sparsebit.c (58965B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Sparse bit array 4 * 5 * Copyright (C) 2018, Google LLC. 6 * Copyright (C) 2018, Red Hat, Inc. (code style cleanup and fuzzing driver) 7 * 8 * This library provides functions to support a memory efficient bit array, 9 * with an index size of 2^64. A sparsebit array is allocated through 10 * the use sparsebit_alloc() and free'd via sparsebit_free(), 11 * such as in the following: 12 * 13 * struct sparsebit *s; 14 * s = sparsebit_alloc(); 15 * sparsebit_free(&s); 16 * 17 * The struct sparsebit type resolves down to a struct sparsebit. 18 * Note that, sparsebit_free() takes a pointer to the sparsebit 19 * structure. This is so that sparsebit_free() is able to poison 20 * the pointer (e.g. set it to NULL) to the struct sparsebit before 21 * returning to the caller. 22 * 23 * Between the return of sparsebit_alloc() and the call of 24 * sparsebit_free(), there are multiple query and modifying operations 25 * that can be performed on the allocated sparsebit array. All of 26 * these operations take as a parameter the value returned from 27 * sparsebit_alloc() and most also take a bit index. Frequently 28 * used routines include: 29 * 30 * ---- Query Operations 31 * sparsebit_is_set(s, idx) 32 * sparsebit_is_clear(s, idx) 33 * sparsebit_any_set(s) 34 * sparsebit_first_set(s) 35 * sparsebit_next_set(s, prev_idx) 36 * 37 * ---- Modifying Operations 38 * sparsebit_set(s, idx) 39 * sparsebit_clear(s, idx) 40 * sparsebit_set_num(s, idx, num); 41 * sparsebit_clear_num(s, idx, num); 42 * 43 * A common operation, is to itterate over all the bits set in a test 44 * sparsebit array. This can be done via code with the following structure: 45 * 46 * sparsebit_idx_t idx; 47 * if (sparsebit_any_set(s)) { 48 * idx = sparsebit_first_set(s); 49 * do { 50 * ... 51 * idx = sparsebit_next_set(s, idx); 52 * } while (idx != 0); 53 * } 54 * 55 * The index of the first bit set needs to be obtained via 56 * sparsebit_first_set(), because sparsebit_next_set(), needs 57 * the index of the previously set. The sparsebit_idx_t type is 58 * unsigned, so there is no previous index before 0 that is available. 59 * Also, the call to sparsebit_first_set() is not made unless there 60 * is at least 1 bit in the array set. This is because sparsebit_first_set() 61 * aborts if sparsebit_first_set() is called with no bits set. 62 * It is the callers responsibility to assure that the 63 * sparsebit array has at least a single bit set before calling 64 * sparsebit_first_set(). 65 * 66 * ==== Implementation Overview ==== 67 * For the most part the internal implementation of sparsebit is 68 * opaque to the caller. One important implementation detail that the 69 * caller may need to be aware of is the spatial complexity of the 70 * implementation. This implementation of a sparsebit array is not 71 * only sparse, in that it uses memory proportional to the number of bits 72 * set. It is also efficient in memory usage when most of the bits are 73 * set. 74 * 75 * At a high-level the state of the bit settings are maintained through 76 * the use of a binary-search tree, where each node contains at least 77 * the following members: 78 * 79 * typedef uint64_t sparsebit_idx_t; 80 * typedef uint64_t sparsebit_num_t; 81 * 82 * sparsebit_idx_t idx; 83 * uint32_t mask; 84 * sparsebit_num_t num_after; 85 * 86 * The idx member contains the bit index of the first bit described by this 87 * node, while the mask member stores the setting of the first 32-bits. 88 * The setting of the bit at idx + n, where 0 <= n < 32, is located in the 89 * mask member at 1 << n. 90 * 91 * Nodes are sorted by idx and the bits described by two nodes will never 92 * overlap. The idx member is always aligned to the mask size, i.e. a 93 * multiple of 32. 94 * 95 * Beyond a typical implementation, the nodes in this implementation also 96 * contains a member named num_after. The num_after member holds the 97 * number of bits immediately after the mask bits that are contiguously set. 98 * The use of the num_after member allows this implementation to efficiently 99 * represent cases where most bits are set. For example, the case of all 100 * but the last two bits set, is represented by the following two nodes: 101 * 102 * node 0 - idx: 0x0 mask: 0xffffffff num_after: 0xffffffffffffffc0 103 * node 1 - idx: 0xffffffffffffffe0 mask: 0x3fffffff num_after: 0 104 * 105 * ==== Invariants ==== 106 * This implementation usses the following invariants: 107 * 108 * + Node are only used to represent bits that are set. 109 * Nodes with a mask of 0 and num_after of 0 are not allowed. 110 * 111 * + Sum of bits set in all the nodes is equal to the value of 112 * the struct sparsebit_pvt num_set member. 113 * 114 * + The setting of at least one bit is always described in a nodes 115 * mask (mask >= 1). 116 * 117 * + A node with all mask bits set only occurs when the last bit 118 * described by the previous node is not equal to this nodes 119 * starting index - 1. All such occurences of this condition are 120 * avoided by moving the setting of the nodes mask bits into 121 * the previous nodes num_after setting. 122 * 123 * + Node starting index is evenly divisible by the number of bits 124 * within a nodes mask member. 125 * 126 * + Nodes never represent a range of bits that wrap around the 127 * highest supported index. 128 * 129 * (idx + MASK_BITS + num_after - 1) <= ((sparsebit_idx_t) 0) - 1) 130 * 131 * As a consequence of the above, the num_after member of a node 132 * will always be <=: 133 * 134 * maximum_index - nodes_starting_index - number_of_mask_bits 135 * 136 * + Nodes within the binary search tree are sorted based on each 137 * nodes starting index. 138 * 139 * + The range of bits described by any two nodes do not overlap. The 140 * range of bits described by a single node is: 141 * 142 * start: node->idx 143 * end (inclusive): node->idx + MASK_BITS + node->num_after - 1; 144 * 145 * Note, at times these invariants are temporarily violated for a 146 * specific portion of the code. For example, when setting a mask 147 * bit, there is a small delay between when the mask bit is set and the 148 * value in the struct sparsebit_pvt num_set member is updated. Other 149 * temporary violations occur when node_split() is called with a specified 150 * index and assures that a node where its mask represents the bit 151 * at the specified index exists. At times to do this node_split() 152 * must split an existing node into two nodes or create a node that 153 * has no bits set. Such temporary violations must be corrected before 154 * returning to the caller. These corrections are typically performed 155 * by the local function node_reduce(). 156 */ 157 158#include "test_util.h" 159#include "sparsebit.h" 160#include <limits.h> 161#include <assert.h> 162 163#define DUMP_LINE_MAX 100 /* Does not include indent amount */ 164 165typedef uint32_t mask_t; 166#define MASK_BITS (sizeof(mask_t) * CHAR_BIT) 167 168struct node { 169 struct node *parent; 170 struct node *left; 171 struct node *right; 172 sparsebit_idx_t idx; /* index of least-significant bit in mask */ 173 sparsebit_num_t num_after; /* num contiguously set after mask */ 174 mask_t mask; 175}; 176 177struct sparsebit { 178 /* 179 * Points to root node of the binary search 180 * tree. Equal to NULL when no bits are set in 181 * the entire sparsebit array. 182 */ 183 struct node *root; 184 185 /* 186 * A redundant count of the total number of bits set. Used for 187 * diagnostic purposes and to change the time complexity of 188 * sparsebit_num_set() from O(n) to O(1). 189 * Note: Due to overflow, a value of 0 means none or all set. 190 */ 191 sparsebit_num_t num_set; 192}; 193 194/* Returns the number of set bits described by the settings 195 * of the node pointed to by nodep. 196 */ 197static sparsebit_num_t node_num_set(struct node *nodep) 198{ 199 return nodep->num_after + __builtin_popcount(nodep->mask); 200} 201 202/* Returns a pointer to the node that describes the 203 * lowest bit index. 