summaryrefslogtreecommitdiffstats
path: root/kernel/sched
Commit message (Collapse)AuthorAgeFilesLines
...
| | * | | sched/headers: Reorganize, clean up and optimize kernel/sched/sched.h ↵Ingo Molnar2022-02-234-113/+46
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dependencies Remove all headers, except the ones required to make this header build standalone. Also include stats.h in sched.h explicitly - dependencies already require this. Summary of the build speedup gained through the last ~15 scheduler build & header dependency patches: Cumulative scheduler (kernel/sched/) build time speedup on a Linux distribution's config, which enables all scheduler features, compared to the vanilla kernel: _____________________________________________________________________________ | | Vanilla kernel (v5.13-rc7): |_____________________________________________________________________________ | | Performance counter stats for 'make -j96 kernel/sched/' (3 runs): | | 126,975,564,374 instructions # 1.45 insn per cycle ( +- 0.00% ) | 87,637,847,671 cycles # 3.959 GHz ( +- 0.30% ) | 22,136.96 msec cpu-clock # 7.499 CPUs utilized ( +- 0.29% ) | | 2.9520 +- 0.0169 seconds time elapsed ( +- 0.57% ) |_____________________________________________________________________________ | | Patched kernel: |_____________________________________________________________________________ | | Performance counter stats for 'make -j96 kernel/sched/' (3 runs): | | 50,420,496,914 instructions # 1.47 insn per cycle ( +- 0.00% ) | 34,234,322,038 cycles # 3.946 GHz ( +- 0.31% ) | 8,675.81 msec cpu-clock # 3.053 CPUs utilized ( +- 0.45% ) | | 2.8420 +- 0.0181 seconds time elapsed ( +- 0.64% ) |_____________________________________________________________________________ Summary: - CPU time used to build the scheduler dropped by -60.9%, a reduction from 22.1 clock-seconds to 8.7 clock-seconds. - Wall-clock time to build the scheduler dropped by -3.9%, a reduction from 2.95 seconds to 2.84 seconds. Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Peter Zijlstra <peterz@infradead.org>
| | * | | sched/headers: Reorganize, clean up and optimize ↵Ingo Molnar2022-02-231-2/+41
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | kernel/sched/build_utility.c dependencies Use all generic headers from kernel/sched/sched.h that are required for it to build. Sort the sections alphabetically. Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Peter Zijlstra <peterz@infradead.org>
| | * | | sched/headers: Reorganize, clean up and optimize kernel/sched/build_policy.c ↵Ingo Molnar2022-02-231-0/+24
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dependencies Use all generic headers from kernel/sched/sched.h that are required for it to build. Sort the sections alphabetically. Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Peter Zijlstra <peterz@infradead.org>
| | * | | sched/headers: Reorganize, clean up and optimize kernel/sched/fair.c ↵Ingo Molnar2022-02-231-0/+29
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dependencies Use all generic headers from kernel/sched/sched.h that are required for it to build. Sort the sections alphabetically. Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Peter Zijlstra <peterz@infradead.org>
| | * | | sched/headers: Reorganize, clean up and optimize kernel/sched/core.c ↵Ingo Molnar2022-02-231-11/+70
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dependencies Use all generic headers from kernel/sched/sched.h that are required for it to build. Sort the sections alphabetically. Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Peter Zijlstra <peterz@infradead.org>
| | * | | sched/headers: Standardize kernel/sched/sched.h header dependenciesIngo Molnar2022-02-236-11/+22
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | kernel/sched/sched.h is a weird mix of ad-hoc headers included in the middle of the header. Two of them rely on being included in the middle of kernel/sched/sched.h, due to definitions they require: - "stat.h" needs the rq definitions. - "autogroup.h" needs the task_group definition. Move the inclusion of these two files out of kernel/sched/sched.h, and include them in all files that require them. Move of the rest of the header dependencies to the top of the kernel/sched/sched.h file. Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Peter Zijlstra <peterz@infradead.org>
| | * | | sched/headers: Introduce kernel/sched/build_policy.c and build multiple .c ↵Ingo Molnar2022-02-239-15/+38
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | files there Similarly to kernel/sched/build_utility.c, collect all 'scheduling policy' related source code files into kernel/sched/build_policy.c: kernel/sched/idle.c kernel/sched/rt.c kernel/sched/cpudeadline.c kernel/sched/pelt.c kernel/sched/cputime.c kernel/sched/deadline.c With the exception of fair.c, which we continue to build as a separate file for build efficiency and parallelism reasons. Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Peter Zijlstra <peterz@infradead.org>
| | * | | sched/headers: Introduce kernel/sched/build_utility.c and build multiple .c ↵Ingo Molnar2022-02-2322-63/+139
