <= size) {
   2583		zfree(&ph->env.cpu);
   2584		return 0;
   2585	}
   2586
   2587	/* On s390 the socket_id number is not related to the numbers of cpus.
   2588	 * The socket_id number might be higher than the numbers of cpus.
   2589	 * This depends on the configuration.
   2590	 * AArch64 is the same.
   2591	 */
   2592	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
   2593			  || !strncmp(ph->env.arch, "aarch64", 7)))
   2594		do_core_id_test = false;
   2595
   2596	for (i = 0; i < (u32)cpu_nr; i++) {
   2597		if (do_read_u32(ff, &nr))
   2598			goto free_cpu;
   2599
   2600		ph->env.cpu[i].core_id = nr;
   2601		size += sizeof(u32);
   2602
   2603		if (do_read_u32(ff, &nr))
   2604			goto free_cpu;
   2605
   2606		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
   2607			pr_debug("socket_id number is too big."
   2608				 "You may need to upgrade the perf tool.\n");
   2609			goto free_cpu;
   2610		}
   2611
   2612		ph->env.cpu[i].socket_id = nr;
   2613		size += sizeof(u32);
   2614	}
   2615
   2616	/*
   2617	 * The header may be from old perf,
   2618	 * which doesn't include die information.
   2619	 */
   2620	if (ff->size <= size)
   2621		return 0;
   2622
   2623	if (do_read_u32(ff, &nr))
   2624		return -1;
   2625
   2626	ph->env.nr_sibling_dies = nr;
   2627	size += sizeof(u32);
   2628
   2629	for (i = 0; i < nr; i++) {
   2630		str = do_read_string(ff);
   2631		if (!str)
   2632			goto error;
   2633
   2634		/* include a NULL character at the end */
   2635		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
   2636			goto error;
   2637		size += string_size(str);
   2638		free(str);
   2639	}
   2640	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
   2641
   2642	for (i = 0; i < (u32)cpu_nr; i++) {
   2643		if (do_read_u32(ff, &nr))
   2644			goto free_cpu;
   2645
   2646		ph->env.cpu[i].die_id = nr;
   2647	}
   2648
   2649	return 0;
   2650
   2651error:
   2652	strbuf_release(&sb);
   2653free_cpu:
   2654	zfree(&ph->env.cpu);
   2655	return -1;
   2656}
   2657
   2658static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
   2659{
   2660	struct numa_node *nodes, *n;
   2661	u32 nr, i;
   2662	char *str;
   2663
   2664	/* nr nodes */
   2665	if (do_read_u32(ff, &nr))
   2666		return -1;
   2667
   2668	nodes = zalloc(sizeof(*nodes) * nr);
   2669	if (!nodes)
   2670		return -ENOMEM;
   2671
   2672	for (i = 0; i < nr; i++) {
   2673		n = &nodes[i];
   2674
   2675		/* node number */
   2676		if (do_read_u32(ff, &n->node))
   2677			goto error;
   2678
   2679		if (do_read_u64(ff, &n->mem_total))
   2680			goto error;
   2681
   2682		if (do_read_u64(ff, &n->mem_free))
   2683			goto error;
   2684
   2685		str = do_read_string(ff);
   2686		if (!str)
   2687			goto error;
   2688
   2689		n->map = perf_cpu_map__new(str);
   2690		if (!n->map)
   2691			goto error;
   2692
   2693		free(str);
   2694	}
   2695	ff->ph->env.nr_numa_nodes = nr;
   2696	ff->ph->env.numa_nodes = nodes;
   2697	return 0;
   2698
   2699error:
   2700	free(nodes);
   2701	return -1;
   2702}
   2703
   2704static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
   2705{
   2706	char *name;
   2707	u32 pmu_num;
   2708	u32 type;
   2709	struct strbuf sb;
   2710
   2711	if (do_read_u32(ff, &pmu_num))
   2712		return -1;
   2713
   2714	if (!pmu_num) {
   2715		pr_debug("pmu mappings not available\n");
   2716		return 0;
   2717	}
   2718
   2719	ff->ph->env.nr_pmu_mappings = pmu_num;
   2720	if (strbuf_init(&sb, 128) < 0)
   2721		return -1;
   2722
   2723	while (pmu_num) {
   2724		if (do_read_u32(ff, &type))
   2725			goto error;
   2726
   2727		name = do_read_string(ff);
   2728		if (!name)
   2729			goto error;
   2730
   2731		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
   2732			goto error;
   2733		/* include a NULL character at the end */
   2734		if (strbuf_add(&sb, "", 1) < 0)
   2735			goto error;
   2736
   2737		if (!strcmp(name, "msr"))
   2738			ff->ph->env.msr_pmu_type = type;
   2739
   2740		free(name);
   2741		pmu_num--;
   2742	}
   2743	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
   2744	return 0;
   2745
   2746error:
   2747	strbuf_release(&sb);
   2748	return -1;
   2749}
   2750
   2751static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
   2752{
   2753	size_t ret = -1;
   2754	u32 i, nr, nr_groups;
   2755	struct perf_session *session;
   2756	struct evsel *evsel, *leader = NULL;
   2757	struct group_desc {
   2758		char *name;
   2759		u32 leader_idx;
   2760		u32 nr_members;
   2761	} *desc;
   2762
   2763	if (do_read_u32(ff, &nr_groups))
   2764		return -1;
   2765
   2766	ff->ph->env.nr_groups = nr_groups;
   2767	if (!nr_groups) {
   2768		pr_debug("group desc not available\n");
   2769		return 0;
   2770	}
   2771
   2772	desc = calloc(nr_groups, sizeof(*desc));
   2773	if (!desc)
   2774		return -1;
   2775
   2776	for (i = 0; i < nr_groups; i++) {
   2777		desc[i].name = do_read_string(ff);
   2778		if (!desc[i].name)
   2779			goto out_free;
   2780
   2781		if (do_read_u32(ff, &desc[i].leader_idx))
   2782			goto out_free;
   2783
   2784		if (do_read_u32(ff, &desc[i].nr_members))
   2785			goto out_free;
   2786	}
   2787
   2788	/*
   2789	 * Rebuild group relationship based on the group_desc
   2790	 */
   2791	session = container_of(ff->ph, struct perf_session, header);
   2792	session->evlist->core.nr_groups = nr_groups;
   2793
   2794	i = nr = 0;
   2795	evlist__for_each_entry(session->evlist, evsel) {
   2796		if (evsel->core.idx == (int) desc[i].leader_idx) {
   2797			evsel__set_leader(evsel, evsel);
   2798			/* {anon_group} is a dummy name */
   2799			if (strcmp(desc[i].name, "{anon_group}")) {
   2800				evsel->group_name = desc[i].name;
   2801				desc[i].name = NULL;
   2802			}
   2803			evsel->core.nr_members = desc[i].nr_members;
   2804
   2805			if (i >= nr_groups || nr > 0) {
   2806				pr_debug("invalid group desc\n");
   2807				goto out_free;
   2808			}
   2809
   2810			leader = evsel;
   2811			nr = evsel->core.nr_members - 1;
   2812			i++;
   2813		} else if (nr) {
   2814			/* This is a group member */
   2815			evsel__set_leader(evsel, leader);
   2816
   2817			nr--;
   2818		}
   2819	}
   2820
   2821	if (i != nr_groups || nr != 0) {