204 */ 205static struct node *node_first(struct sparsebit *s) 206{ 207 struct node *nodep; 208 209 for (nodep = s->root; nodep && nodep->left; nodep = nodep->left) 210 ; 211 212 return nodep; 213} 214 215/* Returns a pointer to the node that describes the 216 * lowest bit index > the index of the node pointed to by np. 217 * Returns NULL if no node with a higher index exists. 218 */ 219static struct node *node_next(struct sparsebit *s, struct node *np) 220{ 221 struct node *nodep = np; 222 223 /* 224 * If current node has a right child, next node is the left-most 225 * of the right child. 226 */ 227 if (nodep->right) { 228 for (nodep = nodep->right; nodep->left; nodep = nodep->left) 229 ; 230 return nodep; 231 } 232 233 /* 234 * No right child. Go up until node is left child of a parent. 235 * That parent is then the next node. 236 */ 237 while (nodep->parent && nodep == nodep->parent->right) 238 nodep = nodep->parent; 239 240 return nodep->parent; 241} 242 243/* Searches for and returns a pointer to the node that describes the 244 * highest index < the index of the node pointed to by np. 245 * Returns NULL if no node with a lower index exists. 246 */ 247static struct node *node_prev(struct sparsebit *s, struct node *np) 248{ 249 struct node *nodep = np; 250 251 /* 252 * If current node has a left child, next node is the right-most 253 * of the left child. 254 */ 255 if (nodep->left) { 256 for (nodep = nodep->left; nodep->right; nodep = nodep->right) 257 ; 258 return (struct node *) nodep; 259 } 260 261 /* 262 * No left child. Go up until node is right child of a parent. 263 * That parent is then the next node. 264 */ 265 while (nodep->parent && nodep == nodep->parent->left) 266 nodep = nodep->parent; 267 268 return (struct node *) nodep->parent; 269} 270 271 272/* Allocates space to hold a copy of the node sub-tree pointed to by 273 * subtree and duplicates the bit settings to the newly allocated nodes. 274 * Returns the newly allocated copy of subtree. 275 */ 276static struct node *node_copy_subtree(struct node *subtree) 277{ 278 struct node *root; 279 280 /* Duplicate the node at the root of the subtree */ 281 root = calloc(1, sizeof(*root)); 282 if (!root) { 283 perror("calloc"); 284 abort(); 285 } 286 287 root->idx = subtree->idx; 288 root->mask = subtree->mask; 289 root->num_after = subtree->num_after; 290 291 /* As needed, recursively duplicate the left and right subtrees */ 292 if (subtree->left) { 293 root->left = node_copy_subtree(subtree->left); 294 root->left->parent = root; 295 } 296 297 if (subtree->right) { 298 root->right = node_copy_subtree(subtree->right); 299 root->right->parent = root; 300 } 301 302 return root; 303} 304 305/* Searches for and returns a pointer to the node that describes the setting 306 * of the bit given by idx. A node describes the setting of a bit if its 307 * index is within the bits described by the mask bits or the number of 308 * contiguous bits set after the mask. Returns NULL if there is no such node. 309 */ 310static struct node *node_find(struct sparsebit *s, sparsebit_idx_t idx) 311{ 312 struct node *nodep; 313 314 /* Find the node that describes the setting of the bit at idx */ 315 for (nodep = s->root; nodep; 316 nodep = nodep->idx > idx ? nodep->left : nodep->right) { 317 if (idx >= nodep->idx && 318 idx <= nodep->idx + MASK_BITS + nodep->num_after - 1) 319 break; 320 } 321 322 return nodep; 323} 324 325/* Entry Requirements: 326 * + A node that describes the setting of idx is not already present. 327 * 328 * Adds a new node to describe the setting of the bit at the index given 329 * by idx. Returns a pointer to the newly added node. 330 * 331 * TODO(lhuemill): Degenerate cases causes the tree to get unbalanced. 332 */ 333static struct node *node_add(struct sparsebit *s, sparsebit_idx_t idx) 334{ 335 struct node *nodep, *parentp, *prev; 336 337 /* Allocate and initialize the new node. */ 338 nodep = calloc(1, sizeof(*nodep)); 339 if (!nodep) { 340 perror("calloc"); 341 abort(); 342 } 343 344 nodep->idx = idx & -MASK_BITS; 345 346 /* If no nodes, set it up as the root node. */ 347 if (!s->root) { 348 s->root = nodep; 349 return nodep; 350 } 351 352 /* 353 * Find the parent where the new node should be attached 354 * and add the node there. 355 */ 356 parentp = s->root; 357 while (true) { 358 if (idx < parentp->idx) { 359 if (!parentp->left) { 360 parentp->left = nodep; 361 nodep->parent = parentp; 362 break; 363 } 364 parentp = parentp->left; 365 } else { 366 assert(idx > parentp->idx + MASK_BITS + parentp->num_after - 1); 367 if (!parentp->right) { 368 parentp->right = nodep; 369 nodep->parent = parentp; 370 break; 371 } 372 parentp = parentp->right; 373 } 374 } 375 376 /* 377 * Does num_after bits of previous node overlap with the mask 378 * of the new node? If so set the bits in the new nodes mask 379 * and reduce the previous nodes num_after. 380 */ 381 prev = node_prev(s, nodep); 382 while (prev && prev->idx + MASK_BITS + prev->num_after - 1 >= nodep->idx) { 383 unsigned int n1 = (prev->idx + MASK_BITS + prev->num_after - 1) 384 - nodep->idx; 385 assert(prev->num_after > 0); 386 assert(n1 < MASK_BITS); 387 assert(!(nodep->mask & (1 << n1))); 388 nodep->mask |= (1 << n1); 389 prev->num_after--; 390 } 391 392 return nodep; 393} 394 395/* Returns whether all the bits in the sparsebit array are set. */ 396bool sparsebit_all_set(struct sparsebit *s) 397{ 398 /* 399 * If any nodes there must be at least one bit set. Only case 400 * where a bit is set and total num set is 0, is when all bits 401 * are set. 402 */ 403 return s->root && s->num_set == 0; 404} 405 406/* Clears all bits described by the node pointed to by nodep, then 407 * removes the node. 408 */ 409static void node_rm(struct sparsebit *s, struct node *nodep) 410{ 411 struct node *tmp; 412 sparsebit_num_t num_set; 413 414 num_set = node_num_set(nodep); 415 assert(s->num_set >= num_set || sparsebit_all_set(s)); 416 s->num_set -= node_num_set(nodep); 417 418 /* Have both left and right child */ 419 if (nodep->left && nodep->right) { 420 /* 421 * Move left children to the leftmost leaf node 422 * of the right child. 423 */ 424 for (tmp = nodep->right; tmp->left; tmp = tmp->left) 425 ; 426 tmp->left = nodep->left; 427 nodep->left = NULL; 428 tmp->left->parent = tmp; 429 } 430 431 /* Left only child */ 432 if (nodep->left) { 433 if (!nodep->parent) { 434 s->root = nodep->left; 435 nodep->left->parent = NULL; 436 } else { 437 nodep->left->parent = nodep->parent; 438 if (nodep == nodep->parent->left) 439 nodep->parent->left = nodep->left; 440 else { 441 assert(nodep == nodep->parent->right); 442 nodep->parent->right = nodep->left; 443 } 444 } 445 446 nodep->parent = nodep->left = nodep->right = NULL; 447 free(nodep); 448 449 return; 450 } 451 452 453 /* Right only child */ 454 if (nodep->right) { 455 if (!nodep->parent) { 456 s->root = nodep->right; 457 nodep->right->parent = NULL; 458 } else { 459 nodep->right->parent = nodep->parent; 460 if (nodep == nodep->parent->left) 461 nodep->parent->left = nodep->right; 462 else { 463 assert(nodep == nodep->parent->right); 464 nodep->parent->right = nodep->right; 465 } 466 } 467 468 nodep->parent = nodep->left = nodep->right = NULL; 469 free(nodep); 470 471 return; 472 } 473 474 /* Leaf Node */ 475 if (!nodep->parent) { 476 s->root = NULL; 477 } else { 478 if (nodep->parent->left == nodep) 479 nodep->parent->left = NULL; 480 else { 481 assert(nodep == nodep->parent->right); 482 nodep->parent->right = NULL; 483 } 484 } 485 486 nodep->parent = nodep->left = nodep->right = NULL; 487 free(nodep); 488 489 return; 490} 491 492/* Splits the node containing the bit at idx so that there is a node 493 * that starts at the specified index. If no such node exists, a new 494 * node at the specified index is created. Returns the new node. 495 * 496 * idx must start of a mask boundary. 497 */ 498static struct node *node_split(struct sparsebit *s, sparsebit_idx_t idx) 499{ 500 struct node *nodep1, *nodep2; 501 sparsebit_idx_t offset; 502 sparsebit_num_t orig_num_after; 503 504 assert(!