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | files there Collect all utility functionality source code files into a single kernel/sched/build_utility.c file, via #include-ing the .c files: kernel/sched/clock.c kernel/sched/completion.c kernel/sched/loadavg.c kernel/sched/swait.c kernel/sched/wait_bit.c kernel/sched/wait.c CONFIG_CPU_FREQ: kernel/sched/cpufreq.c CONFIG_CPU_FREQ_GOV_SCHEDUTIL: kernel/sched/cpufreq_schedutil.c CONFIG_CGROUP_CPUACCT: kernel/sched/cpuacct.c CONFIG_SCHED_DEBUG: kernel/sched/debug.c CONFIG_SCHEDSTATS: kernel/sched/stats.c CONFIG_SMP: kernel/sched/cpupri.c kernel/sched/stop_task.c kernel/sched/topology.c CONFIG_SCHED_CORE: kernel/sched/core_sched.c CONFIG_PSI: kernel/sched/psi.c CONFIG_MEMBARRIER: kernel/sched/membarrier.c CONFIG_CPU_ISOLATION: kernel/sched/isolation.c CONFIG_SCHED_AUTOGROUP: kernel/sched/autogroup.c The goal is to amortize the 60+ KLOC header bloat from over a dozen build units into a single build unit. The build time of build_utility.c also roughly matches the build time of core.c and fair.c - allowing better load-balancing of scheduler-only rebuilds. Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Peter Zijlstra <peterz@infradead.org>
| | * | | sched/headers: Fix comment typo in kernel/sched/cpudeadline.cIngo Molnar2022-02-231-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | File name changed. Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Peter Zijlstra <peterz@infradead.org>
| | * | | sched/headers: sched/clock: Mark all functions 'notrace', remove ↵Ingo Molnar2022-02-232-24/+21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | CC_FLAGS_FTRACE build asymmetry Mark all non-init functions in kernel/sched.c as 'notrace', instead of turning them all off via CC_FLAGS_FTRACE. This is going to allow the treatment of this file as any other scheduler file, and it can be #include-ed in compound compilation units as well. Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Peter Zijlstra <peterz@infradead.org>
| | * | | sched/headers: Add header guard to kernel/sched/stats.h and ↵Ingo Molnar2022-02-232-0/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | kernel/sched/autogroup.h Protect against multiple inclusion. Also include "sched.h" in "stat.h", as it relies on it. Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Peter Zijlstra <peterz@infradead.org>
| | * | | sched/headers: Add header guard to kernel/sched/sched.hIngo Molnar2022-02-231-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Use the canonical header guard naming of the full path to the header. Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Peter Zijlstra <peterz@infradead.org>
| * | | | sched/topology: Remove redundant variable and fix incorrect type in ↵K Prateek Nayak2022-03-081-5/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | build_sched_domains While investigating the sparse warning reported by the LKP bot [1], observed that we have a redundant variable "top" in the function build_sched_domains that was introduced in the recent commit e496132ebedd ("sched/fair: Adjust the allowed NUMA imbalance when SD_NUMA spans multiple LLCs") The existing variable "sd" suffices which allows us to remove the redundant variable "top" while annotating the other variable "top_p" with the "__rcu" annotation to silence the sparse warning. [1] https://lore.kernel.org/lkml/202202170853.9vofgC3O-lkp@intel.com/ Fixes: e496132ebedd ("sched/fair: Adjust the allowed NUMA imbalance when SD_NUMA spans multiple LLCs") Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Link: https://lore.kernel.org/r/20220218162743.1134-1-kprateek.nayak@amd.com
| * | | | sched/deadline,rt: Remove unused parameter from pick_next_[rt|dl]_entity()Dietmar Eggemann2022-03-082-6/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The `struct rq *rq` parameter isn't used. Remove it. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/20220302183433.333029-7-dietmar.eggemann@arm.com
| * | | | sched/deadline,rt: Remove unused functions for !CONFIG_SMPDietmar Eggemann2022-03-082-20/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The need_pull_[rt|dl]_task() and pull_[rt|dl]_task() functions are not used on a !CONFIG_SMP system. Remove them. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/20220302183433.333029-6-dietmar.eggemann@arm.com
| * | | | sched/deadline: Use __node_2_[pdl|dle]() and rb_first_cached() consistentlyDietmar Eggemann2022-03-081-12/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Deploy __node_2_pdl(node), __node_2_dle(node) and rb_first_cached() consistently throughout the sched class source file which makes the code at least easier to read. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/20220302183433.333029-5-dietmar.eggemann@arm.com
| * | | | sched/deadline: Merge dl_task_can_attach() and dl_cpu_busy()Dietmar Eggemann2022-03-083-44/+24
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Both functions are doing almost the same, that is checking if admission control is still respected. With exclusive cpusets, dl_task_can_attach() checks if the destination cpuset (i.e. its root domain) has enough CPU capacity to accommodate the task. dl_cpu_busy() checks if there is enough CPU capacity in the cpuset in case the CPU is hot-plugged out. dl_task_can_attach() is used to check if a task can be admitted while dl_cpu_busy() is used to check if a CPU can be hotplugged out. Make dl_cpu_busy() able to deal with a task and use it instead of dl_task_can_attach() in task_can_attach(). Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/20220302183433.333029-4-dietmar.eggemann@arm.com
| * | | | sched/deadline: Move bandwidth mgmt and reclaim functions into sched class ↵Dietmar Eggemann2022-03-082-49/+44
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | source file Move the deadline bandwidth management (admission control) functions __dl_add(), __dl_sub() and __dl_overflow() as well as the bandwidth reclaim function __dl_update() from private task scheduler header file to the deadline sched class source file. The functions are only used internally so they don't have to be exported. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/20220302183433.333029-3-dietmar.eggemann@arm.com