   2822		pr_debug("invalid group desc\n");
   2823		goto out_free;
   2824	}
   2825
   2826	ret = 0;
   2827out_free:
   2828	for (i = 0; i < nr_groups; i++)
   2829		zfree(&desc[i].name);
   2830	free(desc);
   2831
   2832	return ret;
   2833}
   2834
   2835static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
   2836{
   2837	struct perf_session *session;
   2838	int err;
   2839
   2840	session = container_of(ff->ph, struct perf_session, header);
   2841
   2842	err = auxtrace_index__process(ff->fd, ff->size, session,
   2843				      ff->ph->needs_swap);
   2844	if (err < 0)
   2845		pr_err("Failed to process auxtrace index\n");
   2846	return err;
   2847}
   2848
   2849static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
   2850{
   2851	struct cpu_cache_level *caches;
   2852	u32 cnt, i, version;
   2853
   2854	if (do_read_u32(ff, &version))
   2855		return -1;
   2856
   2857	if (version != 1)
   2858		return -1;
   2859
   2860	if (do_read_u32(ff, &cnt))
   2861		return -1;
   2862
   2863	caches = zalloc(sizeof(*caches) * cnt);
   2864	if (!caches)
   2865		return -1;
   2866
   2867	for (i = 0; i < cnt; i++) {
   2868		struct cpu_cache_level c;
   2869
   2870		#define _R(v)						\
   2871			if (do_read_u32(ff, &c.v))\
   2872				goto out_free_caches;			\
   2873
   2874		_R(level)
   2875		_R(line_size)
   2876		_R(sets)
   2877		_R(ways)
   2878		#undef _R
   2879
   2880		#define _R(v)					\
   2881			c.v = do_read_string(ff);		\
   2882			if (!c.v)				\
   2883				goto out_free_caches;
   2884
   2885		_R(type)
   2886		_R(size)
   2887		_R(map)
   2888		#undef _R
   2889
   2890		caches[i] = c;
   2891	}
   2892
   2893	ff->ph->env.caches = caches;
   2894	ff->ph->env.caches_cnt = cnt;
   2895	return 0;
   2896out_free_caches:
   2897	free(caches);
   2898	return -1;
   2899}
   2900
   2901static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
   2902{
   2903	struct perf_session *session;
   2904	u64 first_sample_time, last_sample_time;
   2905	int ret;
   2906
   2907	session = container_of(ff->ph, struct perf_session, header);
   2908
   2909	ret = do_read_u64(ff, &first_sample_time);
   2910	if (ret)
   2911		return -1;
   2912
   2913	ret = do_read_u64(ff, &last_sample_time);
   2914	if (ret)
   2915		return -1;
   2916
   2917	session->evlist->first_sample_time = first_sample_time;
   2918	session->evlist->last_sample_time = last_sample_time;
   2919	return 0;
   2920}
   2921
   2922static int process_mem_topology(struct feat_fd *ff,
   2923				void *data __maybe_unused)
   2924{
   2925	struct memory_node *nodes;
   2926	u64 version, i, nr, bsize;
   2927	int ret = -1;
   2928
   2929	if (do_read_u64(ff, &version))
   2930		return -1;
   2931
   2932	if (version != 1)
   2933		return -1;
   2934
   2935	if (do_read_u64(ff, &bsize))
   2936		return -1;
   2937
   2938	if (do_read_u64(ff, &nr))
   2939		return -1;
   2940
   2941	nodes = zalloc(sizeof(*nodes) * nr);
   2942	if (!nodes)
   2943		return -1;
   2944
   2945	for (i = 0; i < nr; i++) {
   2946		struct memory_node n;
   2947
   2948		#define _R(v)				\
   2949			if (do_read_u64(ff, &n.v))	\
   2950				goto out;		\
   2951
   2952		_R(node)
   2953		_R(size)
   2954
   2955		#undef _R
   2956
   2957		if (do_read_bitmap(ff, &n.set, &n.size))
   2958			goto out;
   2959
   2960		nodes[i] = n;
   2961	}
   2962
   2963	ff->ph->env.memory_bsize    = bsize;
   2964	ff->ph->env.memory_nodes    = nodes;
   2965	ff->ph->env.nr_memory_nodes = nr;
   2966	ret = 0;
   2967
   2968out:
   2969	if (ret)
   2970		free(nodes);
   2971	return ret;
   2972}
   2973
   2974static int process_clockid(struct feat_fd *ff,
   2975			   void *data __maybe_unused)
   2976{
   2977	if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
   2978		return -1;
   2979
   2980	return 0;
   2981}
   2982
   2983static int process_clock_data(struct feat_fd *ff,
   2984			      void *_data __maybe_unused)
   2985{
   2986	u32 data32;
   2987	u64 data64;
   2988
   2989	/* version */
   2990	if (do_read_u32(ff, &data32))
   2991		return -1;
   2992
   2993	if (data32 != 1)
   2994		return -1;
   2995
   2996	/* clockid */
   2997	if (do_read_u32(ff, &data32))
   2998		return -1;
   2999
   3000	ff->ph->env.clock.clockid = data32;
   3001
   3002	/* TOD ref time */
   3003	if (do_read_u64(ff, &data64))
   3004		return -1;
   3005
   3006	ff->ph->env.clock.tod_ns = data64;
   3007
   3008	/* clockid ref time */
   3009	if (do_read_u64(ff, &data64))
   3010		return -1;
   3011
   3012	ff->ph->env.clock.clockid_ns = data64;
   3013	ff->ph->env.clock.enabled = true;
   3014	return 0;
   3015}
   3016
   3017static int process_hybrid_topology(struct feat_fd *ff,
   3018				   void *data __maybe_unused)
   3019{
   3020	struct hybrid_node *nodes, *n;
   3021	u32 nr, i;
   3022
   3023	/* nr nodes */
   3024	if (do_read_u32(ff, &nr))
   3025		return -1;
   3026
   3027	nodes = zalloc(sizeof(*nodes) * nr);
   3028	if (!nodes)
   3029		return -ENOMEM;
   3030
   3031	for (i = 0; i < nr; i++) {
   3032		n = &nodes[i];
   3033
   3034		n->pmu_name = do_read_string(ff);
   3035		if (!n->pmu_name)
   3036			goto error;
   3037
   3038		n->cpus = do_read_string(ff);
   3039		if (!n->cpus)
   3040			goto error;
   3041	}
   3042
   3043	ff->ph->env.nr_hybrid_nodes = nr;
   3044	ff->ph->env.hybrid_nodes = nodes;
   3045	return 0;
   3046
   3047error:
   3048	for (i = 0; i < nr; i++) {
   3049		free(nodes[i].pmu_name);
   3050		free(nodes[i].cpus);
   3051	}
   3052
   3053	free(nodes);
   3054	return -1;
   3055}
   3056
   3057static int process_dir_format(struct feat_fd *ff,
   3058			      void *_data __maybe_unused)
   3059{
   3060	struct perf_session *session;
   3061	struct perf_data *data;
   3062
   3063	session = container_of(ff->ph, struct perf_session, header);
   3064	data = session->data;
   3065
   3066	if (WARN_ON(!perf_data__is_dir(data)))
   3067		return -1;
   3068
   3069	return do_read_u64(ff, &data->dir.version);
   3070}
   3071
   3072#ifdef HAVE_LIBBPF_SUPPORT
   3073static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
   3074{
   3075	struct bpf_prog_info_node *info_node;
   3076	struct perf_env *env = &ff->ph->env;
   3077	struct perf_bpil *info_linear;
   3078	u32 count, i;