(idx % MASK_BITS)); 505 506 /* 507 * Is there a node that describes the setting of idx? 508 * If not, add it. 509 */ 510 nodep1 = node_find(s, idx); 511 if (!nodep1) 512 return node_add(s, idx); 513 514 /* 515 * All done if the starting index of the node is where the 516 * split should occur. 517 */ 518 if (nodep1->idx == idx) 519 return nodep1; 520 521 /* 522 * Split point not at start of mask, so it must be part of 523 * bits described by num_after. 524 */ 525 526 /* 527 * Calculate offset within num_after for where the split is 528 * to occur. 529 */ 530 offset = idx - (nodep1->idx + MASK_BITS); 531 orig_num_after = nodep1->num_after; 532 533 /* 534 * Add a new node to describe the bits starting at 535 * the split point. 536 */ 537 nodep1->num_after = offset; 538 nodep2 = node_add(s, idx); 539 540 /* Move bits after the split point into the new node */ 541 nodep2->num_after = orig_num_after - offset; 542 if (nodep2->num_after >= MASK_BITS) { 543 nodep2->mask = ~(mask_t) 0; 544 nodep2->num_after -= MASK_BITS; 545 } else { 546 nodep2->mask = (1 << nodep2->num_after) - 1; 547 nodep2->num_after = 0; 548 } 549 550 return nodep2; 551} 552 553/* Iteratively reduces the node pointed to by nodep and its adjacent 554 * nodes into a more compact form. For example, a node with a mask with 555 * all bits set adjacent to a previous node, will get combined into a 556 * single node with an increased num_after setting. 557 * 558 * After each reduction, a further check is made to see if additional 559 * reductions are possible with the new previous and next nodes. Note, 560 * a search for a reduction is only done across the nodes nearest nodep 561 * and those that became part of a reduction. Reductions beyond nodep 562 * and the adjacent nodes that are reduced are not discovered. It is the 563 * responsibility of the caller to pass a nodep that is within one node 564 * of each possible reduction. 565 * 566 * This function does not fix the temporary violation of all invariants. 567 * For example it does not fix the case where the bit settings described 568 * by two or more nodes overlap. Such a violation introduces the potential 569 * complication of a bit setting for a specific index having different settings 570 * in different nodes. This would then introduce the further complication 571 * of which node has the correct setting of the bit and thus such conditions 572 * are not allowed. 573 * 574 * This function is designed to fix invariant violations that are introduced 575 * by node_split() and by changes to the nodes mask or num_after members. 576 * For example, when setting a bit within a nodes mask, the function that 577 * sets the bit doesn't have to worry about whether the setting of that 578 * bit caused the mask to have leading only or trailing only bits set. 579 * Instead, the function can call node_reduce(), with nodep equal to the 580 * node address that it set a mask bit in, and node_reduce() will notice 581 * the cases of leading or trailing only bits and that there is an 582 * adjacent node that the bit settings could be merged into. 583 * 584 * This implementation specifically detects and corrects violation of the 585 * following invariants: 586 * 587 * + Node are only used to represent bits that are set. 588 * Nodes with a mask of 0 and num_after of 0 are not allowed. 589 * 590 * + The setting of at least one bit is always described in a nodes 591 * mask (mask >= 1). 592 * 593 * + A node with all mask bits set only occurs when the last bit 594 * described by the previous node is not equal to this nodes 595 * starting index - 1. All such occurences of this condition are 596 * avoided by moving the setting of the nodes mask bits into 597 * the previous nodes num_after setting. 598 */ 599static void node_reduce(struct sparsebit *s, struct node *nodep) 600{ 601 bool reduction_performed; 602 603 do { 604 reduction_performed = false; 605 struct node *prev, *next, *tmp; 606 607 /* 1) Potential reductions within the current node. */ 608 609 /* Nodes with all bits cleared may be removed. */ 610 if (nodep->mask == 0 && nodep->num_after == 0) { 611 /* 612 * About to remove the node pointed to by 613 * nodep, which normally would cause a problem 614 * for the next pass through the reduction loop, 615 * because the node at the starting point no longer 616 * exists. This potential problem is handled 617 * by first remembering the location of the next 618 * or previous nodes. Doesn't matter which, because 619 * once the node at nodep is removed, there will be 620 * no other nodes between prev and next. 621 * 622 * Note, the checks performed on nodep against both 623 * both prev and next both check for an adjacent 624 * node that can be reduced into a single node. As 625 * such, after removing the node at nodep, doesn't 626 * matter whether the nodep for the next pass 627 * through the loop is equal to the previous pass 628 * prev or next node. Either way, on the next pass 629 * the one not selected will become either the 630 * prev or next node. 631 */ 632 tmp = node_next(s, nodep); 633 if (!tmp) 634 tmp = node_prev(s, nodep); 635 636 node_rm(s, nodep); 637 nodep = NULL; 638 639 nodep = tmp; 640 reduction_performed = true; 641 continue; 642 } 643 644 /* 645 * When the mask is 0, can reduce the amount of num_after 646 * bits by moving the initial num_after bits into the mask. 647 */ 648 if (nodep->mask == 0) { 649 assert(nodep->num_after != 0); 650 assert(nodep->idx + MASK_BITS > nodep->idx); 651 652 nodep->idx += MASK_BITS; 653 654 if (nodep->num_after >= MASK_BITS) { 655 nodep->mask = ~0; 656 nodep->num_after -= MASK_BITS; 657 } else { 658 nodep->mask = (1u << nodep->num_after) - 1; 659 nodep->num_after = 0; 660 } 661 662 reduction_performed = true; 663 continue; 664 } 665 666 /* 667 * 2) Potential reductions between the current and 668 * previous nodes. 669 */ 670 prev = node_prev(s, nodep); 671 if (prev) { 672 sparsebit_idx_t prev_highest_bit; 673 674 /* Nodes with no bits set can be removed. */ 675 if (prev->mask == 0 && prev->num_after == 0) { 676 node_rm(s, prev); 677 678 reduction_performed = true; 679 continue; 680 } 681 682 /* 683 * All mask bits set and previous node has 684 * adjacent index. 685 */ 686 if (nodep->mask + 1 == 0 && 687 prev->idx + MASK_BITS == nodep->idx) { 688 prev->num_after += MASK_BITS + nodep->num_after; 689 nodep->mask = 0; 690 nodep->num_after = 0; 691 692 reduction_performed = true; 693 continue; 694 } 695 696 /* 697 * Is node adjacent to previous node and the node 698 * contains a single contiguous range of bits 699 * starting from the beginning of the mask? 700 */ 701 prev_highest_bit = prev->idx + MASK_BITS - 1 + prev->num_after; 702 if (prev_highest_bit + 1 == nodep->idx && 703 (nodep->mask | (nodep->mask >> 1)) == nodep->mask) { 704 /* 705 * How many contiguous bits are there? 706 * Is equal to the total number of set 707 * bits, due to an earlier check that 708 * there is a single contiguous range of 709 * set bits. 710 */ 711 unsigned int num_contiguous 712 = __builtin_popcount(nodep->mask); 713 assert((num_contiguous > 0) && 714 ((1ULL << num_contiguous) - 1) == nodep->mask); 715 716 prev->num_after += num_contiguous; 717 nodep->mask = 0; 718 719 /* 720 * For predictable performance, handle special 721 * case where all mask bits are set and there 722 * is a non-zero num_after setting. This code 723 * is functionally correct without the following 724 * conditionalized statements, but without them 725 * the value of num_after is only reduced by 726 * the number of mask bits per pass. There are 727 * cases where num_after can be close to 2^64. 728 * Without this code it could take nearly 729 * (2^64) / 32 passes to perform the full 730 * reduction. 731 */ 732 if (num_contiguous == MASK_BITS) { 733 prev->num_after += nodep->num_after; 734 nodep->num_after = 0; 735 } 736 737 reduction_performed = true; 738 continue; 739 } 740 } 741 742 /* 743 * 3) Potential reductions between the current and 744 * next nodes. 