rseq_test.c (8455B)
1// SPDX-License-Identifier: GPL-2.0-only 2#define _GNU_SOURCE /* for program_invocation_short_name */ 3#include <errno.h> 4#include <fcntl.h> 5#include <pthread.h> 6#include <sched.h> 7#include <stdio.h> 8#include <stdlib.h> 9#include <string.h> 10#include <signal.h> 11#include <syscall.h> 12#include <sys/ioctl.h> 13#include <sys/sysinfo.h> 14#include <asm/barrier.h> 15#include <linux/atomic.h> 16#include <linux/rseq.h> 17#include <linux/unistd.h> 18 19#include "kvm_util.h" 20#include "processor.h" 21#include "test_util.h" 22 23#define VCPU_ID 0 24 25static __thread volatile struct rseq __rseq = { 26 .cpu_id = RSEQ_CPU_ID_UNINITIALIZED, 27}; 28 29/* 30 * Use an arbitrary, bogus signature for configuring rseq, this test does not 31 * actually enter an rseq critical section. 32 */ 33#define RSEQ_SIG 0xdeadbeef 34 35/* 36 * Any bug related to task migration is likely to be timing-dependent; perform 37 * a large number of migrations to reduce the odds of a false negative. 38 */ 39#define NR_TASK_MIGRATIONS 100000 40 41static pthread_t migration_thread; 42static cpu_set_t possible_mask; 43static int min_cpu, max_cpu; 44static bool done; 45 46static atomic_t seq_cnt; 47 48static void guest_code(void) 49{ 50 for (;;) 51 GUEST_SYNC(0); 52} 53 54static void sys_rseq(int flags) 55{ 56 int r; 57 58 r = syscall(__NR_rseq, &__rseq, sizeof(__rseq), flags, RSEQ_SIG); 59 TEST_ASSERT(!r, "rseq failed, errno = %d (%s)", errno, strerror(errno)); 60} 61 62static int next_cpu(int cpu) 63{ 64 /* 65 * Advance to the next CPU, skipping those that weren't in the original 66 * affinity set. Sadly, there is no CPU_SET_FOR_EACH, and cpu_set_t's 67 * data storage is considered as opaque. Note, if this task is pinned 68 * to a small set of discontigous CPUs, e.g. 2 and 1023, this loop will 69 * burn a lot cycles and the test will take longer than normal to 70 * complete. 71 */ 72 do { 73 cpu++; 74 if (cpu > max_cpu) { 75 cpu = min_cpu; 76 TEST_ASSERT(CPU_ISSET(cpu, &possible_mask), 77 "Min CPU = %d must always be usable", cpu); 78 break; 79 } 80 } while (!CPU_ISSET(cpu, &possible_mask)); 81 82 return cpu; 83} 84 85static void *migration_worker(void *ign) 86{ 87 cpu_set_t allowed_mask; 88 int r, i, cpu; 89 90 CPU_ZERO(&allowed_mask); 91 92 for (i = 0, cpu = min_cpu; i < NR_TASK_MIGRATIONS; i++, cpu = next_cpu(cpu)) { 93 CPU_SET(cpu, &allowed_mask); 94 95 /* 96 * Bump the sequence count twice to allow the reader to detect 97 * that a migration may have occurred in between rseq and sched 98 * CPU ID reads. An odd sequence count indicates a migration 99 * is in-progress, while a completely different count indicates 100 * a migration occurred since the count was last read. 101 */ 102 atomic_inc(&seq_cnt); 103 104 /* 105 * Ensure the odd count is visible while sched_getcpu() isn't 106 * stable, i.e. while changing affinity is in-progress. 107 */ 108 smp_wmb(); 109 r = sched_setaffinity(0, sizeof(allowed_mask), &allowed_mask); 110 TEST_ASSERT(!r, "sched_setaffinity failed, errno = %d (%s)", 111 errno, strerror(errno)); 112 smp_wmb(); 113 atomic_inc(&seq_cnt); 114 115 CPU_CLR(cpu, &allowed_mask); 116 117 /* 118 * Wait 1-10us before proceeding to the next iteration and more 119 * specifically, before bumping seq_cnt again. A delay is 120 * needed on three fronts: 121 * 122 * 1. To allow sched_setaffinity() to prompt migration before 123 * ioctl(KVM_RUN) enters the guest so that TIF_NOTIFY_RESUME 124 * (or TIF_NEED_RESCHED, which indirectly leads to handling 125 * NOTIFY_RESUME) is handled in KVM context. 126 * 127 * If NOTIFY_RESUME/NEED_RESCHED is set after KVM enters 128 * the guest, the guest will trigger a IO/MMIO exit all the 129 * way to userspace and the TIF flags will be handled by 130 * the generic "exit to userspace" logic, not by KVM. The 131 * exit to userspace is necessary to give the test a chance 132 * to check the rseq CPU ID (see #2). 133 * 134 * Alternatively, guest_code() could include an instruction 135 * to trigger an exit that is handled by KVM, but any such 136 * exit requires architecture specific code. 137 * 138 * 2. To let ioctl(KVM_RUN) make its way back to the test 139 * before the next round of migration. The test's check on 140 * the rseq CPU ID must wait for migration to complete in 141 * order to avoid false positive, thus any kernel rseq bug 142 * will be missed if the next migration starts before the 143 * check completes. 