| * | | | sched/deadline: Remove unused def_dl_bandwidthDietmar Eggemann2022-03-083-9/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Since commit 1724813d9f2c ("sched/deadline: Remove the sysctl_sched_dl knobs") the default deadline bandwidth control structure has no purpose. Remove it. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/20220302183433.333029-2-dietmar.eggemann@arm.com
| * | | | sched/tracing: Don't re-read p->state when emitting sched_switch eventValentin Schneider2022-03-011-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | As of commit c6e7bd7afaeb ("sched/core: Optimize ttwu() spinning on p->on_cpu") the following sequence becomes possible: p->__state = TASK_INTERRUPTIBLE; __schedule() deactivate_task(p); ttwu() READ !p->on_rq p->__state=TASK_WAKING trace_sched_switch() __trace_sched_switch_state() task_state_index() return 0; TASK_WAKING isn't in TASK_REPORT, so the task appears as TASK_RUNNING in the trace event. Prevent this by pushing the value read from __schedule() down the trace event. Reported-by: Abhijeet Dharmapurikar <adharmap@quicinc.com> Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Link: https://lore.kernel.org/r/20220120162520.570782-2-valentin.schneider@arm.com
| * | | | sched/rt: Plug rt_mutex_setprio() vs push_rt_task() raceValentin Schneider2022-03-012-16/+28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | John reported that push_rt_task() can end up invoking find_lowest_rq(rq->curr) when curr is not an RT task (in this case a CFS one), which causes mayhem down convert_prio(). This can happen when current gets demoted to e.g. CFS when releasing an rt_mutex, and the local CPU gets hit with an rto_push_work irqwork before getting the chance to reschedule. Exactly who triggers this work isn't entirely clear to me - switched_from_rt() only invokes rt_queue_pull_task() if there are no RT tasks on the local RQ, which means the local CPU can't be in the rto_mask. My current suspected sequence is something along the lines of the below, with the demoted task being current. mark_wakeup_next_waiter() rt_mutex_adjust_prio() rt_mutex_setprio() // deboost originally-CFS task check_class_changed() switched_from_rt() // Only rt_queue_pull_task() if !rq->rt.rt_nr_running switched_to_fair() // Sets need_resched __balance_callbacks() // if pull_rt_task(), tell_cpu_to_push() can't select local CPU per the above raw_spin_rq_unlock(rq) // need_resched is set, so task_woken_rt() can't // invoke push_rt_tasks(). Best I can come up with is // local CPU has rt_nr_migratory >= 2 after the demotion, so stays // in the rto_mask, and then: <some other CPU running rto_push_irq_work_func() queues rto_push_work on this CPU> push_rt_task() // breakage follows here as rq->curr is CFS Move an existing check to check rq->curr vs the next pushable task's priority before getting anywhere near find_lowest_rq(). While at it, add an explicit sched_class of rq->curr check prior to invoking find_lowest_rq(rq->curr). Align the DL logic to also reschedule regardless of next_task's migratability. Fixes: a7c81556ec4d ("sched: Fix migrate_disable() vs rt/dl balancing") Reported-by: John Keeping <john@metanate.com> Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Tested-by: John Keeping <john@metanate.com> Link: https://lore.kernel.org/r/20220127154059.974729-1-valentin.schneider@arm.com
| * | | | sched/cpuacct: Remove redundant RCU read lockChengming Zhou2022-03-011-2/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The cpuacct_account_field() and it's cgroup v2 wrapper cgroup_account_cputime_field() is only called from cputime in task_group_account_field(), which is already in RCU read-side critical section. So remove these redundant RCU read lock. Suggested-by: Tejun Heo <tj@kernel.org> Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220220051426.5274-3-zhouchengming@bytedance.com
| * | | | sched/cpuacct: Optimize away RCU read lockChengming Zhou2022-03-011-3/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Since cpuacct_charge() is called from the scheduler update_curr(), we must already have rq lock held, then the RCU read lock can be optimized away. And do the same thing in it's wrapper cgroup_account_cputime(), but we can't use lockdep_assert_rq_held() there, which defined in kernel/sched/sched.h. Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220220051426.5274-2-zhouchengming@bytedance.com
| * | | | sched/cpuacct: Fix charge percpu cpuusageChengming Zhou2022-03-011-1/+2
| |/ / / | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The cpuacct_account_field() is always called by the current task itself, so it's ok to use __this_cpu_add() to charge the tick time. But cpuacct_charge() maybe called by update_curr() in load_balance() on a random CPU, different from the CPU on which the task is running. So __this_cpu_add() will charge that cputime to a random incorrect CPU. Fixes: 73e6aafd9ea8 ("sched/cpuacct: Simplify the cpuacct code") Reported-by: Minye Zhu <zhuminye@bytedance.com> Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Tejun Heo <tj@kernel.org> Link: https://lore.kernel.org/r/20220220051426.5274-1-zhouchengming@bytedance.com
| * | | Merge tag 'v5.17-rc5' into sched/core, to resolve conflictsIngo Molnar2022-02-216-102/+135
| |\| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | New conflicts in sched/core due to the following upstream fixes: 44585f7bc0cb ("psi: fix "defined but not used" warnings when CONFIG_PROC_FS=n") a06247c6804f ("psi: Fix uaf issue when psi trigger is destroyed while being polled") Conflicts: include/linux/psi_types.h kernel/sched/psi.c Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | | sched/preempt: Add PREEMPT_DYNAMIC using static keysMark Rutland2022-02-191-2/+52
