cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

parse_vdso.c (6181B)


      1/*
      2 * parse_vdso.c: Linux reference vDSO parser
      3 * Written by Andrew Lutomirski, 2011-2014.
      4 *
      5 * This code is meant to be linked in to various programs that run on Linux.
      6 * As such, it is available with as few restrictions as possible.  This file
      7 * is licensed under the Creative Commons Zero License, version 1.0,
      8 * available at http://creativecommons.org/publicdomain/zero/1.0/legalcode
      9 *
     10 * The vDSO is a regular ELF DSO that the kernel maps into user space when
     11 * it starts a program.  It works equally well in statically and dynamically
     12 * linked binaries.
     13 *
     14 * This code is tested on x86.  In principle it should work on any
     15 * architecture that has a vDSO.
     16 */
     17
     18#include <stdbool.h>
     19#include <stdint.h>
     20#include <string.h>
     21#include <limits.h>
     22#include <elf.h>
     23
     24#include "parse_vdso.h"
     25
     26/* And here's the code. */
     27#ifndef ELF_BITS
     28# if ULONG_MAX > 0xffffffffUL
     29#  define ELF_BITS 64
     30# else
     31#  define ELF_BITS 32
     32# endif
     33#endif
     34
     35#define ELF_BITS_XFORM2(bits, x) Elf##bits##_##x
     36#define ELF_BITS_XFORM(bits, x) ELF_BITS_XFORM2(bits, x)
     37#define ELF(x) ELF_BITS_XFORM(ELF_BITS, x)
     38
     39static struct vdso_info
     40{
     41	bool valid;
     42
     43	/* Load information */
     44	uintptr_t load_addr;
     45	uintptr_t load_offset;  /* load_addr - recorded vaddr */
     46
     47	/* Symbol table */
     48	ELF(Sym) *symtab;
     49	const char *symstrings;
     50	ELF(Word) *bucket, *chain;
     51	ELF(Word) nbucket, nchain;
     52
     53	/* Version table */
     54	ELF(Versym) *versym;
     55	ELF(Verdef) *verdef;
     56} vdso_info;
     57
     58/* Straight from the ELF specification. */
     59static unsigned long elf_hash(const unsigned char *name)
     60{
     61	unsigned long h = 0, g;
     62	while (*name)
     63	{
     64		h = (h << 4) + *name++;
     65		if (g = h & 0xf0000000)
     66			h ^= g >> 24;
     67		h &= ~g;
     68	}
     69	return h;
     70}
     71
     72void vdso_init_from_sysinfo_ehdr(uintptr_t base)
     73{
     74	size_t i;
     75	bool found_vaddr = false;
     76
     77	vdso_info.valid = false;
     78
     79	vdso_info.load_addr = base;
     80
     81	ELF(Ehdr) *hdr = (ELF(Ehdr)*)base;
     82	if (hdr->e_ident[EI_CLASS] !=
     83	    (ELF_BITS == 32 ? ELFCLASS32 : ELFCLASS64)) {
     84		return;  /* Wrong ELF class -- check ELF_BITS */
     85	}
     86
     87	ELF(Phdr) *pt = (ELF(Phdr)*)(vdso_info.load_addr + hdr->e_phoff);
     88	ELF(Dyn) *dyn = 0;
     89
     90	/*
     91	 * We need two things from the segment table: the load offset
     92	 * and the dynamic table.
     93	 */
     94	for (i = 0; i < hdr->e_phnum; i++)
     95	{
     96		if (pt[i].p_type == PT_LOAD && !found_vaddr) {
     97			found_vaddr = true;
     98			vdso_info.load_offset =	base
     99				+ (uintptr_t)pt[i].p_offset
    100				- (uintptr_t)pt[i].p_vaddr;
    101		} else if (pt[i].p_type == PT_DYNAMIC) {
    102			dyn = (ELF(Dyn)*)(base + pt[i].p_offset);
    103		}
    104	}
    105
    106	if (!found_vaddr || !dyn)
    107		return;  /* Failed */
    108
    109	/*
    110	 * Fish out the useful bits of the dynamic table.