   3079	int err = -1;
   3080
   3081	if (ff->ph->needs_swap) {
   3082		pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
   3083		return 0;
   3084	}
   3085
   3086	if (do_read_u32(ff, &count))
   3087		return -1;
   3088
   3089	down_write(&env->bpf_progs.lock);
   3090
   3091	for (i = 0; i < count; ++i) {
   3092		u32 info_len, data_len;
   3093
   3094		info_linear = NULL;
   3095		info_node = NULL;
   3096		if (do_read_u32(ff, &info_len))
   3097			goto out;
   3098		if (do_read_u32(ff, &data_len))
   3099			goto out;
   3100
   3101		if (info_len > sizeof(struct bpf_prog_info)) {
   3102			pr_warning("detected invalid bpf_prog_info\n");
   3103			goto out;
   3104		}
   3105
   3106		info_linear = malloc(sizeof(struct perf_bpil) +
   3107				     data_len);
   3108		if (!info_linear)
   3109			goto out;
   3110		info_linear->info_len = sizeof(struct bpf_prog_info);
   3111		info_linear->data_len = data_len;
   3112		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
   3113			goto out;
   3114		if (__do_read(ff, &info_linear->info, info_len))
   3115			goto out;
   3116		if (info_len < sizeof(struct bpf_prog_info))
   3117			memset(((void *)(&info_linear->info)) + info_len, 0,
   3118			       sizeof(struct bpf_prog_info) - info_len);
   3119
   3120		if (__do_read(ff, info_linear->data, data_len))
   3121			goto out;
   3122
   3123		info_node = malloc(sizeof(struct bpf_prog_info_node));
   3124		if (!info_node)
   3125			goto out;
   3126
   3127		/* after reading from file, translate offset to address */
   3128		bpil_offs_to_addr(info_linear);
   3129		info_node->info_linear = info_linear;
   3130		perf_env__insert_bpf_prog_info(env, info_node);
   3131	}
   3132
   3133	up_write(&env->bpf_progs.lock);
   3134	return 0;
   3135out:
   3136	free(info_linear);
   3137	free(info_node);
   3138	up_write(&env->bpf_progs.lock);
   3139	return err;
   3140}
   3141
   3142static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
   3143{
   3144	struct perf_env *env = &ff->ph->env;
   3145	struct btf_node *node = NULL;
   3146	u32 count, i;
   3147	int err = -1;
   3148
   3149	if (ff->ph->needs_swap) {
   3150		pr_warning("interpreting btf from systems with endianness is not yet supported\n");
   3151		return 0;
   3152	}
   3153
   3154	if (do_read_u32(ff, &count))
   3155		return -1;
   3156
   3157	down_write(&env->bpf_progs.lock);
   3158
   3159	for (i = 0; i < count; ++i) {
   3160		u32 id, data_size;
   3161
   3162		if (do_read_u32(ff, &id))
   3163			goto out;
   3164		if (do_read_u32(ff, &data_size))
   3165			goto out;
   3166
   3167		node = malloc(sizeof(struct btf_node) + data_size);
   3168		if (!node)
   3169			goto out;
   3170
   3171		node->id = id;
   3172		node->data_size = data_size;
   3173
   3174		if (__do_read(ff, node->data, data_size))
   3175			goto out;
   3176
   3177		perf_env__insert_btf(env, node);
   3178		node = NULL;
   3179	}
   3180
   3181	err = 0;
   3182out:
   3183	up_write(&env->bpf_progs.lock);
   3184	free(node);
   3185	return err;
   3186}
   3187#endif // HAVE_LIBBPF_SUPPORT
   3188
   3189static int process_compressed(struct feat_fd *ff,
   3190			      void *data __maybe_unused)
   3191{
   3192	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
   3193		return -1;
   3194
   3195	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
   3196		return -1;
   3197
   3198	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
   3199		return -1;
   3200
   3201	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
   3202		return -1;
   3203
   3204	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
   3205		return -1;
   3206
   3207	return 0;
   3208}
   3209
   3210static int process_per_cpu_pmu_caps(struct feat_fd *ff, int *nr_cpu_pmu_caps,
   3211				    char **cpu_pmu_caps,
   3212				    unsigned int *max_branches)
   3213{
   3214	char *name, *value;
   3215	struct strbuf sb;
   3216	u32 nr_caps;
   3217
   3218	if (do_read_u32(ff, &nr_caps))
   3219		return -1;
   3220
   3221	if (!nr_caps) {
   3222		pr_debug("cpu pmu capabilities not available\n");
   3223		return 0;
   3224	}
   3225
   3226	*nr_cpu_pmu_caps = nr_caps;
   3227
   3228	if (strbuf_init(&sb, 128) < 0)
   3229		return -1;
   3230
   3231	while (nr_caps--) {
   3232		name = do_read_string(ff);
   3233		if (!name)
   3234			goto error;
   3235
   3236		value = do_read_string(ff);
   3237		if (!value)
   3238			goto free_name;
   3239
   3240		if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
   3241			goto free_value;
   3242
   3243		/* include a NULL character at the end */
   3244		if (strbuf_add(&sb, "", 1) < 0)
   3245			goto free_value;
   3246
   3247		if (!strcmp(name, "branches"))
   3248			*max_branches = atoi(value);
   3249
   3250		free(value);
   3251		free(name);
   3252	}
   3253	*cpu_pmu_caps = strbuf_detach(&sb, NULL);
   3254	return 0;
   3255
   3256free_value:
   3257	free(value);
   3258free_name:
   3259	free(name);
   3260error:
   3261	strbuf_release(&sb);
   3262	return -1;
   3263}
   3264
   3265static int process_cpu_pmu_caps(struct feat_fd *ff,
   3266				void *data __maybe_unused)
   3267{
   3268	return process_per_cpu_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
   3269					&ff->ph->env.cpu_pmu_caps,
   3270					&ff->ph->env.max_branches);
   3271}
   3272
   3273static int process_hybrid_cpu_pmu_caps(struct feat_fd *ff,
   3274				       void *data __maybe_unused)
   3275{
   3276	struct hybrid_cpc_node *nodes;
   3277	u32 nr_pmu, i;
   3278	int ret;
   3279
   3280	if (do_read_u32(ff, &nr_pmu))
   3281		return -1;
   3282
   3283	if (!nr_pmu) {
   3284		pr_debug("hybrid cpu pmu capabilities not available\n");
   3285		return 0;
   3286	}
   3287
   3288	nodes = zalloc(sizeof(*nodes) * nr_pmu);
   3289	if (!nodes)
   3290		return -ENOMEM;
   3291
   3292	for (i = 0; i < nr_pmu; i++) {
   3293		struct hybrid_cpc_node *n = &nodes[i];
   3294
   3295		ret = process_per_cpu_pmu_caps(ff, &n->nr_cpu_pmu_caps,
   3296					       &n->cpu_pmu_caps,
   3297					       &n->max_branches);
   3298		if (ret)
   3299			goto err;
   3300
   3301		n->pmu_name = do_read_string(ff);
   3302		if (!n->pmu_name) {
   3303			ret = -1;
   3304			goto err;
   3305		}
   3306	}
   3307
