cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

freq-step.c (5973B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * This test checks the response of the system clock to frequency
      4 * steps made with adjtimex(). The frequency error and stability of
      5 * the CLOCK_MONOTONIC clock relative to the CLOCK_MONOTONIC_RAW clock
      6 * is measured in two intervals following the step. The test fails if
      7 * values from the second interval exceed specified limits.
      8 *
      9 * Copyright (C) Miroslav Lichvar <mlichvar@redhat.com>  2017
     10 */
     11
     12#include <math.h>
     13#include <stdio.h>
     14#include <sys/timex.h>
     15#include <time.h>
     16#include <unistd.h>
     17
     18#include "../kselftest.h"
     19
     20#define SAMPLES 100
     21#define SAMPLE_READINGS 10
     22#define MEAN_SAMPLE_INTERVAL 0.1
     23#define STEP_INTERVAL 1.0
     24#define MAX_PRECISION 500e-9
     25#define MAX_FREQ_ERROR 0.02e-6
     26#define MAX_STDDEV 50e-9
     27
     28#ifndef ADJ_SETOFFSET
     29  #define ADJ_SETOFFSET 0x0100
     30#endif
     31
     32struct sample {
     33	double offset;
     34	double time;
     35};
     36
     37static time_t mono_raw_base;
     38static time_t mono_base;
     39static long user_hz;
     40static double precision;
     41static double mono_freq_offset;
     42
     43static double diff_timespec(struct timespec *ts1, struct timespec *ts2)
     44{
     45	return ts1->tv_sec - ts2->tv_sec + (ts1->tv_nsec - ts2->tv_nsec) / 1e9;
     46}
     47
     48static double get_sample(struct sample *sample)
     49{
     50	double delay, mindelay = 0.0;
     51	struct timespec ts1, ts2, ts3;
     52	int i;
     53
     54	for (i = 0; i < SAMPLE_READINGS; i++) {
     55		clock_gettime(CLOCK_MONOTONIC_RAW, &ts1);
     56		clock_gettime(CLOCK_MONOTONIC, &ts2);
     57		clock_gettime(CLOCK_MONOTONIC_RAW, &ts3);
     58
     59		ts1.tv_sec -= mono_raw_base;
     60		ts2.tv_sec -= mono_base;
     61		ts3.tv_sec -= mono_raw_base;
     62
     63		delay = diff_timespec(&ts3, &ts1);
     64		if (delay <= 1e-9) {
     65			i--;
     66			continue;
     67		}
     68
     69		if (!i || delay < mindelay) {
     70			sample->offset = diff_timespec(&ts2, &ts1);
     71			sample->offset -= delay / 2.0;
     72			sample->time = ts1.tv_sec + ts1.tv_nsec / 1e9;
     73			mindelay = delay;
     74		}
     75	}
     76
     77	return mindelay;
     78}
     79
     80static void reset_ntp_error(void)
     81{
     82	struct timex txc;
     83
     84	txc.modes = ADJ_SETOFFSET;
     85	txc.time.tv_sec = 0;
     86	txc.time.tv_usec = 0;
     87
     88	if (adjtimex(&txc) < 0) {
     89		perror("[FAIL] adjtimex");
     90		ksft_exit_fail();
     91	}
     92}
     93
     94static void set_frequency(double freq)
     95{
     96	struct timex txc;
     97	int tick_offset;
     98
     99	tick_offset = 1e6 * freq / user_hz;
    100
    101	txc.modes = ADJ_TICK | ADJ_FREQUENCY;
    102	txc.tick = 1000000 / user_hz + tick_offset;
    103	txc.freq = (1e6 * freq - user_hz * tick_offset) * (1 << 16);
    104
    105	if (adjtimex(&txc) < 0) {
    106		perror("[FAIL] adjtimex");
    107		ksft_exit_fail();
    108	}
    109}
    110
    111static void regress(struct sample *samples, int n, double *intercept,
    112		    double *slope, double *r_stddev, double *r_max)
    113{
    114	double x, y, r, x_sum, y_sum, xy_sum, x2_sum, r2_sum;
    115	int i;
    116
    117	x_sum = 0.0, y_sum = 0.0, xy_sum = 0.0, x2_sum = 0.0;
    118
    119	for (i = 0; i < n; i++) {
    120		x = samples[i].time;
    121		y = samples[i].offset;
    122
    123		x_sum += x;
    124		y_sum += y;
    125		xy_sum += x * y;
    126		x2_sum += x * x;
    127	}
    128
    129	*slope = (xy_sum - x_sum * y_sum / n) / (x2_sum - x_sum * x_sum / n);
    130	*intercept = (y_sum - *slope * x_sum) / n;
    131
    132	*r_max = 0.0, r2_sum = 0.0;
    133