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Where an architecture selects HAVE_STATIC_CALL but not HAVE_STATIC_CALL_INLINE, each static call has an out-of-line trampoline which will either branch to a callee or return to the caller. On such architectures, a number of constraints can conspire to make those trampolines more complicated and potentially less useful than we'd like. For example: * Hardware and software control flow integrity schemes can require the addition of "landing pad" instructions (e.g. `BTI` for arm64), which will also be present at the "real" callee. * Limited branch ranges can require that trampolines generate or load an address into a register and perform an indirect branch (or at least have a slow path that does so). This loses some of the benefits of having a direct branch. * Interaction with SW CFI schemes can be complicated and fragile, e.g. requiring that we can recognise idiomatic codegen and remove indirections understand, at least until clang proves more helpful mechanisms for dealing with this. For PREEMPT_DYNAMIC, we don't need the full power of static calls, as we really only need to enable/disable specific preemption functions. We can achieve the same effect without a number of the pain points above by using static keys to fold early returns into the preemption functions themselves rather than in an out-of-line trampoline, effectively inlining the trampoline into the start of the function. For arm64, this results in good code generation. For example, the dynamic_cond_resched() wrapper looks as follows when enabled. When disabled, the first `B` is replaced with a `NOP`, resulting in an early return. | <dynamic_cond_resched>: | bti c | b <dynamic_cond_resched+0x10> // or `nop` | mov w0, #0x0 | ret | mrs x0, sp_el0 | ldr x0, [x0, #8] | cbnz x0, <dynamic_cond_resched+0x8> | paciasp | stp x29, x30, [sp, #-16]! | mov x29, sp | bl <preempt_schedule_common> | mov w0, #0x1 | ldp x29, x30, [sp], #16 | autiasp | ret ... compared to the regular form of the function: | <__cond_resched>: | bti c | mrs x0, sp_el0 | ldr x1, [x0, #8] | cbz x1, <__cond_resched+0x18> | mov w0, #0x0 | ret | paciasp | stp x29, x30, [sp, #-16]! | mov x29, sp | bl <preempt_schedule_common> | mov w0, #0x1 | ldp x29, x30, [sp], #16 | autiasp | ret Any architecture which implements static keys should be able to use this to implement PREEMPT_DYNAMIC with similar cost to non-inlined static calls. Since this is likely to have greater overhead than (inlined) static calls, PREEMPT_DYNAMIC is only defaulted to enabled when HAVE_PREEMPT_DYNAMIC_CALL is selected. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20220214165216.2231574-6-mark.rutland@arm.com
| * | | sched/preempt: Decouple HAVE_PREEMPT_DYNAMIC from GENERIC_ENTRYMark Rutland2022-02-191-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that the enabled/disabled states for the preemption functions are declared alongside their definitions, the core PREEMPT_DYNAMIC logic is no longer tied to GENERIC_ENTRY, and can safely be selected so long as an architecture provides enabled/disabled states for irqentry_exit_cond_resched(). Make it possible to select HAVE_PREEMPT_DYNAMIC without GENERIC_ENTRY. For existing users of HAVE_PREEMPT_DYNAMIC there should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20220214165216.2231574-5-mark.rutland@arm.com
| * | | sched/preempt: Refactor sched_dynamic_update()Mark Rutland2022-02-191-22/+37
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently sched_dynamic_update needs to open-code the enabled/disabled function names for each preemption model it supports, when in practice this is a boolean enabled/disabled state for each function. Make this clearer and avoid repetition by defining the enabled/disabled states at the function definition, and using helper macros to perform the static_call_update(). Where x86 currently overrides the enabled function, it is made to provide both the enabled and disabled states for consistency, with defaults provided by the core code otherwise. In subsequent patches this will allow us to support PREEMPT_DYNAMIC without static calls. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20220214165216.2231574-3-mark.rutland@arm.com
| * | | sched/preempt: Move PREEMPT_DYNAMIC logic laterMark Rutland2022-02-191-136/+136
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The PREEMPT_DYNAMIC logic in kernel/sched/core.c patches static calls for a bunch of preemption functions. While most are defined prior to this, the definition of cond_resched() is later in the file, and so we only have its declarations from include/linux/sched.h. In subsequent patches we'd like to define some macros alongside the definition of each of the preemption functions, which we can use within sched_dynamic_update(). For this to be possible, the PREEMPT_DYNAMIC logic needs to be placed after the various preemption functions. As a preparatory step, this patch moves the PREEMPT_DYNAMIC logic after the various preemption functions, with no other changes -- this is purely a move. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20220214165216.2231574-2-mark.rutland@arm.com
| * | | sched/isolation: Split housekeeping cpumask per isolation featuresFrederic Weisbecker2022-02-161-29/+62
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | To prepare for supporting each housekeeping feature toward cpuset, split the global housekeeping cpumask per HK_TYPE_* entry. This will later allow, for example, to runtime modify the cpulist passed through "isolcpus=", "nohz_full=" and "rcu_nocbs=" kernel boot parameters. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Juri Lelli <juri.lelli@redhat.com> Reviewed-by: Phil Auld <pauld@redhat.com> Link: https://lore.kernel.org/r/20220207155910.527133-9-frederic@kernel.org
