ipoctal232.c (16745B)
1/* 2 * QEMU GE IP-Octal 232 IndustryPack emulation 3 * 4 * Copyright (C) 2012 Igalia, S.L. 5 * Author: Alberto Garcia <berto@igalia.com> 6 * 7 * This code is licensed under the GNU GPL v2 or (at your option) any 8 * later version. 9 */ 10 11#include "qemu/osdep.h" 12#include "hw/ipack/ipack.h" 13#include "hw/irq.h" 14#include "hw/qdev-properties.h" 15#include "hw/qdev-properties-system.h" 16#include "migration/vmstate.h" 17#include "qemu/bitops.h" 18#include "qemu/module.h" 19#include "chardev/char-fe.h" 20#include "qom/object.h" 21 22/* #define DEBUG_IPOCTAL */ 23 24#ifdef DEBUG_IPOCTAL 25#define DPRINTF2(fmt, ...) \ 26 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 27#else 28#define DPRINTF2(fmt, ...) do { } while (0) 29#endif 30 31#define DPRINTF(fmt, ...) DPRINTF2("IP-Octal: " fmt, ## __VA_ARGS__) 32 33#define RX_FIFO_SIZE 3 34 35/* The IP-Octal has 8 channels (a-h) 36 divided into 4 blocks (A-D) */ 37#define N_CHANNELS 8 38#define N_BLOCKS 4 39 40#define REG_MRa 0x01 41#define REG_MRb 0x11 42#define REG_SRa 0x03 43#define REG_SRb 0x13 44#define REG_CSRa 0x03 45#define REG_CSRb 0x13 46#define REG_CRa 0x05 47#define REG_CRb 0x15 48#define REG_RHRa 0x07 49#define REG_RHRb 0x17 50#define REG_THRa 0x07 51#define REG_THRb 0x17 52#define REG_ACR 0x09 53#define REG_ISR 0x0B 54#define REG_IMR 0x0B 55#define REG_OPCR 0x1B 56 57#define CR_ENABLE_RX BIT(0) 58#define CR_DISABLE_RX BIT(1) 59#define CR_ENABLE_TX BIT(2) 60#define CR_DISABLE_TX BIT(3) 61#define CR_CMD(cr) ((cr) >> 4) 62#define CR_NO_OP 0 63#define CR_RESET_MR 1 64#define CR_RESET_RX 2 65#define CR_RESET_TX 3 66#define CR_RESET_ERR 4 67#define CR_RESET_BRKINT 5 68#define CR_START_BRK 6 69#define CR_STOP_BRK 7 70#define CR_ASSERT_RTSN 8 71#define CR_NEGATE_RTSN 9 72#define CR_TIMEOUT_ON 10 73#define CR_TIMEOUT_OFF 12 74 75#define SR_RXRDY BIT(0) 76#define SR_FFULL BIT(1) 77#define SR_TXRDY BIT(2) 78#define SR_TXEMT BIT(3) 79#define SR_OVERRUN BIT(4) 80#define SR_PARITY BIT(5) 81#define SR_FRAMING BIT(6) 82#define SR_BREAK BIT(7) 83 84#define ISR_TXRDYA BIT(0) 85#define ISR_RXRDYA BIT(1) 86#define ISR_BREAKA BIT(2) 87#define ISR_CNTRDY BIT(3) 88#define ISR_TXRDYB BIT(4) 89#define ISR_RXRDYB BIT(5) 90#define ISR_BREAKB BIT(6) 91#define ISR_MPICHG BIT(7) 92#define ISR_TXRDY(CH) (((CH) & 1) ? BIT(4) : BIT(0)) 93#define ISR_RXRDY(CH) (((CH) & 1) ? BIT(5) : BIT(1)) 94#define ISR_BREAK(CH) (((CH) & 1) ? BIT(6) : BIT(2)) 95 96typedef struct IPOctalState IPOctalState; 97typedef struct SCC2698Channel SCC2698Channel; 98typedef struct SCC2698Block SCC2698Block; 99 100struct SCC2698Channel { 101 IPOctalState *ipoctal; 102 CharBackend dev; 103 bool rx_enabled; 104 uint8_t mr[2]; 105 uint8_t mr_idx; 106 uint8_t sr; 107 uint8_t rhr[RX_FIFO_SIZE]; 108 uint8_t rhr_idx; 109 uint8_t rx_pending; 110}; 111 112struct SCC2698Block { 113 uint8_t imr; 114 uint8_t isr; 115}; 116 117struct IPOctalState { 118 IPackDevice parent_obj; 119 120 SCC2698Channel ch[N_CHANNELS]; 121 SCC2698Block blk[N_BLOCKS]; 122 uint8_t irq_vector; 123}; 124 125#define TYPE_IPOCTAL "ipoctal232" 126 127OBJECT_DECLARE_SIMPLE_TYPE(IPOctalState, IPOCTAL) 128 