   3308	ff->ph->env.nr_hybrid_cpc_nodes = nr_pmu;
   3309	ff->ph->env.hybrid_cpc_nodes = nodes;
   3310	return 0;
   3311
   3312err:
   3313	for (i = 0; i < nr_pmu; i++) {
   3314		free(nodes[i].cpu_pmu_caps);
   3315		free(nodes[i].pmu_name);
   3316	}
   3317
   3318	free(nodes);
   3319	return ret;
   3320}
   3321
   3322#define FEAT_OPR(n, func, __full_only) \
   3323	[HEADER_##n] = {					\
   3324		.name	    = __stringify(n),			\
   3325		.write	    = write_##func,			\
   3326		.print	    = print_##func,			\
   3327		.full_only  = __full_only,			\
   3328		.process    = process_##func,			\
   3329		.synthesize = true				\
   3330	}
   3331
   3332#define FEAT_OPN(n, func, __full_only) \
   3333	[HEADER_##n] = {					\
   3334		.name	    = __stringify(n),			\
   3335		.write	    = write_##func,			\
   3336		.print	    = print_##func,			\
   3337		.full_only  = __full_only,			\
   3338		.process    = process_##func			\
   3339	}
   3340
   3341/* feature_ops not implemented: */
   3342#define print_tracing_data	NULL
   3343#define print_build_id		NULL
   3344
   3345#define process_branch_stack	NULL
   3346#define process_stat		NULL
   3347
   3348// Only used in util/synthetic-events.c
   3349const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
   3350
   3351const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
   3352	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
   3353	FEAT_OPN(BUILD_ID,	build_id,	false),
   3354	FEAT_OPR(HOSTNAME,	hostname,	false),
   3355	FEAT_OPR(OSRELEASE,	osrelease,	false),
   3356	FEAT_OPR(VERSION,	version,	false),
   3357	FEAT_OPR(ARCH,		arch,		false),
   3358	FEAT_OPR(NRCPUS,	nrcpus,		false),
   3359	FEAT_OPR(CPUDESC,	cpudesc,	false),
   3360	FEAT_OPR(CPUID,		cpuid,		false),
   3361	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
   3362	FEAT_OPR(EVENT_DESC,	event_desc,	false),
   3363	FEAT_OPR(CMDLINE,	cmdline,	false),
   3364	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
   3365	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
   3366	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
   3367	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
   3368	FEAT_OPR(GROUP_DESC,	group_desc,	false),
   3369	FEAT_OPN(AUXTRACE,	auxtrace,	false),
   3370	FEAT_OPN(STAT,		stat,		false),
   3371	FEAT_OPN(CACHE,		cache,		true),
   3372	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
   3373	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
   3374	FEAT_OPR(CLOCKID,	clockid,	false),
   3375	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
   3376#ifdef HAVE_LIBBPF_SUPPORT
   3377	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
   3378	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
   3379#endif
   3380	FEAT_OPR(COMPRESSED,	compressed,	false),
   3381	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
   3382	FEAT_OPR(CLOCK_DATA,	clock_data,	false),
   3383	FEAT_OPN(HYBRID_TOPOLOGY,	hybrid_topology,	true),
   3384	FEAT_OPR(HYBRID_CPU_PMU_CAPS,	hybrid_cpu_pmu_caps,	false),
   3385};
   3386
   3387struct header_print_data {
   3388	FILE *fp;
   3389	bool full; /* extended list of headers */
   3390};
   3391
   3392static int perf_file_section__fprintf_info(struct perf_file_section *section,
   3393					   struct perf_header *ph,
   3394					   int feat, int fd, void *data)
   3395{
   3396	struct header_print_data *hd = data;
   3397	struct feat_fd ff;
   3398
   3399	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
   3400		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
   3401				"%d, continuing...\n", section->offset, feat);
   3402		return 0;
   3403	}
   3404	if (feat >= HEADER_LAST_FEATURE) {
   3405		pr_warning("unknown feature %d\n", feat);
   3406		return 0;
   3407	}
   3408	if (!feat_ops[feat].print)
   3409		return 0;
   3410
   3411	ff = (struct  feat_fd) {
   3412		.fd = fd,
   3413		.ph = ph,
   3414	};
   3415
   3416	if (!feat_ops[feat].full_only || hd->full)
   3417		feat_ops[feat].print(&ff, hd->fp);
   3418	else
   3419		fprintf(hd->fp, "# %s info available, use -I to display\n",
   3420			feat_ops[feat].name);
   3421
   3422	return 0;
   3423}
   3424
   3425int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
   3426{
   3427	struct header_print_data hd;
   3428	struct perf_header *header = &session->header;
   3429	int fd = perf_data__fd(session->data);
   3430	struct stat st;
   3431	time_t stctime;
   3432	int ret, bit;
   3433
   3434	hd.fp = fp;
   3435	hd.full = full;
   3436
   3437	ret = fstat(fd, &st);
   3438	if (ret == -1)
   3439		return -1;
   3440
   3441	stctime = st.st_mtime;
   3442	fprintf(fp, "# captured on    : %s", ctime(&stctime));
   3443
   3444	fprintf(fp, "# header version : %u\n", header->version);
   3445	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
   3446	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
   3447	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
   3448
   3449	perf_header__process_sections(header, fd, &hd,
   3450				      perf_file_section__fprintf_info);
   3451
   3452	if (session->data->is_pipe)
   3453		return 0;
   3454
   3455	fprintf(fp, "# missing features: ");
   3456	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
   3457		if (bit)
   3458			fprintf(fp, "%s ", feat_ops[bit].name);
   3459	}
   3460
   3461	fprintf(fp, "\n");
   3462	return 0;
   3463}
   3464
   3465struct header_fw {
   3466	struct feat_writer	fw;
   3467	struct feat_fd		*ff;
   3468};
   3469
   3470static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
   3471{
   3472	struct header_fw *h = container_of(fw, struct header_fw, fw);
   3473
   3474	return do_write(h->ff, buf, sz);
   3475}
   3476
   3477static int do_write_feat(struct feat_fd *ff, int type,
   3478			 struct perf_file_section **p,
   3479			 struct evlist *evlist,
   3480			 struct feat_copier *fc)
   3481{
   3482	int err;
   3483	int ret = 0;
   3484
   3485	if (perf_header__has_feat(ff->ph, type)) {
   3486		if (!feat_ops[type].write)
   3487			return -1;
   3488
   3489		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
   3490			return -1;
   3491
   3492		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
   3493
   3494		/*
   3495		 * Hook to let perf inject copy features sections from the input
   3496		 * file.