| * | | sched/isolation: Fix housekeeping_mask memory leakFrederic Weisbecker2022-02-161-9/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If "nohz_full=" or "isolcpus=nohz" are called with CONFIG_NO_HZ_FULL=n, housekeeping_mask doesn't get freed despite it being unused if housekeeping_setup() is called for the first time. Check this scenario first to fix this, so that no useless allocation is performed. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Juri Lelli <juri.lelli@redhat.com> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Phil Auld <pauld@redhat.com> Link: https://lore.kernel.org/r/20220207155910.527133-8-frederic@kernel.org
| * | | sched/isolation: Consolidate error handlingFrederic Weisbecker2022-02-161-10/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Centralize the mask freeing and return value for the error path. This makes potential leaks more visible. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Juri Lelli <juri.lelli@redhat.com> Reviewed-by: Phil Auld <pauld@redhat.com> Link: https://lore.kernel.org/r/20220207155910.527133-7-frederic@kernel.org
| * | | sched/isolation: Consolidate check for housekeeping minimum serviceFrederic Weisbecker2022-02-161-18/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There can be two subsequent calls to housekeeping_setup() due to "nohz_full=" and "isolcpus=" that can mix up. The two passes each have their own way to deal with an empty housekeeping set of CPUs. Consolidate this part and remove the awful "tmp" based naming. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Juri Lelli <juri.lelli@redhat.com> Reviewed-by: Phil Auld <pauld@redhat.com> Link: https://lore.kernel.org/r/20220207155910.527133-6-frederic@kernel.org
| * | | sched/isolation: Use single feature type while referring to housekeeping cpumaskFrederic Weisbecker2022-02-164-25/+37
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Refer to housekeeping APIs using single feature types instead of flags. This prevents from passing multiple isolation features at once to housekeeping interfaces, which soon won't be possible anymore as each isolation features will have their own cpumask. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Juri Lelli <juri.lelli@redhat.com> Reviewed-by: Phil Auld <pauld@redhat.com> Link: https://lore.kernel.org/r/20220207155910.527133-5-frederic@kernel.org
| * | | psi: fix possible trigger missing in the windowZhaoyang Huang2022-02-161-16/+30
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When a new threshold breaching stall happens after a psi event was generated and within the window duration, the new event is not generated because the events are rate-limited to one per window. If after that no new stall is recorded then the event will not be generated even after rate-limiting duration has passed. This is happening because with no new stall, window_update will not be called even though threshold was previously breached. To fix this, record threshold breaching occurrence and generate the event once window duration is passed. Suggested-by: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Zhaoyang Huang <zhaoyang.huang@unisoc.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Suren Baghdasaryan <surenb@google.com> Link: https://lore.kernel.org/r/1643093818-19835-1-git-send-email-huangzhaoyang@gmail.com
| * | | sched/numa: Avoid migrating task to CPU-less nodeHuang Ying2022-02-161-5/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In a typical memory tiering system, there's no CPU in slow (PMEM) NUMA nodes. But if the number of the hint page faults on a PMEM node is the max for a task, The current NUMA balancing policy may try to place the task on the PMEM node instead of DRAM node. This is unreasonable, because there's no CPU in PMEM NUMA nodes. To fix this, CPU-less nodes are ignored when searching the migration target node for a task in this patch. To test the patch, we run a workload that accesses more memory in PMEM node than memory in DRAM node. Without the patch, the PMEM node will be chosen as preferred node in task_numa_placement(). While the DRAM node will be chosen instead with the patch. Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20220214121553.582248-2-ying.huang@intel.com
| * | | sched/numa: Fix NUMA topology for systems with CPU-less nodesHuang Ying2022-02-164-95/+137
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The NUMA topology parameters (sched_numa_topology_type, sched_domains_numa_levels, and sched_max_numa_distance, etc.) identified by scheduler may be wrong for systems with CPU-less nodes. For example, the ACPI SLIT of a system with CPU-less persistent memory (Intel Optane DCPMM) nodes is as follows, [000h 0000 4] Signature : "SLIT" [System Locality Information Table] [004h 0004 4] Table Length : 0000042C [008h 0008 1] Revision : 01 [009h 0009 1] Checksum : 59 [00Ah 0010 6] Oem ID : "XXXX" [010h 0016 8] Oem Table ID : "XXXXXXX" [018h 0024 4] Oem Revision : 00000001 [01Ch 0028 4] Asl Compiler ID : "INTL" [020h 0032 4] Asl Compiler Revision : 20091013 [024h 0036 8] Localities : 0000000000000004 [02Ch 0044 4] Locality 0 : 0A 15 11 1C [030h 0048 4] Locality 1 : 15 0A 1C 11 [034h 0052 4] Locality 2 : 11 1C 0A 1C [038h 0056 4] Locality 3 : 1C 11 1C 0A While the `numactl -H` output is as follows, available: 4 nodes (0-3) node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 node 0 size: 64136 MB node 0 free: 5981 MB node 1 cpus: 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 node 1 size: 64466 MB node 1 free: 10415 MB node 2 cpus: node 2 size: 253952 MB node 2 free: 253920 MB node 3 cpus: node 3 size: 253952 MB node 3 free: 253951 MB node distances: node 0 1 2 3 0: 10 21 17 28 1: 21 10 28 17 2: 17 28 10 28 3: 28 17 28 10 In this system, there are only 2 sockets. In