144 * 145 * 3. To ensure the read-side makes efficient forward progress, 146 * e.g. if sched_getcpu() involves a syscall. Stalling the 147 * read-side means the test will spend more time waiting for 148 * sched_getcpu() to stabilize and less time trying to hit 149 * the timing-dependent bug. 150 * 151 * Because any bug in this area is likely to be timing-dependent, 152 * run with a range of delays at 1us intervals from 1us to 10us 153 * as a best effort to avoid tuning the test to the point where 154 * it can hit _only_ the original bug and not detect future 155 * regressions. 156 * 157 * The original bug can reproduce with a delay up to ~500us on 158 * x86-64, but starts to require more iterations to reproduce 159 * as the delay creeps above ~10us, and the average runtime of 160 * each iteration obviously increases as well. Cap the delay 161 * at 10us to keep test runtime reasonable while minimizing 162 * potential coverage loss. 163 * 164 * The lower bound for reproducing the bug is likely below 1us, 165 * e.g. failures occur on x86-64 with nanosleep(0), but at that 166 * point the overhead of the syscall likely dominates the delay. 167 * Use usleep() for simplicity and to avoid unnecessary kernel 168 * dependencies. 169 */ 170 usleep((i % 10) + 1); 171 } 172 done = true; 173 return NULL; 174} 175 176static int calc_min_max_cpu(void) 177{ 178 int i, cnt, nproc; 179 180 if (CPU_COUNT(&possible_mask) < 2) 181 return -EINVAL; 182 183 /* 184 * CPU_SET doesn't provide a FOR_EACH helper, get the min/max CPU that 185 * this task is affined to in order to reduce the time spent querying 186 * unusable CPUs, e.g. if this task is pinned to a small percentage of 187 * total CPUs. 188 */ 189 nproc = get_nprocs_conf(); 190 min_cpu = -1; 191 max_cpu = -1; 192 cnt = 0; 193 194 for (i = 0; i < nproc; i++) { 195 if (!CPU_ISSET(i, &possible_mask)) 196 continue; 197 if (min_cpu == -1) 198 min_cpu = i; 199 max_cpu = i; 200 cnt++; 201 } 202 203 return (cnt < 2) ? -EINVAL : 0; 204} 205 206int main(int argc, char *argv[]) 207{ 208 int r, i, snapshot; 209 struct kvm_vm *vm; 210 u32 cpu, rseq_cpu; 211 212 /* Tell stdout not to buffer its content */ 213 setbuf(stdout, NULL); 214 215 r = sched_getaffinity(0, sizeof(possible_mask), &possible_mask); 216 TEST_ASSERT(!r, "sched_getaffinity failed, errno = %d (%s)", errno, 217 strerror(errno)); 218 219 if (calc_min_max_cpu()) { 220 print_skip("Only one usable CPU, task migration not possible"); 221 exit(KSFT_SKIP); 222 } 223 224 sys_rseq(0); 225 226 /* 227 * Create and run a dummy VM that immediately exits to userspace via 228 * GUEST_SYNC, while concurrently migrating the process by setting its 229 * CPU affinity. 230 */ 231 vm = vm_create_default(VCPU_ID, 0, guest_code); 232 ucall_init(vm, NULL); 233 234 pthread_create(&migration_thread, NULL, migration_worker, 0); 235 236 for (i = 0; !done; i++) { 237 vcpu_run(vm, VCPU_ID); 238 TEST_ASSERT(get_ucall(vm, VCPU_ID, NULL) == UCALL_SYNC, 239 "Guest failed?"); 240 241 /* 242 * Verify rseq's CPU matches sched's CPU. Ensure migration 243 * doesn't occur between sched_getcpu() and reading the rseq 244 * cpu_id by rereading both if the sequence count changes, or 245 * if the count is odd (migration in-progress). 246 */ 247 do { 248 /* 249 * Drop bit 0 to force a mismatch if the count is odd, 250 * i.e. if a migration is in-progress. 251 */ 252 snapshot = atomic_read(&seq_cnt) & ~1; 253 254 /* 255 * Ensure reading sched_getcpu() and rseq.cpu_id 256 * complete in a single "no migration" window, i.e. are 257 * not reordered across the seq_cnt reads. 258 */ 259 smp_rmb(); 260 cpu = sched_getcpu(); 261 rseq_cpu = READ_ONCE(__rseq.cpu_id); 262 smp_rmb(); 263 } while (snapshot != atomic_read(&seq_cnt)); 264 265 TEST_ASSERT(rseq_cpu == cpu, 266 "rseq CPU = %d, sched CPU = %d\n", rseq_cpu, cpu); 267 } 268 269 /* 270 * Sanity check that the test was able to enter the guest a reasonable 271 * number of times, e.g. didn't get stalled too often/long waiting for 272 * sched_getcpu() to stabilize. A 2:1 migration:KVM_RUN ratio is a 273 * fairly conservative ratio on x86-64, which can do _more_ KVM_RUNs 274 * than migrations given the 1us+ delay in the migration task. 275 */ 276 TEST_ASSERT(i > (NR_TASK_MIGRATIONS / 2), 277 "Only performed %d KVM_RUNs, task stalled too much?\n", i); 278 279 pthread_join(migration_thread, NULL); 280 281 kvm_vm_free(vm); 282 283 sys_rseq(RSEQ_FLAG_UNREGISTER); 284 285 return 0; 286}