   3497		 */
   3498		if (fc && fc->copy) {
   3499			struct header_fw h = {
   3500				.fw.write = feat_writer_cb,
   3501				.ff = ff,
   3502			};
   3503
   3504			/* ->copy() returns 0 if the feature was not copied */
   3505			err = fc->copy(fc, type, &h.fw);
   3506		} else {
   3507			err = 0;
   3508		}
   3509		if (!err)
   3510			err = feat_ops[type].write(ff, evlist);
   3511		if (err < 0) {
   3512			pr_debug("failed to write feature %s\n", feat_ops[type].name);
   3513
   3514			/* undo anything written */
   3515			lseek(ff->fd, (*p)->offset, SEEK_SET);
   3516
   3517			return -1;
   3518		}
   3519		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
   3520		(*p)++;
   3521	}
   3522	return ret;
   3523}
   3524
   3525static int perf_header__adds_write(struct perf_header *header,
   3526				   struct evlist *evlist, int fd,
   3527				   struct feat_copier *fc)
   3528{
   3529	int nr_sections;
   3530	struct feat_fd ff;
   3531	struct perf_file_section *feat_sec, *p;
   3532	int sec_size;
   3533	u64 sec_start;
   3534	int feat;
   3535	int err;
   3536
   3537	ff = (struct feat_fd){
   3538		.fd  = fd,
   3539		.ph = header,
   3540	};
   3541
   3542	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
   3543	if (!nr_sections)
   3544		return 0;
   3545
   3546	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
   3547	if (feat_sec == NULL)
   3548		return -ENOMEM;
   3549
   3550	sec_size = sizeof(*feat_sec) * nr_sections;
   3551
   3552	sec_start = header->feat_offset;
   3553	lseek(fd, sec_start + sec_size, SEEK_SET);
   3554
   3555	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
   3556		if (do_write_feat(&ff, feat, &p, evlist, fc))
   3557			perf_header__clear_feat(header, feat);
   3558	}
   3559
   3560	lseek(fd, sec_start, SEEK_SET);
   3561	/*
   3562	 * may write more than needed due to dropped feature, but
   3563	 * this is okay, reader will skip the missing entries
   3564	 */
   3565	err = do_write(&ff, feat_sec, sec_size);
   3566	if (err < 0)
   3567		pr_debug("failed to write feature section\n");
   3568	free(feat_sec);
   3569	return err;
   3570}
   3571
   3572int perf_header__write_pipe(int fd)
   3573{
   3574	struct perf_pipe_file_header f_header;
   3575	struct feat_fd ff;
   3576	int err;
   3577
   3578	ff = (struct feat_fd){ .fd = fd };
   3579
   3580	f_header = (struct perf_pipe_file_header){
   3581		.magic	   = PERF_MAGIC,
   3582		.size	   = sizeof(f_header),
   3583	};
   3584
   3585	err = do_write(&ff, &f_header, sizeof(f_header));
   3586	if (err < 0) {
   3587		pr_debug("failed to write perf pipe header\n");
   3588		return err;
   3589	}
   3590
   3591	return 0;
   3592}
   3593
   3594static int perf_session__do_write_header(struct perf_session *session,
   3595					 struct evlist *evlist,
   3596					 int fd, bool at_exit,
   3597					 struct feat_copier *fc)
   3598{
   3599	struct perf_file_header f_header;
   3600	struct perf_file_attr   f_attr;
   3601	struct perf_header *header = &session->header;
   3602	struct evsel *evsel;
   3603	struct feat_fd ff;
   3604	u64 attr_offset;
   3605	int err;
   3606
   3607	ff = (struct feat_fd){ .fd = fd};
   3608	lseek(fd, sizeof(f_header), SEEK_SET);
   3609
   3610	evlist__for_each_entry(session->evlist, evsel) {
   3611		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
   3612		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
   3613		if (err < 0) {
   3614			pr_debug("failed to write perf header\n");
   3615			return err;
   3616		}
   3617	}
   3618
   3619	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
   3620
   3621	evlist__for_each_entry(evlist, evsel) {
   3622		if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
   3623			/*
   3624			 * We are likely in "perf inject" and have read
   3625			 * from an older file. Update attr size so that
   3626			 * reader gets the right offset to the ids.
   3627			 */
   3628			evsel->core.attr.size = sizeof(evsel->core.attr);
   3629		}
   3630		f_attr = (struct perf_file_attr){
   3631			.attr = evsel->core.attr,
   3632			.ids  = {
   3633				.offset = evsel->id_offset,
   3634				.size   = evsel->core.ids * sizeof(u64),
   3635			}
   3636		};
   3637		err = do_write(&ff, &f_attr, sizeof(f_attr));
   3638		if (err < 0) {
   3639			pr_debug("failed to write perf header attribute\n");
   3640			return err;
   3641		}
   3642	}
   3643
   3644	if (!header->data_offset)
   3645		header->data_offset = lseek(fd, 0, SEEK_CUR);
   3646	header->feat_offset = header->data_offset + header->data_size;
   3647
   3648	if (at_exit) {
   3649		err = perf_header__adds_write(header, evlist, fd, fc);
   3650		if (err < 0)
   3651			return err;
   3652	}
   3653
   3654	f_header = (struct perf_file_header){
   3655		.magic	   = PERF_MAGIC,
   3656		.size	   = sizeof(f_header),
   3657		.attr_size = sizeof(f_attr),
   3658		.attrs = {
   3659			.offset = attr_offset,
   3660			.size   = evlist->core.nr_entries * sizeof(f_attr),
   3661		},
   3662		.data = {
   3663			.offset = header->data_offset,
   3664			.size	= header->data_size,
   3665		},
   3666		/* event_types is ignored, store zeros */
   3667	};
   3668
   3669	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
   3670
   3671	lseek(fd, 0, SEEK_SET);
   3672	err = do_write(&ff, &f_header, sizeof(f_header));
   3673	if (err < 0) {
   3674		pr_debug("failed to write perf header\n");
   3675		return err;
   3676	}
   3677	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
   3678
   3679	return 0;
   3680}
   3681
   3682int perf_session__write_header(struct perf_session *session,
   3683			       struct evlist *evlist,
   3684			       int fd, bool at_exit)
   3685{
   3686	return perf_session__do_write_header(session, evlist, fd, at_exit, NULL);
   3687}
   3688
   3689size_t perf_session__data_offset(const struct evlist *evlist)
   3690{
   3691	struct evsel *evsel;
   3692	size_t data_offset;
   3693
   3694	data_offset = sizeof(struct perf_file_header);
   3695	evlist__for_each_entry(evlist, evsel) {
   3696		data_offset += evsel->core.ids * sizeof(u64);
   3697	}
   3698	data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
   3699
   3700	return data_offset;
   3701}
   3702
   3703int perf_session__inject_header(struct perf_session *session,
   3704				struct evlist *evlist,
   3705				int fd,
   3706				struct feat_copier *fc)
   3707{
   3708	return perf_session__do_write_header(session, evlist, fd, true, fc);
   3709}
   3710
   3711static int perf_header__getbuffer64(struct perf_header *header,
   3712				    int fd, void *buf, size_t size)
   3713{
   3714	if (readn(fd, buf, size) <= 0)
   3715		return -1;
   3716
   3717	if (header->needs_swap)
   3718		mem_bswap_64(buf, size);
   3719
   3720	return 0;
   3721}
   3722
   3723int perf_header__process_sections(struct perf_header *header, int fd,
   3724				  void *data,
   3725				  int (*process)(struct perf_file_section *section,
   3726						 struct perf_header *ph,
   3727						 int feat, int fd, void *data))
   3728{
   3729	struct perf_file_section *feat_sec, *sec;
   3730	int nr_sections;
   3731	int sec_size;
   3732	int feat;
   3733	int err;
   3734
   3735	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
   3736	if (!nr_sections)
   3737		return 0;
   3738
   3739	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
   3740	if (!feat_sec)
   3741		return -1;
   3742
   3743	sec_size = sizeof(*feat_sec) * nr_sections;
   3744
   3745	lseek(fd, header->feat_offset, SEEK_SET);
   3746
   3747	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
   3748	if (err < 0)
   3749		goto out_free;
   3750
   3751	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
   3752		err = process(sec++, header, feat, fd, data);
   3753		if (err < 0)
   3754			goto out_free;
   3755	}
   3756	err = 0;
   3757out_free:
   3758	free(feat_sec);
   3759	return err;
   3760}
   3761
   3762static const int attr_file_abi_sizes[] = {
   3763	[0] = PERF_ATTR_SIZE_VER0,
   3764	[1] = PERF_ATTR_SIZE_VER1,
   3765	[2] = PERF_ATTR_SIZE_VER2,
   3766	[3] = PERF_ATTR_SIZE_VER3,
   3767	[4] = PERF_ATTR_SIZE_VER4,
   3768	0,
   3769};
   3770
   3771/*
   3772 * In the legacy file format, the magic number is not used to encode endianness.
   3773 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
   3774 * on ABI revisions, we need to try all combinations for all endianness to
   3775 * detect the endianness.