each memory controller, both DRAM and PMEM DIMMs are installed. Although the physical NUMA topology is simple, the logical NUMA topology becomes a little complex. Because both the distance(0, 1) and distance (1, 3) are less than the distance (0, 3), it appears that node 1 sits between node 0 and node 3. And the whole system appears to be a glueless mesh NUMA topology type. But it's definitely not, there is even no CPU in node 3. This isn't a practical problem now yet. Because the PMEM nodes (node 2 and node 3 in example system) are offlined by default during system boot. So init_numa_topology_type() called during system boot will ignore them and set sched_numa_topology_type to NUMA_DIRECT. And init_numa_topology_type() is only called at runtime when a CPU of a never-onlined-before node gets plugged in. And there's no CPU in the PMEM nodes. But it appears better to fix this to make the code more robust. To test the potential problem. We have used a debug patch to call init_numa_topology_type() when the PMEM node is onlined (in __set_migration_target_nodes()). With that, the NUMA parameters identified by scheduler is as follows, sched_numa_topology_type: NUMA_GLUELESS_MESH sched_domains_numa_levels: 4 sched_max_numa_distance: 28 To fix the issue, the CPU-less nodes are ignored when the NUMA topology parameters are identified. Because a node may become CPU-less or not at run time because of CPU hotplug, the NUMA topology parameters need to be re-initialized at runtime for CPU hotplug too. With the patch, the NUMA parameters identified for the example system above is as follows, sched_numa_topology_type: NUMA_DIRECT sched_domains_numa_levels: 2 sched_max_numa_distance: 21 Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20220214121553.582248-1-ying.huang@intel.com
| * | | sched: replace cpumask_weight with cpumask_empty where appropriateYury Norov2022-02-162-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In some places, kernel/sched code calls cpumask_weight() to check if any bit of a given cpumask is set. We can do it more efficiently with cpumask_empty() because cpumask_empty() stops traversing the cpumask as soon as it finds first set bit, while cpumask_weight() counts all bits unconditionally. Signed-off-by: Yury Norov <yury.norov@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20220210224933.379149-23-yury.norov@gmail.com
| * | | sched/fair: Adjust the allowed NUMA imbalance when SD_NUMA spans multiple LLCsMel Gorman2022-02-112-10/+65
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit 7d2b5dd0bcc4 ("sched/numa: Allow a floating imbalance between NUMA nodes") allowed an imbalance between NUMA nodes such that communicating tasks would not be pulled apart by the load balancer. This works fine when there is a 1:1 relationship between LLC and node but can be suboptimal for multiple LLCs if independent tasks prematurely use CPUs sharing cache. Zen* has multiple LLCs per node with local memory channels and due to the allowed imbalance, it's far harder to tune some workloads to run optimally than it is on hardware that has 1 LLC per node. This patch allows an imbalance to exist up to the point where LLCs should be balanced between nodes. On a Zen3 machine running STREAM parallelised with OMP to have on instance per LLC the results and without binding, the results are 5.17.0-rc0 5.17.0-rc0 vanilla sched-numaimb-v6 MB/sec copy-16 162596.94 ( 0.00%) 580559.74 ( 257.05%) MB/sec scale-16 136901.28 ( 0.00%) 374450.52 ( 173.52%) MB/sec add-16 157300.70 ( 0.00%) 564113.76 ( 258.62%) MB/sec triad-16 151446.88 ( 0.00%) 564304.24 ( 272.61%) STREAM can use directives to force the spread if the OpenMP is new enough but that doesn't help if an application uses threads and it's not known in advance how many threads will be created. Coremark is a CPU and cache intensive benchmark parallelised with threads. When running with 1 thread per core, the vanilla kernel allows threads to contend on cache. With the patch; 5.17.0-rc0 5.17.0-rc0 vanilla sched-numaimb-v5 Min Score-16 368239.36 ( 0.00%) 389816.06 ( 5.86%) Hmean Score-16 388607.33 ( 0.00%) 427877.08 * 10.11%* Max Score-16 408945.69 ( 0.00%) 481022.17 ( 17.62%) Stddev Score-16 15247.04 ( 0.00%) 24966.82 ( -63.75%) CoeffVar Score-16 3.92 ( 0.00%) 5.82 ( -48.48%) It can also make a big difference for semi-realistic workloads like specjbb which can execute arbitrary numbers of threads without advance knowledge of how they should be placed. Even in cases where the average performance is neutral, the results are more stable. 5.17.0-rc0 5.17.0-rc0 vanilla sched-numaimb-v6 Hmean tput-1 71631.55 ( 0.00%) 73065.57 ( 2.00%) Hmean tput-8 582758.78 ( 0.00%) 556777.23 ( -4.46%) Hmean tput-16 1020372.75 ( 0.00%) 1009995.26 ( -1.02%) Hmean tput-24 1416430.67 ( 0.00%) 1398700.11 ( -1.25%) Hmean tput-32 1687702.72 ( 0.00%) 1671357.04 ( -0.97%) Hmean tput-40 1798094.90 ( 0.00%) 2015616.46 * 12.10%* Hmean tput-48 1972731.77 ( 0.00%) 2333233.72 ( 18.27%) Hmean tput-56 2386872.38 ( 0.00%) 2759483.38 ( 15.61%) Hmean tput-64 2909475.33 ( 0.00%) 2925074.69 ( 0.54%) Hmean tput-72 2585071.36 ( 0.00%) 2962443.97 ( 14.60%) Hmean tput-80 2994387.24 ( 0.00%) 3015980.59 ( 0.72%) Hmean tput-88 3061408.57 ( 0.00%) 3010296.16 ( -1.67%) Hmean tput-96 3052394.82 ( 0.00%) 2784743.41 ( -8.77%) Hmean tput-104 2997814.76 ( 0.00%) 2758184.50 ( -7.99%) Hmean tput-112 2955353.29 ( 0.00%) 2859705.09 ( -3.24%) Hmean tput-120 2889770.71 ( 0.00%) 2764478.46 ( -4.34%) Hmean tput-128 2871713.84 ( 0.00%) 2750136.73 ( -4.23%) Stddev tput-1 5325.93 ( 0.00%) 2002.53 ( 62.40%) Stddev tput-8 6630.54 ( 0.00%) 10905.00 ( -64.47%) Stddev tput-16 25608.58 ( 0.00%) 6851.16 ( 73.25%) Stddev tput-24 12117.69 ( 0.00%) 4227.79 ( 65.11%) Stddev tput-32 27577.16 ( 0.00%) 8761.05 ( 68.23%) Stddev tput-40 59505.86 ( 0.00%) 2048.49 ( 96.56%) Stddev tput-48 168330.30 ( 0.00%) 93058.08 ( 44.72%) Stddev tput-56 219540.39 ( 0.00%) 30687.02 ( 86.02%) Stddev tput-64 121750.35 ( 0.00%) 9617.36 ( 92.10%) Stddev tput-72 223387.05 ( 0.00%) 34081.13 ( 84.74%) Stddev tput-80 128198.46 ( 0.00%) 22565.19 ( 82.40%) Stddev tput-88 136665.36 ( 0.00%) 27905.97 ( 79.58%) Stddev tput-96 111925.81 ( 0.00%) 99615.79 ( 11.00%) Stddev tput-104 146455.96 ( 0.00%) 28861.98 ( 80.29%) Stddev tput-112 88740.49 ( 0.00%) 58288.23 ( 34.32%) Stddev tput-120 186384.86 ( 0.00%) 45812.03 ( 75.42%) Stddev tput-128 78761.09 ( 0.00%) 57418.48 ( 27.10%) Similarly, for embarassingly parallel problems like NPB-ep, there are improvements due to better spreading across LLC when the machine is not fully utilised. vanilla sched-numaimb-v6 Min ep.D 31.79 ( 0.00%) 26.11 ( 17.87%) Amean ep.D 31.86 ( 0.00%) 26.17 * 17.86%* Stddev ep.D 0.07 ( 0.00%) 0.05 ( 24.41%) CoeffVar ep.D 0.22 ( 0.00%) 0.20 ( 7.97%) Max ep.D 31.93 ( 0.00%) 26.21 ( 17.91%) Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Gautham R. Shenoy <gautham.shenoy@amd.com> Tested-by: K Prateek Nayak <kprateek.nayak@amd.com> Link: https://lore.kernel.org/r/20220208094334.16379-3-mgorman@techsingularity.net
| * | | sched/fair: Improve consistency of allowed NUMA balance calculationsMel Gorman2022-02-111-8/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There are inconsistencies when determining if a NUMA imbalance is allowed that should be corrected. o allow_numa_imbalance changes types and is not always examining the destination group so both the type should be corrected as well as the naming. o find_idlest_group uses the sched_domain's weight instead of the group weight which is different to find_busiest_group o find_busiest_group uses the source group instead of the destination which is different to task_numa_find_cpu o Both find_idlest_group and find_busiest_group should account for the number of running tasks if a move was allowed to be consistent with task_numa_find_cpu Fixes: 7d2b5dd0bcc4 ("sched/numa: Allow a floating imbalance between NUMA nodes") Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Gautham R. Shenoy <gautham.shenoy@amd.com> Link: https://lore.kernel.org/r/20220208094334.16379-2-mgorman@techsingularity.net
| * | | sched: move autogroup sysctls into its own fileZhen Ni2022-02-022-0/+24
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | move autogroup sysctls to autogroup.c and use the new register_sysctl_init() to register the sysctl interface. Signed-off-by: Zhen Ni <nizhen@uniontech.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20220128095025.8745-1-nizhen@uniontech.com
| * | | psi: Fix "defined but not used" warnings when CONFIG_PROC_FS=nSuren Baghdasaryan2022-01-271-38/+41
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When CONFIG_PROC_FS is disabled psi code generates the following warnings: kernel/sched/psi.c:1364:30: warning: 'psi_cpu_proc_ops' defined but not used [-Wunused-const-variable=] 1364 | static const struct proc_ops psi_cpu_proc_ops = { | ^~~~~~~~~~~~~~~~ kernel/sched/psi.c:1355:30: warning: 'psi_memory_proc_ops' defined but not used [-Wunused-const-variable=] 1355 | static const struct proc_ops psi_memory_proc_ops = { | ^~~~~~~~~~~~~~~~~~~ kernel/sched/psi.c:1346:30: warning: 'psi_io_proc_ops' defined but not used [-Wunused-const-variable=] 1346 | static const struct proc_ops psi_io_proc_ops = { | ^~~~~~~~~~~~~~~ Make definitions of these structures and related functions conditional on CONFIG_PROC_FS config. Fixes: 0e94682b73bf ("psi: introduce psi monitor") Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20220119223940.787748-3-surenb@google.com
| * | | sched/uclamp: Fix iowait boost escaping uclamp restrictionQais Yousef2022-01-271-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | iowait_boost signal is applied independently of util and doesn't take into account uclamp settings of the rq. An io heavy task that is capped by uclamp_max could still request higher frequency because sugov_iowait_apply() doesn't clamp the boost via uclamp_rq_util_with() like effective_cpu_util() does. Make sure that iowait_boost honours uclamp requests by calling uclamp_rq_util_with() when applying the boost. Fixes: 982d9cdc22c9 ("sched/cpufreq, sched/uclamp: Add clamps for FAIR and RT tasks") Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Link: https://lore.kernel.org/r/20211216225320.2957053-3-qais.yousef@arm.com
| * | | sched/sugov: Ignore 'busy' filter when rq is capped by uclamp_maxQais Yousef2022-01-272-84/+107
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | sugov_update_single_{freq, perf}() contains a 'busy' filter that ensures we don't bring the frqeuency down if there's no idle time (CPU is busy). The problem is that with uclamp_max we will have scenarios where a busy task is capped to run at a lower frequency and this filter prevents applying the capping when this task starts running. We handle this by skipping the filter when uclamp is enabled and the rq is being capped by uclamp_max. We introduce a new function uclamp_rq_is_capped() to help detecting when this capping is taking effect. Some code shuffling was required to allow using cpu_util_{cfs, rt}() in this new function. On 2 Core SMT2 Intel laptop I see: Without this patch: uclampset -M 0 sysbench --test=cpu --threads = 4 run produces a score of ~3200 consistently. Which is the highest possible. Compiling the kernel also results in frequency running at max 3.1GHz all the time - running uclampset -M 400 to cap it has no effect without this patch. With this patch: uclampset -M 0 sysbench --test=cpu --threads = 4 run produces a score of ~1100 with some outliers in ~1700. Uclamp max aggregates the performance requirements, so having high values sometimes is expected if some other task happens to require that frequency starts running at the same time. When compiling the kernel with uclampset -M 400 I can see the frequencies mostly in the ~2GHz region. Helpful to conserve power and prevent heating when not plugged in. Fixes: 982d9cdc22c9 ("sched/cpufreq, sched/uclamp: Add clamps for FAIR and RT tasks") Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20211216225320.2957053-2-qais.yousef@arm.com