    111	 */
    112	ELF(Word) *hash = 0;
    113	vdso_info.symstrings = 0;
    114	vdso_info.symtab = 0;
    115	vdso_info.versym = 0;
    116	vdso_info.verdef = 0;
    117	for (i = 0; dyn[i].d_tag != DT_NULL; i++) {
    118		switch (dyn[i].d_tag) {
    119		case DT_STRTAB:
    120			vdso_info.symstrings = (const char *)
    121				((uintptr_t)dyn[i].d_un.d_ptr
    122				 + vdso_info.load_offset);
    123			break;
    124		case DT_SYMTAB:
    125			vdso_info.symtab = (ELF(Sym) *)
    126				((uintptr_t)dyn[i].d_un.d_ptr
    127				 + vdso_info.load_offset);
    128			break;
    129		case DT_HASH:
    130			hash = (ELF(Word) *)
    131				((uintptr_t)dyn[i].d_un.d_ptr
    132				 + vdso_info.load_offset);
    133			break;
    134		case DT_VERSYM:
    135			vdso_info.versym = (ELF(Versym) *)
    136				((uintptr_t)dyn[i].d_un.d_ptr
    137				 + vdso_info.load_offset);
    138			break;
    139		case DT_VERDEF:
    140			vdso_info.verdef = (ELF(Verdef) *)
    141				((uintptr_t)dyn[i].d_un.d_ptr
    142				 + vdso_info.load_offset);
    143			break;
    144		}
    145	}
    146	if (!vdso_info.symstrings || !vdso_info.symtab || !hash)
    147		return;  /* Failed */
    148
    149	if (!vdso_info.verdef)
    150		vdso_info.versym = 0;
    151
    152	/* Parse the hash table header. */
    153	vdso_info.nbucket = hash[0];
    154	vdso_info.nchain = hash[1];
    155	vdso_info.bucket = &hash[2];
    156	vdso_info.chain = &hash[vdso_info.nbucket + 2];
    157
    158	/* That's all we need. */
    159	vdso_info.valid = true;
    160}
    161
    162static bool vdso_match_version(ELF(Versym) ver,
    163			       const char *name, ELF(Word) hash)
    164{
    165	/*
    166	 * This is a helper function to check if the version indexed by
    167	 * ver matches name (which hashes to hash).
    168	 *
    169	 * The version definition table is a mess, and I don't know how
    170	 * to do this in better than linear time without allocating memory
    171	 * to build an index.  I also don't know why the table has
    172	 * variable size entries in the first place.
    173	 *
    174	 * For added fun, I can't find a comprehensible specification of how
    175	 * to parse all the weird flags in the table.
    176	 *
    177	 * So I just parse the whole table every time.
    178	 */
    179
    180	/* First step: find the version definition */
    181	ver &= 0x7fff;  /* Apparently bit 15 means "hidden" */
    182	ELF(Verdef) *def = vdso_info.verdef;
    183	while(true) {
    184		if ((def->vd_flags & VER_FLG_BASE) == 0
    185		    && (def->vd_ndx & 0x7fff) == ver)
    186			break;
    187
    188		if (def->vd_next == 0)
    189			return false;  /* No definition. */
    190
    191		def = (ELF(Verdef) *)((char *)def + def->vd_next);
    192	}
    193
    194	/* Now figure out whether it matches. */
    195	ELF(Verdaux) *aux = (ELF(Verdaux)*)((char *)def + def->vd_aux);
    196	return def->vd_hash == hash
    197		&& !strcmp(name, vdso_info.symstrings + aux->vda_name);
    198}
    199
    200void *vdso_sym(const char *version, const char *name)
    201{
    202	unsigned long ver_hash;
    203	if (!vdso_info.valid)
    204		return 0;
    205
    206	ver_hash = elf_hash(version);
    207	ELF(Word) chain = vdso_info.bucket[elf_hash(name) % vdso_info.nbucket];
    208
    209	for (; chain != STN_UNDEF; chain = vdso_info.chain[chain]) {
    210		ELF(Sym) *sym = &vdso_info.symtab[chain];
    211
    212		/* Check for a defined global or weak function w/ right name. */
    213		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
    214			continue;
    215		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
    216		    ELF64_ST_BIND(sym->st_info) != STB_WEAK)
    217			continue;
    218		if (sym->st_shndx == SHN_UNDEF)
    219			continue;
    220		if (strcmp(name, vdso_info.symstrings + sym->st_name))
    221			continue;
    222
    223		/* Check symbol version. */
    224		if (vdso_info.versym
    225		    && !vdso_match_version(vdso_info.versym[chain],
    226					   version, ver_hash))
    227			continue;
    228
    229		return (void *)(vdso_info.load_offset + sym->st_value);
    230	}
    231
    232	return 0;
    233}
    234
    235void vdso_init_from_auxv(void *auxv)
    236{
    237	ELF(auxv_t) *elf_auxv = auxv;
    238	for (int i = 0; elf_auxv[i].a_type != AT_NULL; i++)
    239	{
    240		if (elf_auxv[i].a_type == AT_SYSINFO_EHDR) {
    241			vdso_init_from_sysinfo_ehdr(elf_auxv[i].a_un.a_val);
    242			return;
    243		}
    244	}
    245
    246	vdso_info.valid = false;
    247}