745 */ 746 next = node_next(s, nodep); 747 if (next) { 748 /* Nodes with no bits set can be removed. */ 749 if (next->mask == 0 && next->num_after == 0) { 750 node_rm(s, next); 751 reduction_performed = true; 752 continue; 753 } 754 755 /* 756 * Is next node index adjacent to current node 757 * and has a mask with all bits set? 758 */ 759 if (next->idx == nodep->idx + MASK_BITS + nodep->num_after && 760 next->mask == ~(mask_t) 0) { 761 nodep->num_after += MASK_BITS; 762 next->mask = 0; 763 nodep->num_after += next->num_after; 764 next->num_after = 0; 765 766 node_rm(s, next); 767 next = NULL; 768 769 reduction_performed = true; 770 continue; 771 } 772 } 773 } while (nodep && reduction_performed); 774} 775 776/* Returns whether the bit at the index given by idx, within the 777 * sparsebit array is set or not. 778 */ 779bool sparsebit_is_set(struct sparsebit *s, sparsebit_idx_t idx) 780{ 781 struct node *nodep; 782 783 /* Find the node that describes the setting of the bit at idx */ 784 for (nodep = s->root; nodep; 785 nodep = nodep->idx > idx ? nodep->left : nodep->right) 786 if (idx >= nodep->idx && 787 idx <= nodep->idx + MASK_BITS + nodep->num_after - 1) 788 goto have_node; 789 790 return false; 791 792have_node: 793 /* Bit is set if it is any of the bits described by num_after */ 794 if (nodep->num_after && idx >= nodep->idx + MASK_BITS) 795 return true; 796 797 /* Is the corresponding mask bit set */ 798 assert(idx >= nodep->idx && idx - nodep->idx < MASK_BITS); 799 return !!(nodep->mask & (1 << (idx - nodep->idx))); 800} 801 802/* Within the sparsebit array pointed to by s, sets the bit 803 * at the index given by idx. 804 */ 805static void bit_set(struct sparsebit *s, sparsebit_idx_t idx) 806{ 807 struct node *nodep; 808 809 /* Skip bits that are already set */ 810 if (sparsebit_is_set(s, idx)) 811 return; 812 813 /* 814 * Get a node where the bit at idx is described by the mask. 815 * The node_split will also create a node, if there isn't 816 * already a node that describes the setting of bit. 817 */ 818 nodep = node_split(s, idx & -MASK_BITS); 819 820 /* Set the bit within the nodes mask */ 821 assert(idx >= nodep->idx && idx <= nodep->idx + MASK_BITS - 1); 822 assert(!(nodep->mask & (1 << (idx - nodep->idx)))); 823 nodep->mask |= 1 << (idx - nodep->idx); 824 s->num_set++; 825 826 node_reduce(s, nodep); 827} 828 829/* Within the sparsebit array pointed to by s, clears the bit 830 * at the index given by idx. 831 */ 832static void bit_clear(struct sparsebit *s, sparsebit_idx_t idx) 833{ 834 struct node *nodep; 835 836 /* Skip bits that are already cleared */ 837 if (!sparsebit_is_set(s, idx)) 838 return; 839 840 /* Is there a node that describes the setting of this bit? */ 841 nodep = node_find(s, idx); 842 if (!nodep) 843 return; 844 845 /* 846 * If a num_after bit, split the node, so that the bit is 847 * part of a node mask. 848 */ 849 if (idx >= nodep->idx + MASK_BITS) 850 nodep = node_split(s, idx & -MASK_BITS); 851 852 /* 853 * After node_split above, bit at idx should be within the mask. 854 * Clear that bit. 855 */ 856 assert(idx >= nodep->idx && idx <= nodep->idx + MASK_BITS - 1); 857 assert(nodep->mask & (1 << (idx - nodep->idx))); 858 nodep->mask &= ~(1 << (idx - nodep->idx)); 859 assert(s->num_set > 0 || sparsebit_all_set(s)); 860 s->num_set--; 861 862 node_reduce(s, nodep); 863} 864 865/* Recursively dumps to the FILE stream given by stream the contents 866 * of the sub-tree of nodes pointed to by nodep. Each line of output 867 * is prefixed by the number of spaces given by indent. On each 868 * recursion, the indent amount is increased by 2. This causes nodes 869 * at each level deeper into the binary search tree to be displayed 870 * with a greater indent. 871 */ 872static void dump_nodes(FILE *stream, struct node *nodep, 873 unsigned int indent) 874{ 875 char *node_type; 876 877 /* Dump contents of node */ 878 if (!nodep->parent) 879 node_type = "root"; 880 else if (nodep == nodep->parent->left) 881 node_type = "left"; 882 else { 883 assert(nodep == nodep->parent->right); 884 node_type = "right"; 885 } 886 fprintf(stream, "%*s---- %s nodep: %p\n", indent, "", node_type, nodep); 887 fprintf(stream, "%*s parent: %p left: %p right: %p\n", indent, "", 888 nodep->parent, nodep->left, nodep->right); 889 fprintf(stream, "%*s idx: 0x%lx mask: 0x%x num_after: 0x%lx\n", 890 indent, "", nodep->idx, nodep->mask, nodep->num_after); 891 892 /* If present, dump contents of left child nodes */ 893 if (nodep->left) 894 dump_nodes(stream, nodep->left, indent + 2); 895 896 /* If present, dump contents of right child nodes */ 897 if (nodep->right) 898 dump_nodes(stream, nodep->right, indent + 2); 899} 900 901static inline sparsebit_idx_t node_first_set(struct node *nodep, int start) 902{ 903 mask_t leading = (mask_t)1 << start; 904 int n1 = __builtin_ctz(nodep->mask & -leading); 905 906 return nodep->idx + n1; 907} 908 909static inline sparsebit_idx_t node_first_clear(struct node *nodep, int start) 910{ 911 mask_t leading = (mask_t)1 << start; 912 int n1 = __builtin_ctz(~nodep->mask & -leading); 913 914 return nodep->idx + n1; 915} 916 917/* Dumps to the FILE stream specified by stream, the implementation dependent 918 * internal state of s. Each line of output is prefixed with the number 919 * of spaces given by indent. The output is completely implementation 920 * dependent and subject to change. Output from this function should only 921 * be used for diagnostic purposes. For example, this function can be 922 * used by test cases after they detect an unexpected condition, as a means 923 * to capture diagnostic information. 924 */ 925static void sparsebit_dump_internal(FILE *stream, struct sparsebit *s, 926 unsigned int indent) 927{ 928 /* Dump the contents of s */ 929 fprintf(stream, "%*sroot: %p\n", indent, "", s->root); 930 fprintf(stream, "%*snum_set: 0x%lx\n", indent, "", s->num_set); 931 932 if (s->root) 933 dump_nodes(stream, s->root, indent); 934} 935 936/* Allocates and returns a new sparsebit array. The initial state 937 * of the newly allocated sparsebit array has all bits cleared. 938 */ 939struct sparsebit *sparsebit_alloc(void) 940{ 941 struct sparsebit *s; 942 943 /* Allocate top level structure. */ 944 s = calloc(1, sizeof(*s)); 945 if (!s) { 946 perror("calloc"); 947 abort(); 948 } 949 950 return s; 951} 952 953/* Frees the implementation dependent data for the sparsebit array 954 * pointed to by s and poisons the pointer to that data. 955 */ 956void sparsebit_free(struct sparsebit **sbitp) 957{ 958 struct sparsebit *s = *sbitp; 959 960 if (!s) 961 return; 962 963 sparsebit_clear_all(s); 964 free(s); 965 *sbitp = NULL; 966} 967 968/* Makes a copy of the sparsebit array given by s, to the sparsebit 969 * array given by d. Note, d must have already been allocated via 970 * sparsebit_alloc(). It can though already have bits set, which 971 * if different from src will be cleared. 