   3776 */
   3777static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
   3778{
   3779	uint64_t ref_size, attr_size;
   3780	int i;
   3781
   3782	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
   3783		ref_size = attr_file_abi_sizes[i]
   3784			 + sizeof(struct perf_file_section);
   3785		if (hdr_sz != ref_size) {
   3786			attr_size = bswap_64(hdr_sz);
   3787			if (attr_size != ref_size)
   3788				continue;
   3789
   3790			ph->needs_swap = true;
   3791		}
   3792		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
   3793			 i,
   3794			 ph->needs_swap);
   3795		return 0;
   3796	}
   3797	/* could not determine endianness */
   3798	return -1;
   3799}
   3800
   3801#define PERF_PIPE_HDR_VER0	16
   3802
   3803static const size_t attr_pipe_abi_sizes[] = {
   3804	[0] = PERF_PIPE_HDR_VER0,
   3805	0,
   3806};
   3807
   3808/*
   3809 * In the legacy pipe format, there is an implicit assumption that endianness
   3810 * between host recording the samples, and host parsing the samples is the
   3811 * same. This is not always the case given that the pipe output may always be
   3812 * redirected into a file and analyzed on a different machine with possibly a
   3813 * different endianness and perf_event ABI revisions in the perf tool itself.
   3814 */
   3815static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
   3816{
   3817	u64 attr_size;
   3818	int i;
   3819
   3820	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
   3821		if (hdr_sz != attr_pipe_abi_sizes[i]) {
   3822			attr_size = bswap_64(hdr_sz);
   3823			if (attr_size != hdr_sz)
   3824				continue;
   3825
   3826			ph->needs_swap = true;
   3827		}
   3828		pr_debug("Pipe ABI%d perf.data file detected\n", i);
   3829		return 0;
   3830	}
   3831	return -1;
   3832}
   3833
   3834bool is_perf_magic(u64 magic)
   3835{
   3836	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
   3837		|| magic == __perf_magic2
   3838		|| magic == __perf_magic2_sw)
   3839		return true;
   3840
   3841	return false;
   3842}
   3843
   3844static int check_magic_endian(u64 magic, uint64_t hdr_sz,
   3845			      bool is_pipe, struct perf_header *ph)
   3846{
   3847	int ret;
   3848
   3849	/* check for legacy format */
   3850	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
   3851	if (ret == 0) {
   3852		ph->version = PERF_HEADER_VERSION_1;
   3853		pr_debug("legacy perf.data format\n");
   3854		if (is_pipe)
   3855			return try_all_pipe_abis(hdr_sz, ph);
   3856
   3857		return try_all_file_abis(hdr_sz, ph);
   3858	}
   3859	/*
   3860	 * the new magic number serves two purposes:
   3861	 * - unique number to identify actual perf.data files
   3862	 * - encode endianness of file
   3863	 */
   3864	ph->version = PERF_HEADER_VERSION_2;
   3865
   3866	/* check magic number with one endianness */
   3867	if (magic == __perf_magic2)
   3868		return 0;
   3869
   3870	/* check magic number with opposite endianness */
   3871	if (magic != __perf_magic2_sw)
   3872		return -1;
   3873
   3874	ph->needs_swap = true;
   3875
   3876	return 0;
   3877}
   3878
   3879int perf_file_header__read(struct perf_file_header *header,
   3880			   struct perf_header *ph, int fd)
   3881{
   3882	ssize_t ret;
   3883
   3884	lseek(fd, 0, SEEK_SET);
   3885
   3886	ret = readn(fd, header, sizeof(*header));
   3887	if (ret <= 0)
   3888		return -1;
   3889
   3890	if (check_magic_endian(header->magic,
   3891			       header->attr_size, false, ph) < 0) {
   3892		pr_debug("magic/endian check failed\n");
   3893		return -1;
   3894	}
   3895
   3896	if (ph->needs_swap) {
   3897		mem_bswap_64(header, offsetof(struct perf_file_header,
   3898			     adds_features));
   3899	}
   3900
   3901	if (header->size != sizeof(*header)) {
   3902		/* Support the previous format */
   3903		if (header->size == offsetof(typeof(*header), adds_features))
   3904			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
   3905		else
   3906			return -1;
   3907	} else if (ph->needs_swap) {
   3908		/*
   3909		 * feature bitmap is declared as an array of unsigned longs --
   3910		 * not good since its size can differ between the host that
   3911		 * generated the data file and the host analyzing the file.
   3912		 *
   3913		 * We need to handle endianness, but we don't know the size of
   3914		 * the unsigned long where the file was generated. Take a best
   3915		 * guess at determining it: try 64-bit swap first (ie., file
   3916		 * created on a 64-bit host), and check if the hostname feature
   3917		 * bit is set (this feature bit is forced on as of fbe96f2).
   3918		 * If the bit is not, undo the 64-bit swap and try a 32-bit
   3919		 * swap. If the hostname bit is still not set (e.g., older data
   3920		 * file), punt and fallback to the original behavior --
   3921		 * clearing all feature bits and setting buildid.
   3922		 */
   3923		mem_bswap_64(&header->adds_features,
   3924			    BITS_TO_U64(HEADER_FEAT_BITS));
   3925
   3926		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
   3927			/* unswap as u64 */
   3928			mem_bswap_64(&header->adds_features,
   3929				    BITS_TO_U64(HEADER_FEAT_BITS));
   3930
   3931			/* unswap as u32 */
   3932			mem_bswap_32(&header->adds_features,
   3933				    BITS_TO_U32(HEADER_FEAT_BITS));
   3934		}
   3935
   3936		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
   3937			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
   3938			set_bit(HEADER_BUILD_ID, header->adds_features);
   3939		}
   3940	}
   3941
   3942	memcpy(&ph->adds_features, &header->adds_features,
   3943	       sizeof(ph->adds_features));
   3944
   3945	ph->data_offset  = header->data.offset;
   3946	ph->data_size	 = header->data.size;
   3947	ph->feat_offset  = header->data.offset + header->data.size;
   3948	return 0;
   3949}
   3950
   3951static int perf_file_section__process(struct perf_file_section *section,
   3952				      struct perf_header *ph,
   3953				      int feat, int fd, void *data)
   3954{
   3955	struct feat_fd fdd = {
   3956		.fd	= fd,
   3957		.ph	= ph,
   3958		.size	= section->size,
   3959		.offset	= section->offset,
   3960	};
   3961
   3962	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
   3963		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
   3964			  "%d, continuing...\n", section->offset, feat);
   3965		return 0;
   3966	}
   3967
   3968	if (feat >= HEADER_LAST_FEATURE) {
   3969		pr_debug("unknown feature %d, continuing...\n", feat);
   3970		return 0;
   3971	}
   3972
   3973	if (!feat_ops[feat].process)
   3974		return 0;
   3975
   3976	return feat_ops[feat].process(&fdd, data);
   3977}
   3978
   3979static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
   3980				       struct perf_header *ph,
   3981				       struct perf_data* data,