129static const VMStateDescription vmstate_scc2698_channel = { 130 .name = "scc2698_channel", 131 .version_id = 1, 132 .minimum_version_id = 1, 133 .fields = (VMStateField[]) { 134 VMSTATE_BOOL(rx_enabled, SCC2698Channel), 135 VMSTATE_UINT8_ARRAY(mr, SCC2698Channel, 2), 136 VMSTATE_UINT8(mr_idx, SCC2698Channel), 137 VMSTATE_UINT8(sr, SCC2698Channel), 138 VMSTATE_UINT8_ARRAY(rhr, SCC2698Channel, RX_FIFO_SIZE), 139 VMSTATE_UINT8(rhr_idx, SCC2698Channel), 140 VMSTATE_UINT8(rx_pending, SCC2698Channel), 141 VMSTATE_END_OF_LIST() 142 } 143}; 144 145static const VMStateDescription vmstate_scc2698_block = { 146 .name = "scc2698_block", 147 .version_id = 1, 148 .minimum_version_id = 1, 149 .fields = (VMStateField[]) { 150 VMSTATE_UINT8(imr, SCC2698Block), 151 VMSTATE_UINT8(isr, SCC2698Block), 152 VMSTATE_END_OF_LIST() 153 } 154}; 155 156static const VMStateDescription vmstate_ipoctal = { 157 .name = "ipoctal232", 158 .version_id = 1, 159 .minimum_version_id = 1, 160 .fields = (VMStateField[]) { 161 VMSTATE_IPACK_DEVICE(parent_obj, IPOctalState), 162 VMSTATE_STRUCT_ARRAY(ch, IPOctalState, N_CHANNELS, 1, 163 vmstate_scc2698_channel, SCC2698Channel), 164 VMSTATE_STRUCT_ARRAY(blk, IPOctalState, N_BLOCKS, 1, 165 vmstate_scc2698_block, SCC2698Block), 166 VMSTATE_UINT8(irq_vector, IPOctalState), 167 VMSTATE_END_OF_LIST() 168 } 169}; 170 171/* data[10] is 0x0C, not 0x0B as the doc says */ 172static const uint8_t id_prom_data[] = { 173 0x49, 0x50, 0x41, 0x43, 0xF0, 0x22, 174 0xA1, 0x00, 0x00, 0x00, 0x0C, 0xCC 175}; 176 177static void update_irq(IPOctalState *dev, unsigned block) 178{ 179 IPackDevice *idev = IPACK_DEVICE(dev); 180 /* Blocks A and B interrupt on INT0#, C and D on INT1#. 181 Thus, to get the status we have to check two blocks. */ 182 SCC2698Block *blk0 = &dev->blk[block]; 183 SCC2698Block *blk1 = &dev->blk[block^1]; 184 unsigned intno = block / 2; 185 186 if ((blk0->isr & blk0->imr) || (blk1->isr & blk1->imr)) { 187 qemu_irq_raise(idev->irq[intno]); 188 } else { 189 qemu_irq_lower(idev->irq[intno]); 190 } 191} 192 193static void write_cr(IPOctalState *dev, unsigned channel, uint8_t val) 194{ 195 SCC2698Channel *ch = &dev->ch[channel]; 196 SCC2698Block *blk = &dev->blk[channel / 2]; 197 198 DPRINTF("Write CR%c %u: ", channel + 'a', val); 199 200 /* The lower 4 bits are used to enable and disable Tx and Rx */ 201 if (val & CR_ENABLE_RX) { 202 DPRINTF2("Rx on, "); 203 ch->rx_enabled = true; 204 } 205 if (val & CR_DISABLE_RX) { 206 DPRINTF2("Rx off, "); 207 ch->rx_enabled = false; 208 } 209 if (val & CR_ENABLE_TX) { 210 DPRINTF2("Tx on, "); 211 ch->sr |= SR_TXRDY | SR_TXEMT; 212 blk->isr |= ISR_TXRDY(channel); 213 } 214 if (val & CR_DISABLE_TX) { 215 DPRINTF2("Tx off, "); 216 ch->sr &= ~(SR_TXRDY | SR_TXEMT); 217 blk->isr &= ~ISR_TXRDY(channel); 218 } 219 220 DPRINTF2("cmd: "); 221 222 /* The rest of the bits implement different commands */ 223 switch (CR_CMD(val)) { 224 case CR_NO_OP: 225 DPRINTF2("none"); 226 break; 227 case CR_RESET_MR: 228 DPRINTF2("reset MR"); 229 ch->mr_idx = 0; 230 break; 231 case CR_RESET_RX: 232 DPRINTF2("reset Rx"); 233 ch->rx_enabled = false; 234 ch->rx_pending = 0; 