972 */ 973void sparsebit_copy(struct sparsebit *d, struct sparsebit *s) 974{ 975 /* First clear any bits already set in the destination */ 976 sparsebit_clear_all(d); 977 978 if (s->root) { 979 d->root = node_copy_subtree(s->root); 980 d->num_set = s->num_set; 981 } 982} 983 984/* Returns whether num consecutive bits starting at idx are all set. */ 985bool sparsebit_is_set_num(struct sparsebit *s, 986 sparsebit_idx_t idx, sparsebit_num_t num) 987{ 988 sparsebit_idx_t next_cleared; 989 990 assert(num > 0); 991 assert(idx + num - 1 >= idx); 992 993 /* With num > 0, the first bit must be set. */ 994 if (!sparsebit_is_set(s, idx)) 995 return false; 996 997 /* Find the next cleared bit */ 998 next_cleared = sparsebit_next_clear(s, idx); 999 1000 /* 1001 * If no cleared bits beyond idx, then there are at least num 1002 * set bits. idx + num doesn't wrap. Otherwise check if 1003 * there are enough set bits between idx and the next cleared bit. 1004 */ 1005 return next_cleared == 0 || next_cleared - idx >= num; 1006} 1007 1008/* Returns whether the bit at the index given by idx. */ 1009bool sparsebit_is_clear(struct sparsebit *s, 1010 sparsebit_idx_t idx) 1011{ 1012 return !sparsebit_is_set(s, idx); 1013} 1014 1015/* Returns whether num consecutive bits starting at idx are all cleared. */ 1016bool sparsebit_is_clear_num(struct sparsebit *s, 1017 sparsebit_idx_t idx, sparsebit_num_t num) 1018{ 1019 sparsebit_idx_t next_set; 1020 1021 assert(num > 0); 1022 assert(idx + num - 1 >= idx); 1023 1024 /* With num > 0, the first bit must be cleared. */ 1025 if (!sparsebit_is_clear(s, idx)) 1026 return false; 1027 1028 /* Find the next set bit */ 1029 next_set = sparsebit_next_set(s, idx); 1030 1031 /* 1032 * If no set bits beyond idx, then there are at least num 1033 * cleared bits. idx + num doesn't wrap. Otherwise check if 1034 * there are enough cleared bits between idx and the next set bit. 1035 */ 1036 return next_set == 0 || next_set - idx >= num; 1037} 1038 1039/* Returns the total number of bits set. Note: 0 is also returned for 1040 * the case of all bits set. This is because with all bits set, there 1041 * is 1 additional bit set beyond what can be represented in the return 1042 * value. Use sparsebit_any_set(), instead of sparsebit_num_set() > 0, 1043 * to determine if the sparsebit array has any bits set. 1044 */ 1045sparsebit_num_t sparsebit_num_set(struct sparsebit *s) 1046{ 1047 return s->num_set; 1048} 1049 1050/* Returns whether any bit is set in the sparsebit array. */ 1051bool sparsebit_any_set(struct sparsebit *s) 1052{ 1053 /* 1054 * Nodes only describe set bits. If any nodes then there 1055 * is at least 1 bit set. 1056 */ 1057 if (!s->root) 1058 return false; 1059 1060 /* 1061 * Every node should have a non-zero mask. For now will 1062 * just assure that the root node has a non-zero mask, 1063 * which is a quick check that at least 1 bit is set. 1064 */ 1065 assert(s->root->mask != 0); 1066 assert(s->num_set > 0 || 1067 (s->root->num_after == ((sparsebit_num_t) 0) - MASK_BITS && 1068 s->root->mask == ~(mask_t) 0)); 1069 1070 return true; 1071} 1072 1073/* Returns whether all the bits in the sparsebit array are cleared. */ 1074bool sparsebit_all_clear(struct sparsebit *s) 1075{ 1076 return !sparsebit_any_set(s); 1077} 1078 1079/* Returns whether all the bits in the sparsebit array are set. */ 1080bool sparsebit_any_clear(struct sparsebit *s) 1081{ 1082 return !sparsebit_all_set(s); 1083} 1084 1085/* Returns the index of the first set bit. Abort if no bits are set. 1086 */ 1087sparsebit_idx_t sparsebit_first_set(struct sparsebit *s) 1088{ 1089 struct node *nodep; 1090 1091 /* Validate at least 1 bit is set */ 1092 assert(sparsebit_any_set(s)); 1093 1094 nodep = node_first(s); 1095 return node_first_set(nodep, 0); 1096} 1097 1098/* Returns the index of the first cleared bit. Abort if 1099 * no bits are cleared. 1100 */ 1101sparsebit_idx_t sparsebit_first_clear(struct sparsebit *s) 1102{ 1103 struct node *nodep1, *nodep2; 1104 1105 /* Validate at least 1 bit is cleared. */ 1106 assert(sparsebit_any_clear(s)); 1107 1108 /* If no nodes or first node index > 0 then lowest cleared is 0 */ 1109 nodep1 = node_first(s); 1110 if (!nodep1 || nodep1->idx > 0) 1111 return 0; 1112 1113 /* Does the mask in the first node contain any cleared bits. */ 1114 if (nodep1->mask != ~(mask_t) 0) 1115 return node_first_clear(nodep1, 0); 1116 1117 /* 1118 * All mask bits set in first node. If there isn't a second node 1119 * then the first cleared bit is the first bit after the bits 1120 * described by the first node. 1121 */ 1122 nodep2 = node_next(s, nodep1); 1123 if (!nodep2) { 1124 /* 1125 * No second node. First cleared bit is first bit beyond 1126 * bits described by first node. 1127 */ 1128 assert(nodep1->mask == ~(mask_t) 0); 1129 assert(nodep1->idx + MASK_BITS + nodep1->num_after != (sparsebit_idx_t) 0); 1130 return nodep1->idx + MASK_BITS + nodep1->num_after; 1131 } 1132 1133 /* 1134 * There is a second node. 1135 * If it is not adjacent to the first node, then there is a gap 1136 * of cleared bits between the nodes, and the first cleared bit 1137 * is the first bit within the gap. 1138 */ 1139 if (nodep1->idx + MASK_BITS + nodep1->num_after != nodep2->idx) 1140 return nodep1->idx + MASK_BITS + nodep1->num_after; 1141 1142 /* 1143 * Second node is adjacent to the first node. 1144 * Because it is adjacent, its mask should be non-zero. If all 1145 * its mask bits are set, then with it being adjacent, it should 1146 * have had the mask bits moved into the num_after setting of the 1147 * previous node. 1148 */ 1149 return node_first_clear(nodep2, 0); 1150} 1151 1152/* Returns index of next bit set within s after the index given by prev. 1153 * Returns 0 if there are no bits after prev that are set. 1154 */ 1155sparsebit_idx_t sparsebit_next_set(struct sparsebit *s, 1156 sparsebit_idx_t prev) 1157{ 1158 sparsebit_idx_t lowest_possible = prev + 1; 1159 sparsebit_idx_t start; 1160 struct node *nodep; 1161 1162 /* A bit after the highest index can't be set. */ 1163 if (lowest_possible == 0) 1164 return 0; 1165 1166 /* 1167 * Find the leftmost 'candidate' overlapping or to the right 1168 * of lowest_possible. 1169 */ 1170 struct node *candidate = NULL; 1171 1172 /* True iff lowest_possible is within candidate */ 1173 bool contains = false; 1174 1175 /* 1176 * Find node that describes setting of bit at lowest_possible. 1177 * If such a node doesn't exist, find the node with the lowest 1178 * starting index that is > lowest_possible. 1179 */ 1180 for (nodep = s->root; nodep;) { 1181 if ((nodep->idx + MASK_BITS + nodep->num_after - 1) 1182 >= lowest_possible) { 1183 candidate = nodep; 1184 if (candidate->idx <= lowest_possible) { 1185 contains = true; 1186 break; 1187 } 1188 nodep = nodep->left; 1189 } else { 1190 nodep = nodep->right; 1191 } 1192 } 1193 if (!candidate) 1194 return 0; 1195 1196 assert(candidate->mask != 0); 1197 1198 /* Does the candidate node describe the setting of lowest_possible? */ 1199 if (!contains) { 1200 /* 1201 * Candidate doesn't describe setting of bit at lowest_possible. 1202 * Candidate points to the first node with a starting index 1203 * > lowest_possible. 1204 */ 1205 assert(candidate->idx > lowest_possible); 1206 1207 return node_first_set(candidate, 0); 1208 } 1209 1210 /* 1211 * Candidate describes setting of bit at lowest_possible. 1212 * Note: although the node describes the setting of the bit 1213 * at lowest_possible, its possible that its setting and the 1214 * setting of all latter bits described by this node are 0. 1215 * For now, just handle the cases where this node describes 1216 * a bit at or after an index of lowest_possible that is set. 1217 */ 1218 start = lowest_possible - candidate->idx; 1219 1220 if (start < MASK_BITS && candidate->mask >= (1 << start)) 1221 return node_first_set(candidate, start); 1222 1223 if (candidate->num_after) { 1224 sparsebit_idx_t first_num_after_idx = candidate->idx + MASK_BITS; 1225 1226 return lowest_possible < first_num_after_idx 1227 ? first_num_after_idx : lowest_possible; 1228 } 1229 1230 /* 1231 * Although candidate node describes setting of bit at 1232 * the index of lowest_possible, all bits at that index and 1233 * latter that are described by candidate are cleared. With 1234 * this, the next bit is the first bit in the next node, if 1235 * such a node exists. If a next node doesn't exist, then 1236 * there is no next set bit. 1237 */ 1238 candidate = node_next(s, candidate); 1239 if (!candidate) 1240 return 0; 1241 1242 return node_first_set(candidate, 0); 1243} 1244 1245/* Returns index of next bit cleared within s after the index given by prev. 1246 * Returns 0 if there are no bits after prev that are cleared. 1247 */ 1248sparsebit_idx_t sparsebit_next_clear(struct sparsebit *s, 1249 sparsebit_idx_t prev) 1250{ 1251 sparsebit_idx_t lowest_possible = prev + 1; 1252 sparsebit_idx_t idx; 1253 struct node *nodep1, *nodep2; 1254 1255 /* A bit after the highest index can't be set. */ 1256 if (lowest_possible == 0) 1257 return 0; 1258 1259 /* 1260 * Does a node describing the setting of lowest_possible exist? 