| * | | sched/core: Export pelt_thermal_tpQais Yousef2022-01-271-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We can't use this tracepoint in modules without having the symbol exported first, fix that. Fixes: 765047932f15 ("sched/pelt: Add support to track thermal pressure") Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20211028115005.873539-1-qais.yousef@arm.com
| * | | sched/numa: initialize numa statistics when forking new taskHonglei Wang2022-01-271-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The child processes will inherit numa_pages_migrated and total_numa_faults from the parent. It means even if there is no numa fault happen on the child, the statistics in /proc/$pid of the child process might show huge amount. This is a bit weird. Let's initialize them when do fork. Signed-off-by: Honglei Wang <wanghonglei@didichuxing.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@suse.de> Link: https://lore.kernel.org/r/20220113133920.49900-1-wanghonglei@didichuxing.com
| * | | sched/debug: Remove mpol_get/put and task_lock/unlock from sched_show_numaBharata B Rao2022-01-271-10/+0
| | |/ | |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The older format of /proc/pid/sched printed home node info which required the mempolicy and task lock around mpol_get(). However the format has changed since then and there is no need for sched_show_numa() any more to have mempolicy argument, asssociated mpol_get/put and task_lock/unlock. Remove them. Fixes: 397f2378f1361 ("sched/numa: Fix numa balancing stats in /proc/pid/sched") Signed-off-by: Bharata B Rao <bharata@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Acked-by: Mel Gorman <mgorman@suse.de> Link: https://lore.kernel.org/r/20220118050515.2973-1-bharata@amd.com
* | | Merge tag 'for-5.18/block-2022-03-18' of git://git.kernel.dk/linux-blockLinus Torvalds2022-03-211-5/+2
|\ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull block updates from Jens Axboe: - BFQ cleanups and fixes (Yu, Zhang, Yahu, Paolo) - blk-rq-qos completion fix (Tejun) - blk-cgroup merge fix (Tejun) - Add offline error return value to distinguish it from an IO error on the device (Song) - IO stats fixes (Zhang, Christoph) - blkcg refcount fixes (Ming, Yu) - Fix for indefinite dispatch loop softlockup (Shin'ichiro) - blk-mq hardware queue management improvements (Ming) - sbitmap dead code removal (Ming, John) - Plugging merge improvements (me) - Show blk-crypto capabilities in sysfs (Eric) - Multiple delayed queue run improvement (David) - Block throttling fixes (Ming) - Start deprecating auto module loading based on dev_t (Christoph) - bio allocation improvements (Christoph, Chaitanya) - Get rid of bio_devname (Christoph) - bio clone improvements (Christoph) - Block plugging improvements (Christoph) - Get rid of genhd.h header (Christoph) - Ensure drivers use appropriate flush helpers (Christoph) - Refcounting improvements (Christoph) - Queue initialization and teardown improvements (Ming, Christoph) - Misc fixes/improvements (Barry, Chaitanya, Colin, Dan, Jiapeng, Lukas, Nian, Yang, Eric, Chengming) * tag 'for-5.18/block-2022-03-18' of git://git.kernel.dk/linux-block: (127 commits) block: cancel all throttled bios in del_gendisk() block: let blkcg_gq grab request queue's refcnt block: avoid use-after-free on throttle data block: limit request dispatch loop duration block/bfq-iosched: Fix spelling mistake "tenative" -> "tentative" sr: simplify the local variable initialization in sr_block_open() block: don't merge across cgroup boundaries if blkcg is enabled block: fix rq-qos breakage from skipping rq_qos_done_bio() block: flush plug based on hardware and software queue order block: ensure plug merging checks the correct queue at least once block: move rq_qos_exit() into disk_release() block: do more work in elevator_exit block: move blk_exit_queue into disk_release block: move q_usage_counter release into blk_queue_release block: don't remove hctx debugfs dir from blk_mq_exit_queue block: move blkcg initialization/destroy into disk allocation/release handler sr: implement ->free_disk to simplify refcounting sd: implement ->free_disk to simplify refcounting sd: delay calling free_opal_dev sd: call sd_zbc_release_disk before releasing the scsi_device reference ...
| * | | block: check that there is a plug in blk_flush_plugChristoph Hellwig2022-02-021-5/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Rename blk_flush_plug to __blk_flush_plug and add a wrapper that includes the NULL check instead of open coding that check everywhere. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com> Link: https://lore.kernel.org/r/20220127070549.1377856-2-hch@lst.de Signed-off-by: Jens Axboe <axboe@kernel.dk>
| * | | block: remove blk_needs_flush_plugChristoph Hellwig2022-02-021-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | blk_needs_flush_plug fails to account for the cb_list, which needs flushing as well. Remove it and just check if there is a plug instead of poking into the internals of the plug structure. Signed-off-by: Christoph Hellwig <hch@lst.de> Link: https://lore.kernel.org/r/20220127070549.1377856-1-hch@lst.de Signed-off-by: Jens Axboe <axboe@kernel.dk>