   3982				       bool repipe, int repipe_fd)
   3983{
   3984	struct feat_fd ff = {
   3985		.fd = repipe_fd,
   3986		.ph = ph,
   3987	};
   3988	ssize_t ret;
   3989
   3990	ret = perf_data__read(data, header, sizeof(*header));
   3991	if (ret <= 0)
   3992		return -1;
   3993
   3994	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
   3995		pr_debug("endian/magic failed\n");
   3996		return -1;
   3997	}
   3998
   3999	if (ph->needs_swap)
   4000		header->size = bswap_64(header->size);
   4001
   4002	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
   4003		return -1;
   4004
   4005	return 0;
   4006}
   4007
   4008static int perf_header__read_pipe(struct perf_session *session, int repipe_fd)
   4009{
   4010	struct perf_header *header = &session->header;
   4011	struct perf_pipe_file_header f_header;
   4012
   4013	if (perf_file_header__read_pipe(&f_header, header, session->data,
   4014					session->repipe, repipe_fd) < 0) {
   4015		pr_debug("incompatible file format\n");
   4016		return -EINVAL;
   4017	}
   4018
   4019	return f_header.size == sizeof(f_header) ? 0 : -1;
   4020}
   4021
   4022static int read_attr(int fd, struct perf_header *ph,
   4023		     struct perf_file_attr *f_attr)
   4024{
   4025	struct perf_event_attr *attr = &f_attr->attr;
   4026	size_t sz, left;
   4027	size_t our_sz = sizeof(f_attr->attr);
   4028	ssize_t ret;
   4029
   4030	memset(f_attr, 0, sizeof(*f_attr));
   4031
   4032	/* read minimal guaranteed structure */
   4033	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
   4034	if (ret <= 0) {
   4035		pr_debug("cannot read %d bytes of header attr\n",
   4036			 PERF_ATTR_SIZE_VER0);
   4037		return -1;
   4038	}
   4039
   4040	/* on file perf_event_attr size */
   4041	sz = attr->size;
   4042
   4043	if (ph->needs_swap)
   4044		sz = bswap_32(sz);
   4045
   4046	if (sz == 0) {
   4047		/* assume ABI0 */
   4048		sz =  PERF_ATTR_SIZE_VER0;
   4049	} else if (sz > our_sz) {
   4050		pr_debug("file uses a more recent and unsupported ABI"
   4051			 " (%zu bytes extra)\n", sz - our_sz);
   4052		return -1;
   4053	}
   4054	/* what we have not yet read and that we know about */
   4055	left = sz - PERF_ATTR_SIZE_VER0;
   4056	if (left) {
   4057		void *ptr = attr;
   4058		ptr += PERF_ATTR_SIZE_VER0;
   4059
   4060		ret = readn(fd, ptr, left);
   4061	}
   4062	/* read perf_file_section, ids are read in caller */
   4063	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
   4064
   4065	return ret <= 0 ? -1 : 0;
   4066}
   4067
   4068static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
   4069{
   4070	struct tep_event *event;
   4071	char bf[128];
   4072
   4073	/* already prepared */
   4074	if (evsel->tp_format)
   4075		return 0;
   4076
   4077	if (pevent == NULL) {
   4078		pr_debug("broken or missing trace data\n");
   4079		return -1;
   4080	}
   4081
   4082	event = tep_find_event(pevent, evsel->core.attr.config);
   4083	if (event == NULL) {
   4084		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
   4085		return -1;
   4086	}
   4087
   4088	if (!evsel->name) {
   4089		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
   4090		evsel->name = strdup(bf);
   4091		if (evsel->name == NULL)
   4092			return -1;
   4093	}
   4094
   4095	evsel->tp_format = event;
   4096	return 0;
   4097}
   4098
   4099static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
   4100{
   4101	struct evsel *pos;
   4102
   4103	evlist__for_each_entry(evlist, pos) {
   4104		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
   4105		    evsel__prepare_tracepoint_event(pos, pevent))
   4106			return -1;
   4107	}
   4108
   4109	return 0;
   4110}
   4111
   4112int perf_session__read_header(struct perf_session *session, int repipe_fd)
   4113{
   4114	struct perf_data *data = session->data;
   4115	struct perf_header *header = &session->header;
   4116	struct perf_file_header	f_header;
   4117	struct perf_file_attr	f_attr;
   4118	u64			f_id;
   4119	int nr_attrs, nr_ids, i, j, err;
   4120	int fd = perf_data__fd(data);
   4121
   4122	session->evlist = evlist__new();
   4123	if (session->evlist == NULL)
   4124		return -ENOMEM;
   4125
   4126	session->evlist->env = &header->env;
   4127	session->machines.host.env = &header->env;
   4128
   4129	/*
   4130	 * We can read 'pipe' data event from regular file,
   4131	 * check for the pipe header regardless of source.
   4132	 */
   4133	err = perf_header__read_pipe(session, repipe_fd);
   4134	if (!err || perf_data__is_pipe(data)) {
   4135		data->is_pipe = true;
   4136		return err;
   4137	}
   4138
   4139	if (perf_file_header__read(&f_header, header, fd) < 0)
   4140		return -EINVAL;
   4141
   4142	if (header->needs_swap && data->in_place_update) {
   4143		pr_err("In-place update not supported when byte-swapping is required\n");
   4144		return -EINVAL;
   4145	}
   4146
   4147	/*
   4148	 * Sanity check that perf.data was written cleanly; data size is
   4149	 * initialized to 0 and updated only if the on_exit function is run.
   4150	 * If data size is still 0 then the file contains only partial
   4151	 * information.  Just warn user and process it as much as it can.
   4152	 */
   4153	if (f_header.data.size == 0) {
   4154		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
   4155			   "Was the 'perf record' command properly terminated?\n",
   4156			   data->file.path);
   4157	}
   4158
   4159	if (f_header.attr_size == 0) {
   4160		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
   4161		       "Was the 'perf record' command properly terminated?\n",
   4162		       data->file.path);
   4163		return -EINVAL;
   4164	}
   4165
   4166	nr_attrs = f_header.attrs.size / f_header.attr_size;
   4167	lseek(fd, f_header.attrs.offset, SEEK_SET);
   4168
   4169	for (i = 0; i < nr_attrs; i++) {
   4170		struct evsel *evsel;
   4171		off_t tmp;
   4172
   4173		if (read_attr(fd, header, &f_attr) < 0)
   4174			goto out_errno;
   4175
   4176		if (header->needs_swap) {
   4177			f_attr.ids.size   = bswap_64(f_attr.ids.size);
   4178			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
   4179			perf_event__attr_swap(&f_attr.attr);
   4180		}
   4181
   4182		tmp = lseek(fd, 0, SEEK_CUR);
   4183		evsel = evsel__new(&f_attr.attr);
   4184
   4185		if (evsel == NULL)
   4186			goto out_delete_evlist;
   4187
   4188		evsel->needs_swap = header->needs_swap;
   4189		/*
   4190		 * Do it before so that if perf_evsel__alloc_id fails, this
   4191		 * entry gets purged too at evlist__delete().
   4192		 */
   4193		evlist__add(session->evlist, evsel);
   4194
   4195		nr_ids = f_attr.ids.size / sizeof(u64);
   4196		/*
   4197		 * We don't have the cpu and thread maps on the header, so
   4198		 * for allocating the perf_sample_id table we fake 1 cpu and
   4199		 * hattr->ids threads.