1261 * If not, the bit at lowest_possible is cleared. 1262 */ 1263 nodep1 = node_find(s, lowest_possible); 1264 if (!nodep1) 1265 return lowest_possible; 1266 1267 /* Does a mask bit in node 1 describe the next cleared bit. */ 1268 for (idx = lowest_possible - nodep1->idx; idx < MASK_BITS; idx++) 1269 if (!(nodep1->mask & (1 << idx))) 1270 return nodep1->idx + idx; 1271 1272 /* 1273 * Next cleared bit is not described by node 1. If there 1274 * isn't a next node, then next cleared bit is described 1275 * by bit after the bits described by the first node. 1276 */ 1277 nodep2 = node_next(s, nodep1); 1278 if (!nodep2) 1279 return nodep1->idx + MASK_BITS + nodep1->num_after; 1280 1281 /* 1282 * There is a second node. 1283 * If it is not adjacent to the first node, then there is a gap 1284 * of cleared bits between the nodes, and the next cleared bit 1285 * is the first bit within the gap. 1286 */ 1287 if (nodep1->idx + MASK_BITS + nodep1->num_after != nodep2->idx) 1288 return nodep1->idx + MASK_BITS + nodep1->num_after; 1289 1290 /* 1291 * Second node is adjacent to the first node. 1292 * Because it is adjacent, its mask should be non-zero. If all 1293 * its mask bits are set, then with it being adjacent, it should 1294 * have had the mask bits moved into the num_after setting of the 1295 * previous node. 1296 */ 1297 return node_first_clear(nodep2, 0); 1298} 1299 1300/* Starting with the index 1 greater than the index given by start, finds 1301 * and returns the index of the first sequence of num consecutively set 1302 * bits. Returns a value of 0 of no such sequence exists. 1303 */ 1304sparsebit_idx_t sparsebit_next_set_num(struct sparsebit *s, 1305 sparsebit_idx_t start, sparsebit_num_t num) 1306{ 1307 sparsebit_idx_t idx; 1308 1309 assert(num >= 1); 1310 1311 for (idx = sparsebit_next_set(s, start); 1312 idx != 0 && idx + num - 1 >= idx; 1313 idx = sparsebit_next_set(s, idx)) { 1314 assert(sparsebit_is_set(s, idx)); 1315 1316 /* 1317 * Does the sequence of bits starting at idx consist of 1318 * num set bits? 1319 */ 1320 if (sparsebit_is_set_num(s, idx, num)) 1321 return idx; 1322 1323 /* 1324 * Sequence of set bits at idx isn't large enough. 1325 * Skip this entire sequence of set bits. 1326 */ 1327 idx = sparsebit_next_clear(s, idx); 1328 if (idx == 0) 1329 return 0; 1330 } 1331 1332 return 0; 1333} 1334 1335/* Starting with the index 1 greater than the index given by start, finds 1336 * and returns the index of the first sequence of num consecutively cleared 1337 * bits. Returns a value of 0 of no such sequence exists. 1338 */ 1339sparsebit_idx_t sparsebit_next_clear_num(struct sparsebit *s, 1340 sparsebit_idx_t start, sparsebit_num_t num) 1341{ 1342 sparsebit_idx_t idx; 1343 1344 assert(num >= 1); 1345 1346 for (idx = sparsebit_next_clear(s, start); 1347 idx != 0 && idx + num - 1 >= idx; 1348 idx = sparsebit_next_clear(s, idx)) { 1349 assert(sparsebit_is_clear(s, idx)); 1350 1351 /* 1352 * Does the sequence of bits starting at idx consist of 1353 * num cleared bits? 1354 */ 1355 if (sparsebit_is_clear_num(s, idx, num)) 1356 return idx; 1357 1358 /* 1359 * Sequence of cleared bits at idx isn't large enough. 1360 * Skip this entire sequence of cleared bits. 1361 */ 1362 idx = sparsebit_next_set(s, idx); 1363 if (idx == 0) 1364 return 0; 1365 } 1366 1367 return 0; 1368} 1369 1370/* Sets the bits * in the inclusive range idx through idx + num - 1. */ 1371void sparsebit_set_num(struct sparsebit *s, 1372 sparsebit_idx_t start, sparsebit_num_t num) 1373{ 1374 struct node *nodep, *next; 1375 unsigned int n1; 1376 sparsebit_idx_t idx; 1377 sparsebit_num_t n; 1378 sparsebit_idx_t middle_start, middle_end; 1379 1380 assert(num > 0); 1381 assert(start + num - 1 >= start); 1382 1383 /* 1384 * Leading - bits before first mask boundary. 1385 * 1386 * TODO(lhuemill): With some effort it may be possible to 1387 * replace the following loop with a sequential sequence 1388 * of statements. High level sequence would be: 1389 * 1390 * 1. Use node_split() to force node that describes setting 1391 * of idx to be within the mask portion of a node. 1392 * 2. Form mask of bits to be set. 1393 * 3. Determine number of mask bits already set in the node 1394 * and store in a local variable named num_already_set. 1395 * 4. Set the appropriate mask bits within the node. 1396 * 5. Increment struct sparsebit_pvt num_set member 1397 * by the number of bits that were actually set. 1398 * Exclude from the counts bits that were already set. 1399 * 6. Before returning to the caller, use node_reduce() to 1400 * handle the multiple corner cases that this method 1401 * introduces. 1402 */ 1403 for (idx = start, n = num; n > 0 && idx % MASK_BITS != 0; idx++, n--) 1404 bit_set(s, idx); 1405 1406 /* Middle - bits spanning one or more entire mask */ 1407 middle_start = idx; 1408 middle_end = middle_start + (n & -MASK_BITS) - 1; 1409 if (n >= MASK_BITS) { 1410 nodep = node_split(s, middle_start); 1411 1412 /* 1413 * As needed, split just after end of middle bits. 1414 * No split needed if end of middle bits is at highest 1415 * supported bit index. 1416 */ 1417 if (middle_end + 1 > middle_end) 1418 (void) node_split(s, middle_end + 1); 1419 1420 /* Delete nodes that only describe bits within the middle. */ 1421 for (next = node_next(s, nodep); 1422 next && (next->idx < middle_end); 1423 next = node_next(s, nodep)) { 1424 assert(next->idx + MASK_BITS + next->num_after - 1 <= middle_end); 1425 node_rm(s, next); 1426 next = NULL; 1427 } 1428 1429 /* As needed set each of the mask bits */ 1430 for (n1 = 0; n1 < MASK_BITS; n1++) { 1431 if (!(nodep->mask & (1 << n1))) { 1432 nodep->mask |= 1 << n1; 1433 s->num_set++; 1434 } 1435 } 1436 1437 s->num_set -= nodep->num_after; 1438 nodep->num_after = middle_end - middle_start + 1 - MASK_BITS; 1439 s->num_set += nodep->num_after; 1440 1441 node_reduce(s, nodep); 1442 } 1443 idx = middle_end + 1; 1444 n -= middle_end - middle_start + 1; 1445 1446 /* Trailing - bits at and beyond last mask boundary */ 1447 assert(n < MASK_BITS); 1448 for (; n > 0; idx++, n--) 1449 bit_set(s, idx); 1450} 1451 1452/* Clears the bits * in the inclusive range idx through idx + num - 1. */ 1453void sparsebit_clear_num(struct sparsebit *s, 1454 sparsebit_idx_t start, sparsebit_num_t num) 1455{ 1456 struct node *nodep, *next; 1457 unsigned int n1; 1458 sparsebit_idx_t idx; 1459 sparsebit_num_t n; 1460 sparsebit_idx_t middle_start, middle_end; 1461 1462 assert(num > 0); 1463 assert(start + num - 1 >= start); 1464 1465 /* Leading - bits before first mask boundary */ 1466 for (idx = start, n = num; n > 0 && idx % MASK_BITS != 0; idx++, n--) 1467 bit_clear(s, idx); 1468 1469 /* Middle - bits spanning one or more entire mask */ 1470 middle_start = idx; 1471 middle_end = middle_start + (n & -MASK_BITS) - 1; 1472 if (n >= MASK_BITS) { 1473 nodep = node_split(s, middle_start); 1474 1475 /* 1476 * As needed, split just after end of middle bits. 1477 * No split needed if end of middle bits is at highest 1478 * supported bit index. 1479 */ 1480 if (middle_end + 1 > middle_end) 1481 (void) node_split(s, middle_end + 1); 1482 1483 /* Delete nodes that only describe bits within the middle. */ 1484 for (next = node_next(s, nodep); 1485 next && (next->idx < middle_end); 1486 next = node_next(s, nodep)) { 1487 assert(next->idx + MASK_BITS + next->num_after - 1 <= middle_end); 1488 node_rm(s, next); 1489 next = NULL; 1490 } 1491 1492 /* As needed clear each of the mask bits */ 1493 for (n1 = 0; n1 < MASK_BITS; n1++) { 1494 if (nodep->mask & (1 << n1)) { 1495 nodep->mask &= ~(1 << n1); 1496 s->num_set--; 1497 } 1498 } 1499 1500 /* Clear any bits described by num_after */ 1501 s->num_set -= nodep->num_after; 1502 nodep->num_after = 0; 1503 1504 /* 1505 * Delete the node that describes the beginning of 1506 * the middle bits and perform any allowed reductions 1507 * with the nodes prev or next of nodep. 