    134	for (i = 0; i < n; i++) {
    135		x = samples[i].time;
    136		y = samples[i].offset;
    137		r = fabs(x * *slope + *intercept - y);
    138		if (*r_max < r)
    139			*r_max = r;
    140		r2_sum += r * r;
    141	}
    142
    143	*r_stddev = sqrt(r2_sum / n);
    144}
    145
    146static int run_test(int calibration, double freq_base, double freq_step)
    147{
    148	struct sample samples[SAMPLES];
    149	double intercept, slope, stddev1, max1, stddev2, max2;
    150	double freq_error1, freq_error2;
    151	int i;
    152
    153	set_frequency(freq_base);
    154
    155	for (i = 0; i < 10; i++)
    156		usleep(1e6 * MEAN_SAMPLE_INTERVAL / 10);
    157
    158	reset_ntp_error();
    159
    160	set_frequency(freq_base + freq_step);
    161
    162	for (i = 0; i < 10; i++)
    163		usleep(rand() % 2000000 * STEP_INTERVAL / 10);
    164
    165	set_frequency(freq_base);
    166
    167	for (i = 0; i < SAMPLES; i++) {
    168		usleep(rand() % 2000000 * MEAN_SAMPLE_INTERVAL);
    169		get_sample(&samples[i]);
    170	}
    171
    172	if (calibration) {
    173		regress(samples, SAMPLES, &intercept, &slope, &stddev1, &max1);
    174		mono_freq_offset = slope;
    175		printf("CLOCK_MONOTONIC_RAW frequency offset: %11.3f ppm\n",
    176		       1e6 * mono_freq_offset);
    177		return 0;
    178	}
    179
    180	regress(samples, SAMPLES / 2, &intercept, &slope, &stddev1, &max1);
    181	freq_error1 = slope * (1.0 - mono_freq_offset) - mono_freq_offset -
    182			freq_base;
    183
    184	regress(samples + SAMPLES / 2, SAMPLES / 2, &intercept, &slope,
    185		&stddev2, &max2);
    186	freq_error2 = slope * (1.0 - mono_freq_offset) - mono_freq_offset -
    187			freq_base;
    188
    189	printf("%6.0f %+10.3f %6.0f %7.0f %+10.3f %6.0f %7.0f\t",
    190	       1e6 * freq_step,
    191	       1e6 * freq_error1, 1e9 * stddev1, 1e9 * max1,
    192	       1e6 * freq_error2, 1e9 * stddev2, 1e9 * max2);
    193
    194	if (fabs(freq_error2) > MAX_FREQ_ERROR || stddev2 > MAX_STDDEV) {
    195		printf("[FAIL]\n");
    196		return 1;
    197	}
    198
    199	printf("[OK]\n");
    200	return 0;
    201}
    202
    203static void init_test(void)
    204{
    205	struct timespec ts;
    206	struct sample sample;
    207
    208	if (clock_gettime(CLOCK_MONOTONIC_RAW, &ts)) {
    209		perror("[FAIL] clock_gettime(CLOCK_MONOTONIC_RAW)");
    210		ksft_exit_fail();
    211	}
    212
    213	mono_raw_base = ts.tv_sec;
    214
    215	if (clock_gettime(CLOCK_MONOTONIC, &ts)) {
    216		perror("[FAIL] clock_gettime(CLOCK_MONOTONIC)");
    217		ksft_exit_fail();
    218	}
    219
    220	mono_base = ts.tv_sec;
    221
    222	user_hz = sysconf(_SC_CLK_TCK);
    223
    224	precision = get_sample(&sample) / 2.0;
    225	printf("CLOCK_MONOTONIC_RAW+CLOCK_MONOTONIC precision: %.0f ns\t\t",
    226	       1e9 * precision);
    227
    228	if (precision > MAX_PRECISION)
    229		ksft_exit_skip("precision: %.0f ns > MAX_PRECISION: %.0f ns\n",
    230				1e9 * precision, 1e9 * MAX_PRECISION);
    231
    232	printf("[OK]\n");
    233	srand(ts.tv_sec ^ ts.tv_nsec);
    234
    235	run_test(1, 0.0, 0.0);
    236}
    237
    238int main(int argc, char **argv)
    239{
    240	double freq_base, freq_step;
    241	int i, j, fails = 0;
    242
    243	init_test();
    244
    245	printf("Checking response to frequency step:\n");
    246	printf("  Step           1st interval              2nd interval\n");
    247	printf("             Freq    Dev     Max       Freq    Dev     Max\n");
    248
    249	for (i = 2; i >= 0; i--) {
    250		for (j = 0; j < 5; j++) {
    251			freq_base = (rand() % (1 << 24) - (1 << 23)) / 65536e6;
    252			freq_step = 10e-6 * (1 << (6 * i));
    253			fails += run_test(0, freq_base, freq_step);
    254		}
    255	}
    256
    257	set_frequency(0.0);
    258
    259	if (fails)
    260		return ksft_exit_fail();
    261
    262	return ksft_exit_pass();
    263}