   4200		 */
   4201		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
   4202			goto out_delete_evlist;
   4203
   4204		lseek(fd, f_attr.ids.offset, SEEK_SET);
   4205
   4206		for (j = 0; j < nr_ids; j++) {
   4207			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
   4208				goto out_errno;
   4209
   4210			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
   4211		}
   4212
   4213		lseek(fd, tmp, SEEK_SET);
   4214	}
   4215
   4216	perf_header__process_sections(header, fd, &session->tevent,
   4217				      perf_file_section__process);
   4218
   4219	if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
   4220		goto out_delete_evlist;
   4221
   4222	return 0;
   4223out_errno:
   4224	return -errno;
   4225
   4226out_delete_evlist:
   4227	evlist__delete(session->evlist);
   4228	session->evlist = NULL;
   4229	return -ENOMEM;
   4230}
   4231
   4232int perf_event__process_feature(struct perf_session *session,
   4233				union perf_event *event)
   4234{
   4235	struct perf_tool *tool = session->tool;
   4236	struct feat_fd ff = { .fd = 0 };
   4237	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
   4238	int type = fe->header.type;
   4239	u64 feat = fe->feat_id;
   4240	int ret = 0;
   4241
   4242	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
   4243		pr_warning("invalid record type %d in pipe-mode\n", type);
   4244		return 0;
   4245	}
   4246	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
   4247		pr_warning("invalid record type %d in pipe-mode\n", type);
   4248		return -1;
   4249	}
   4250
   4251	if (!feat_ops[feat].process)
   4252		return 0;
   4253
   4254	ff.buf  = (void *)fe->data;
   4255	ff.size = event->header.size - sizeof(*fe);
   4256	ff.ph = &session->header;
   4257
   4258	if (feat_ops[feat].process(&ff, NULL)) {
   4259		ret = -1;
   4260		goto out;
   4261	}
   4262
   4263	if (!feat_ops[feat].print || !tool->show_feat_hdr)
   4264		goto out;
   4265
   4266	if (!feat_ops[feat].full_only ||
   4267	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
   4268		feat_ops[feat].print(&ff, stdout);
   4269	} else {
   4270		fprintf(stdout, "# %s info available, use -I to display\n",
   4271			feat_ops[feat].name);
   4272	}
   4273out:
   4274	free_event_desc(ff.events);
   4275	return ret;
   4276}
   4277
   4278size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
   4279{
   4280	struct perf_record_event_update *ev = &event->event_update;
   4281	struct perf_record_event_update_scale *ev_scale;
   4282	struct perf_record_event_update_cpus *ev_cpus;
   4283	struct perf_cpu_map *map;
   4284	size_t ret;
   4285
   4286	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
   4287
   4288	switch (ev->type) {
   4289	case PERF_EVENT_UPDATE__SCALE:
   4290		ev_scale = (struct perf_record_event_update_scale *)ev->data;
   4291		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
   4292		break;
   4293	case PERF_EVENT_UPDATE__UNIT:
   4294		ret += fprintf(fp, "... unit:  %s\n", ev->data);
   4295		break;
   4296	case PERF_EVENT_UPDATE__NAME:
   4297		ret += fprintf(fp, "... name:  %s\n", ev->data);
   4298		break;
   4299	case PERF_EVENT_UPDATE__CPUS:
   4300		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
   4301		ret += fprintf(fp, "... ");
   4302
   4303		map = cpu_map__new_data(&ev_cpus->cpus);
   4304		if (map)
   4305			ret += cpu_map__fprintf(map, fp);
   4306		else
   4307			ret += fprintf(fp, "failed to get cpus\n");
   4308		break;
   4309	default:
   4310		ret += fprintf(fp, "... unknown type\n");
   4311		break;
   4312	}
   4313
   4314	return ret;
   4315}
   4316
   4317int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
   4318			     union perf_event *event,
   4319			     struct evlist **pevlist)
   4320{
   4321	u32 i, ids, n_ids;
   4322	struct evsel *evsel;
   4323	struct evlist *evlist = *pevlist;
   4324
   4325	if (evlist == NULL) {
   4326		*pevlist = evlist = evlist__new();
   4327		if (evlist == NULL)
   4328			return -ENOMEM;
   4329	}
   4330
   4331	evsel = evsel__new(&event->attr.attr);
   4332	if (evsel == NULL)
   4333		return -ENOMEM;
   4334
   4335	evlist__add(evlist, evsel);
   4336
   4337	ids = event->header.size;
   4338	ids -= (void *)&event->attr.id - (void *)event;
   4339	n_ids = ids / sizeof(u64);
   4340	/*
   4341	 * We don't have the cpu and thread maps on the header, so
   4342	 * for allocating the perf_sample_id table we fake 1 cpu and
   4343	 * hattr->ids threads.
   4344	 */
   4345	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
   4346		return -ENOMEM;
   4347
   4348	for (i = 0; i < n_ids; i++) {
   4349		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
   4350	}
   4351
   4352	return 0;
   4353}
   4354
   4355int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
   4356				     union perf_event *event,
   4357				     struct evlist **pevlist)
   4358{
   4359	struct perf_record_event_update *ev = &event->event_update;
   4360	struct perf_record_event_update_scale *ev_scale;
   4361	struct perf_record_event_update_cpus *ev_cpus;
   4362	struct evlist *evlist;
   4363	struct evsel *evsel;
   4364	struct perf_cpu_map *map;
   4365
   4366	if (!pevlist || *pevlist == NULL)
   4367		return -EINVAL;
   4368
   4369	evlist = *pevlist;
   4370
   4371	evsel = evlist__id2evsel(evlist, ev->id);
   4372	if (evsel == NULL)
   4373		return -EINVAL;
   4374
   4375	switch (ev->type) {
   4376	case PERF_EVENT_UPDATE__UNIT:
   4377		free((char *)evsel->unit);
   4378		evsel->unit = strdup(ev->data);
   4379		break;
   4380	case PERF_EVENT_UPDATE__NAME:
   4381		free(evsel->name);
   4382		evsel->name = strdup(ev->data);
   4383		break;
   4384	case PERF_EVENT_UPDATE__SCALE:
   4385		ev_scale = (struct perf_record_event_update_scale *)ev->data;
   4386		evsel->scale = ev_scale->scale;
   4387		break;
   4388	case PERF_EVENT_UPDATE__CPUS:
   4389		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
   4390		map = cpu_map__new_data(&ev_cpus->cpus);
   4391		if (map) {
   4392			perf_cpu_map__put(evsel->core.own_cpus);
   4393			evsel->core.own_cpus = map;
   4394		} else
   4395			pr_err("failed to get event_update cpus\n");
   4396	default:
   4397		break;
   4398	}
   4399
   4400	return 0;
   4401}
   4402
   4403int perf_event__process_tracing_data(struct perf_session *session,
   4404				     union perf_event *event)
   4405{
   4406	ssize_t size_read, padding, size = event->tracing_data.size;
   4407	int fd = perf_data__fd(session->data);
   4408	char buf[BUFSIZ];
   4409
   4410	/*
   4411	 * The pipe fd is already in proper place and in any case
   4412	 * we can't move it, and we'd screw the case where we read
   4413	 * 'pipe' data from regular file. The trace_report reads
   4414	 * data from 'fd' so we need to set it directly behind the
   4415	 * event, where the tracing data starts.
   4416	 */
   4417	if (!perf_data__is_pipe(session->data)) {
   4418		off_t offset = lseek(fd, 0, SEEK_CUR);
   4419
   4420		/* setup for reading amidst mmap */
   4421		lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
   4422		      SEEK_SET);
   4423	}
   4424
   4425	size_read = trace_report(fd, &session->tevent,
   4426				 session->repipe);
   4427	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
   4428
   4429	if (readn(fd, buf, padding) < 0) {
   4430		pr_err("%s: reading input file", __func__);
   4431		return -1;
   4432	}
   4433	if (session->repipe) {
   4434		int retw = write(STDOUT_FILENO, buf, padding);
   4435		if (retw <= 0 || retw != padding) {
   4436			pr_err("%s: repiping tracing data padding", __func__);
   4437			return -1;
   4438		}
   4439	}
   4440
   4441	if (size_read + padding != size) {
   4442		pr_err("%s: tracing data size mismatch", __func__);
   4443		return -1;
   4444	}
   4445
   4446	evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
   4447
   4448	return size_read + padding;
   4449}
   4450
   4451int perf_event__process_build_id(struct perf_session *session,
   4452				 union perf_event *event)
   4453{
   4454	__event_process_build_id(&event->build_id,
   4455				 event->build_id.filename,
   4456				 session);
   4457	return 0;
   4458}