1508 */ 1509 node_reduce(s, nodep); 1510 nodep = NULL; 1511 } 1512 idx = middle_end + 1; 1513 n -= middle_end - middle_start + 1; 1514 1515 /* Trailing - bits at and beyond last mask boundary */ 1516 assert(n < MASK_BITS); 1517 for (; n > 0; idx++, n--) 1518 bit_clear(s, idx); 1519} 1520 1521/* Sets the bit at the index given by idx. */ 1522void sparsebit_set(struct sparsebit *s, sparsebit_idx_t idx) 1523{ 1524 sparsebit_set_num(s, idx, 1); 1525} 1526 1527/* Clears the bit at the index given by idx. */ 1528void sparsebit_clear(struct sparsebit *s, sparsebit_idx_t idx) 1529{ 1530 sparsebit_clear_num(s, idx, 1); 1531} 1532 1533/* Sets the bits in the entire addressable range of the sparsebit array. */ 1534void sparsebit_set_all(struct sparsebit *s) 1535{ 1536 sparsebit_set(s, 0); 1537 sparsebit_set_num(s, 1, ~(sparsebit_idx_t) 0); 1538 assert(sparsebit_all_set(s)); 1539} 1540 1541/* Clears the bits in the entire addressable range of the sparsebit array. */ 1542void sparsebit_clear_all(struct sparsebit *s) 1543{ 1544 sparsebit_clear(s, 0); 1545 sparsebit_clear_num(s, 1, ~(sparsebit_idx_t) 0); 1546 assert(!sparsebit_any_set(s)); 1547} 1548 1549static size_t display_range(FILE *stream, sparsebit_idx_t low, 1550 sparsebit_idx_t high, bool prepend_comma_space) 1551{ 1552 char *fmt_str; 1553 size_t sz; 1554 1555 /* Determine the printf format string */ 1556 if (low == high) 1557 fmt_str = prepend_comma_space ? ", 0x%lx" : "0x%lx"; 1558 else 1559 fmt_str = prepend_comma_space ? ", 0x%lx:0x%lx" : "0x%lx:0x%lx"; 1560 1561 /* 1562 * When stream is NULL, just determine the size of what would 1563 * have been printed, else print the range. 1564 */ 1565 if (!stream) 1566 sz = snprintf(NULL, 0, fmt_str, low, high); 1567 else 1568 sz = fprintf(stream, fmt_str, low, high); 1569 1570 return sz; 1571} 1572 1573 1574/* Dumps to the FILE stream given by stream, the bit settings 1575 * of s. Each line of output is prefixed with the number of 1576 * spaces given by indent. The length of each line is implementation 1577 * dependent and does not depend on the indent amount. The following 1578 * is an example output of a sparsebit array that has bits: 1579 * 1580 * 0x5, 0x8, 0xa:0xe, 0x12 1581 * 1582 * This corresponds to a sparsebit whose bits 5, 8, 10, 11, 12, 13, 14, 18 1583 * are set. Note that a ':', instead of a '-' is used to specify a range of 1584 * contiguous bits. This is done because '-' is used to specify command-line 1585 * options, and sometimes ranges are specified as command-line arguments. 1586 */ 1587void sparsebit_dump(FILE *stream, struct sparsebit *s, 1588 unsigned int indent) 1589{ 1590 size_t current_line_len = 0; 1591 size_t sz; 1592 struct node *nodep; 1593 1594 if (!sparsebit_any_set(s)) 1595 return; 1596 1597 /* Display initial indent */ 1598 fprintf(stream, "%*s", indent, ""); 1599 1600 /* For each node */ 1601 for (nodep = node_first(s); nodep; nodep = node_next(s, nodep)) { 1602 unsigned int n1; 1603 sparsebit_idx_t low, high; 1604 1605 /* For each group of bits in the mask */ 1606 for (n1 = 0; n1 < MASK_BITS; n1++) { 1607 if (nodep->mask & (1 << n1)) { 1608 low = high = nodep->idx + n1; 1609 1610 for (; n1 < MASK_BITS; n1++) { 1611 if (nodep->mask & (1 << n1)) 1612 high = nodep->idx + n1; 1613 else 1614 break; 1615 } 1616 1617 if ((n1 == MASK_BITS) && nodep->num_after) 1618 high += nodep->num_after; 1619 1620 /* 1621 * How much room will it take to display 1622 * this range. 1623 */ 1624 sz = display_range(NULL, low, high, 1625 current_line_len != 0); 1626 1627 /* 1628 * If there is not enough room, display 1629 * a newline plus the indent of the next 1630 * line. 1631 */ 1632 if (current_line_len + sz > DUMP_LINE_MAX) { 1633 fputs("\n", stream); 1634 fprintf(stream, "%*s", indent, ""); 1635 current_line_len = 0; 1636 } 1637 1638 /* Display the range */ 1639 sz = display_range(stream, low, high, 1640 current_line_len != 0); 1641 current_line_len += sz; 1642 } 1643 } 1644 1645 /* 1646 * If num_after and most significant-bit of mask is not 1647 * set, then still need to display a range for the bits 1648 * described by num_after. 1649 */ 1650 if (!(nodep->mask & (1 << (MASK_BITS - 1))) && nodep->num_after) { 1651 low = nodep->idx + MASK_BITS; 1652 high = nodep->idx + MASK_BITS + nodep->num_after - 1; 1653 1654 /* 1655 * How much room will it take to display 1656 * this range. 1657 */ 1658 sz = display_range(NULL, low, high, 1659 current_line_len != 0); 1660 1661 /* 1662 * If there is not enough room, display 1663 * a newline plus the indent of the next 1664 * line. 1665 */ 1666 if (current_line_len + sz > DUMP_LINE_MAX) { 1667 fputs("\n", stream); 1668 fprintf(stream, "%*s", indent, ""); 1669 current_line_len = 0; 1670 } 1671 1672 /* Display the range */ 1673 sz = display_range(stream, low, high, 1674 current_line_len != 0); 1675 current_line_len += sz; 1676 } 1677 } 1678 fputs("\n", stream); 1679} 1680 1681/* Validates the internal state of the sparsebit array given by 1682 * s. On error, diagnostic information is printed to stderr and 1683 * abort is called. 1684 */ 1685void sparsebit_validate_internal(struct sparsebit *s) 1686{ 1687 bool error_detected = false; 1688 struct node *nodep, *prev = NULL; 1689 sparsebit_num_t total_bits_set = 0; 1690 unsigned int n1; 1691 1692 /* For each node */ 1693 for (nodep = node_first(s); nodep; 1694 prev = nodep, nodep = node_next(s, nodep)) { 1695 1696 /* 1697 * Increase total bits set by the number of bits set 1698 * in this node. 1699 */ 1700 for (n1 = 0; n1 < MASK_BITS; n1++) 1701 if (nodep->mask & (1 << n1)) 1702 total_bits_set++; 1703 1704 total_bits_set += nodep->num_after; 1705 1706 /* 1707 * Arbitrary choice as to whether a mask of 0 is allowed 1708 * or not. For diagnostic purposes it is beneficial to 1709 * have only one valid means to represent a set of bits. 1710 * To support this an arbitrary choice has been made 1711 * to not allow a mask of zero. 1712 */ 1713 if (nodep->mask == 0) { 1714 fprintf(stderr, "Node mask of zero, " 1715 "nodep: %p nodep->mask: 0x%x", 1716 nodep, nodep->mask); 1717 error_detected = true; 1718 break; 1719 } 1720 1721 /* 1722 * Validate num_after is not greater than the max index 1723 * - the number of mask bits. The num_after member 1724 * uses 0-based indexing and thus has no value that 1725 * represents all bits set. This limitation is handled 1726 * by requiring a non-zero mask. With a non-zero mask, 1727 * MASK_BITS worth of bits are described by the mask, 1728 * which makes the largest needed num_after equal to: 1729 * 1730 * (~(sparsebit_num_t) 0) - MASK_BITS + 1 1731 */ 1732 if (nodep->num_after 1733 > (~(sparsebit_num_t) 0) - MASK_BITS + 1) { 1734 fprintf(stderr, "num_after too large, " 1735 "nodep: %p nodep->num_after: 0x%lx", 1736 nodep, nodep->num_after); 1737 error_detected = true; 1738 break; 1739 } 1740 1741 /* Validate node index is divisible by the mask size */ 1742 if (nodep->idx % MASK_BITS) { 1743 fprintf(stderr, "Node index not divisible by " 1744 "mask size,\n" 1745 " nodep: %p nodep->idx: 0x%lx " 1746 "MASK_BITS: %lu\n", 1747 nodep, nodep->idx, MASK_BITS); 1748 error_detected = true; 1749 break; 1750 } 1751 1752 /* 1753 * Validate bits described by node don't wrap beyond the 1754 * highest supported index. 1755 */ 1756 if ((nodep->idx + MASK_BITS + nodep->num_after - 1) < nodep->idx) { 1757 fprintf(stderr, "Bits described by node wrap " 1758 "beyond highest supported index,\n" 1759 " nodep: %p nodep->idx: 0x%lx\n" 1760 " MASK_BITS: %lu nodep->num_after: 0x%lx", 1761 nodep, nodep->idx, MASK_BITS, nodep->num_after); 1762 error_detected = true; 1763 break; 1764 } 1765 1766 /* Check parent pointers. */ 1767 if (nodep->left) { 1768 if (nodep->left->parent != nodep) { 1769 fprintf(stderr, "Left child parent pointer " 1770 "doesn't point to this node,\n" 1771 " nodep: %p nodep->left: %p " 1772 "nodep->left->parent: %p", 1773 nodep, nodep->left, 1774 nodep->left->parent); 1775 error_detected = true; 1776 break; 1777 } 1778 } 1779 1780 if (nodep->right) { 1781 if (nodep->right->parent != nodep) { 1782 fprintf(stderr, "Right child parent pointer " 1783 "doesn't point to this node,\n" 1784 " nodep: %p nodep->right: %p " 1785 "nodep->right->parent: %p", 1786 nodep, nodep->right, 1787 nodep->right->parent); 1788 error_detected = true; 1789 break; 1790 } 1791 } 1792 1793 if (!nodep->parent) { 1794 if (s->root != nodep) { 1795 fprintf(stderr, "Unexpected root node, " 1796 "s->root: %p nodep: %p", 1797 s->root, nodep); 1798 error_detected = true; 1799 break; 1800 } 1801 } 1802 1803 if (prev) { 1804 /* 1805 * Is index of previous node before index of 1806 * current node? 1807 */ 1808 if (prev->idx >= nodep->idx) { 1809 fprintf(stderr, "Previous node index " 1810 ">= current node index,\n" 1811 " prev: %p prev->idx: 0x%lx\n" 1812 " nodep: %p nodep->idx: 0x%lx", 1813 prev, prev->idx, nodep, nodep->idx); 1814 error_detected = true; 1815 break; 1816 } 1817 1818 /* 1819 * Nodes occur in asscending order, based on each 1820 * nodes starting index. 1821 */ 1822 if ((prev->idx + MASK_BITS + prev->num_after - 1) 1823 >= nodep->idx) { 1824 fprintf(stderr, "Previous node bit range " 1825 "overlap with current node bit range,\n" 1826 " prev: %p prev->idx: 0x%lx " 1827 "prev->num_after: 0x%lx\n" 1828 " nodep: %p nodep->idx: 0x%lx " 1829 "nodep->num_after: 0x%lx\n" 1830 " MASK_BITS: %lu", 1831 prev, prev->idx, prev->num_after, 1832 nodep, nodep->idx, nodep->num_after, 1833 MASK_BITS); 1834 error_detected = true; 1835 break; 1836 } 1837 1838 /* 1839 * When the node has all mask bits set, it shouldn't 1840 * be adjacent to the last bit described by the 1841 * previous node. 1842 */ 1843 if (nodep->mask == ~(mask_t) 0 && 1844 prev->idx + MASK_BITS + prev->num_after == nodep->idx) { 1845 fprintf(stderr, "Current node has mask with " 1846 "all bits set and is adjacent to the " 1847 "previous node,\n" 1848 " prev: %p prev->idx: 0x%lx " 1849 "prev->num_after: 0x%lx\n" 1850 " nodep: %p nodep->idx: 0x%lx " 1851 "nodep->num_after: 0x%lx\n" 1852 " MASK_BITS: %lu", 1853 prev, prev->idx, prev->num_after, 1854 nodep, nodep->idx, nodep->num_after, 1855 MASK_BITS); 1856 1857 error_detected = true; 1858 break; 1859 } 1860 } 1861 } 1862 1863 if (!error_detected) { 1864 /* 1865 * Is sum of bits set in each node equal to the count 1866 * of total bits set. 1867 */ 1868 if (s->num_set != total_bits_set) { 1869 fprintf(stderr, "Number of bits set mismatch,\n" 1870 " s->num_set: 0x%lx total_bits_set: 0x%lx", 1871 s->num_set, total_bits_set); 1872 1873 error_detected = true; 1874 } 1875 } 1876 1877 if (error_detected) { 1878 fputs(" dump_internal:\n", stderr); 1879 sparsebit_dump_internal(stderr, s, 4); 1880 abort(); 1881 } 1882} 1883 1884 1885#ifdef FUZZ 1886/* A simple but effective fuzzing driver. Look for bugs with the help 1887 * of some invariants and of a trivial representation of sparsebit. 1888 * Just use 512 bytes of /dev/zero and /dev/urandom as inputs, and let 1889 * afl-fuzz do the magic. :) 1890 */ 1891 1892#include <stdlib.h> 1893 1894struct range { 1895 sparsebit_idx_t first, last; 1896 bool set; 1897}; 1898 1899struct sparsebit *s; 1900struct range ranges[1000]; 1901int num_ranges; 1902 1903static bool get_value(sparsebit_idx_t idx) 1904{ 1905 int i; 1906 1907 for (i = num_ranges; --i >= 0; ) 1908 if (ranges[i].first <= idx && idx <= ranges[i].last) 1909 return ranges[i].set; 1910 1911 return false; 1912} 1913 1914static void operate(int code, sparsebit_idx_t first, sparsebit_idx_t last) 1915{ 1916 sparsebit_num_t num; 1917 sparsebit_idx_t next; 1918 1919 if (first < last) { 1920 num = last - first + 1; 1921 } else { 1922 num = first - last + 1; 1923 first = last; 1924 last = first + num - 1; 1925 } 1926 1927 switch (code) { 1928 case 0: 1929 sparsebit_set(s, first); 1930 assert(sparsebit_is_set(s, first)); 1931 assert(!sparsebit_is_clear(s, first)); 1932 assert(sparsebit_any_set(s)); 1933 assert(!sparsebit_all_clear(s)); 1934 if (get_value(first)) 1935 return; 1936 if (num_ranges == 1000) 1937 exit(0); 1938 ranges[num_ranges++] = (struct range) 1939 { .first = first, .last = first, .set = true }; 1940 break; 1941 case 1: 1942 sparsebit_clear(s, first); 1943 assert(!sparsebit_is_set(s, first)); 1944 assert(sparsebit_is_clear(s, first)); 1945 assert(sparsebit_any_clear(s)); 1946 assert(!sparsebit_all_set(s)); 1947 if (!get_value(first)) 1948 return; 1949 if (num_ranges == 1000) 1950 exit(0); 1951 ranges[num_ranges++] = (struct range) 1952 { .first = first, .last = first, .set = false }; 1953 break; 1954 case 2: 1955 assert(sparsebit_is_set(s, first) == get_value(first)); 1956 assert(sparsebit_is_clear(s, first) == !get_value(first)); 1957 break; 1958 case 3: 1959 if (sparsebit_any_set(s)) 1960 assert(get_value(sparsebit_first_set(s))); 1961 if (sparsebit_any_clear(s)) 1962 assert(!get_value(sparsebit_first_clear(s))); 1963 sparsebit_set_all(s); 1964 assert(!sparsebit_any_clear(s)); 1965 assert(sparsebit_all_set(s)); 1966 num_ranges = 0; 1967 ranges[num_ranges++] = (struct range) 1968 { .first = 0, .last = ~(sparsebit_idx_t)0, .set = true }; 1969 break; 1970 case 4: 1971 if (sparsebit_any_set(s)) 1972 assert(get_value(sparsebit_first_set(s))); 1973 if (sparsebit_any_clear(s)) 1974 assert(!get_value(sparsebit_first_clear(s))); 1975 sparsebit_clear_all(s); 1976 assert(!sparsebit_any_set(s)); 1977 assert(sparsebit_all_clear(s)); 1978 num_ranges = 0; 1979 break; 1980 case 5: 1981 next = sparsebit_next_set(s, first); 1982 assert(next == 0 || next > first); 1983 assert(next == 0 || get_value(next)); 1984 break; 1985 case 6: 1986 next = sparsebit_next_clear(s, first); 1987 assert(next == 0 || next > first); 1988 assert(next == 0 || !get_value(next)); 1989 break; 1990 case 7: 1991 next = sparsebit_next_clear(s, first); 1992 if (sparsebit_is_set_num(s, first, num)) { 1993 assert(next == 0 || next > last); 1994 if (first) 1995 next = sparsebit_next_set(s, first - 1); 1996 else if (sparsebit_any_set(s)) 1997 next = sparsebit_first_set(s); 1998 else 1999 return; 2000 assert(next == first); 2001 } else { 2002 assert(sparsebit_is_clear(s, first) || next <= last); 2003 } 2004 break; 2005 case 8: 2006 next = sparsebit_next_set(s, first); 2007 if (sparsebit_is_clear_num(s, first, num)) { 2008 assert(next == 0 || next > last); 2009 if (first) 2010 next = sparsebit_next_clear(s, first - 1); 2011 else if (sparsebit_any_clear(s)) 2012 next = sparsebit_first_clear(s); 2013 else 2014 return; 2015 assert(next == first); 2016 } else { 2017 assert(sparsebit_is_set(s, first) || next <= last); 2018 } 2019 break; 2020 case 9: 2021 sparsebit_set_num(s, first, num); 2022 assert(sparsebit_is_set_num(s, first, num)); 2023 assert(!sparsebit_is_clear_num(s, first, num)); 2024 assert(sparsebit_any_set(s)); 2025 assert(!sparsebit_all_clear(s)); 2026 if (num_ranges == 1000) 2027 exit(0); 2028 ranges[num_ranges++] = (struct range) 2029 { .first = first, .last = last, .set = true }; 2030 break; 2031 case 10: 2032 sparsebit_clear_num(s, first, num); 2033 assert(!sparsebit_is_set_num(s, first, num)); 2034 assert(sparsebit_is_clear_num(s, first, num)); 2035 assert(sparsebit_any_clear(s)); 2036 assert(!sparsebit_all_set(s)); 2037 if (num_ranges == 1000) 2038 exit(0); 2039 ranges[num_ranges++] = (struct range) 2040 { .first = first, .last = last, .set = false }; 2041 break; 2042 case 11: 2043 sparsebit_validate_internal(s); 2044 break; 2045 default: 2046 break; 2047 } 2048} 2049 2050unsigned char get8(void) 2051{ 2052 int ch; 2053 2054 ch = getchar(); 2055 if (ch == EOF) 2056 exit(0); 2057 return ch; 2058} 2059 2060uint64_t get64(void) 2061{ 2062 uint64_t x; 2063 2064 x = get8(); 2065 x = (x << 8) | get8(); 2066 x = (x << 8) | get8(); 2067 x = (x << 8) | get8(); 2068 x = (x << 8) | get8(); 2069 x = (x << 8) | get8(); 2070 x = (x << 8) | get8(); 2071 return (x << 8) | get8(); 2072} 2073 2074int main(void) 2075{ 2076 s = sparsebit_alloc(); 2077 for (;;) { 2078 uint8_t op = get8() & 0xf; 2079 uint64_t first = get64(); 2080 uint64_t last = get64(); 2081 2082 operate(op, first, last); 2083 } 2084} 2085#endif