235 ch->sr &= ~SR_RXRDY; 236 blk->isr &= ~ISR_RXRDY(channel); 237 break; 238 case CR_RESET_TX: 239 DPRINTF2("reset Tx"); 240 ch->sr &= ~(SR_TXRDY | SR_TXEMT); 241 blk->isr &= ~ISR_TXRDY(channel); 242 break; 243 case CR_RESET_ERR: 244 DPRINTF2("reset err"); 245 ch->sr &= ~(SR_OVERRUN | SR_PARITY | SR_FRAMING | SR_BREAK); 246 break; 247 case CR_RESET_BRKINT: 248 DPRINTF2("reset brk ch int"); 249 blk->isr &= ~(ISR_BREAKA | ISR_BREAKB); 250 break; 251 default: 252 DPRINTF2("unsupported 0x%x", CR_CMD(val)); 253 } 254 255 DPRINTF2("\n"); 256} 257 258static uint16_t io_read(IPackDevice *ip, uint8_t addr) 259{ 260 IPOctalState *dev = IPOCTAL(ip); 261 uint16_t ret = 0; 262 /* addr[7:6]: block (A-D) 263 addr[7:5]: channel (a-h) 264 addr[5:0]: register */ 265 unsigned block = addr >> 5; 266 unsigned channel = addr >> 4; 267 /* Big endian, accessed using 8-bit bytes at odd locations */ 268 unsigned offset = (addr & 0x1F) ^ 1; 269 SCC2698Channel *ch = &dev->ch[channel]; 270 SCC2698Block *blk = &dev->blk[block]; 271 uint8_t old_isr = blk->isr; 272 273 switch (offset) { 274 275 case REG_MRa: 276 case REG_MRb: 277 ret = ch->mr[ch->mr_idx]; 278 DPRINTF("Read MR%u%c: 0x%x\n", ch->mr_idx + 1, channel + 'a', ret); 279 ch->mr_idx = 1; 280 break; 281 282 case REG_SRa: 283 case REG_SRb: 284 ret = ch->sr; 285 DPRINTF("Read SR%c: 0x%x\n", channel + 'a', ret); 286 break; 287 288 case REG_RHRa: 289 case REG_RHRb: 290 ret = ch->rhr[ch->rhr_idx]; 291 if (ch->rx_pending > 0) { 292 ch->rx_pending--; 293 if (ch->rx_pending == 0) { 294 ch->sr &= ~SR_RXRDY; 295 blk->isr &= ~ISR_RXRDY(channel); 296 qemu_chr_fe_accept_input(&ch->dev); 297 } else { 298 ch->rhr_idx = (ch->rhr_idx + 1) % RX_FIFO_SIZE; 299 } 300 if (ch->sr & SR_BREAK) { 301 ch->sr &= ~SR_BREAK; 302 blk->isr |= ISR_BREAK(channel); 303 } 304 } 305 DPRINTF("Read RHR%c (0x%x)\n", channel + 'a', ret); 306 break; 307 308 case REG_ISR: 309 ret = blk->isr; 310 DPRINTF("Read ISR%c: 0x%x\n", block + 'A', ret); 311 break; 312 313 default: 314 DPRINTF("Read unknown/unsupported register 0x%02x\n", offset); 315 } 316 317 if (old_isr != blk->isr) { 318 update_irq(dev, block); 319 } 320 321 return ret; 322} 323 324static void io_write(IPackDevice *ip, uint8_t addr, uint16_t val) 325{ 326 IPOctalState *dev = IPOCTAL(ip); 327 unsigned reg = val & 0xFF; 328 /* addr[7:6]: block (A-D) 329 addr[7:5]: channel (a-h) 330 addr[5:0]: register */ 331 unsigned block = addr >> 5; 332 unsigned channel = addr >> 4; 333 /* Big endian, accessed using 8-bit bytes at odd locations */ 334 unsigned offset = (addr & 0x1F) ^ 1; 335 SCC2698Channel *ch = &dev->ch[channel]; 336 SCC2698Block *blk = &dev->blk[block]; 337 uint8_t old_isr = blk->isr; 338 uint8_t old_imr = blk->imr; 339 340 switch (offset) { 341 342 case REG_MRa: 343 case REG_MRb: 344 ch->mr[ch->mr_idx] = reg; 345 DPRINTF("Write MR%u%c 0x%x\n", ch->mr_idx + 1, channel + 'a', reg); 346 ch->mr_idx = 1; 347 break; 348 349 /* Not implemented */ 350 case REG_CSRa: 351 case REG_CSRb: 352 DPRINTF("Write CSR%c: 0x%x\n", channel + 'a', reg); 353 break; 354 355 case REG_CRa: 356 case REG_CRb: 357 write_cr(dev, channel, reg); 358 break; 359 360 case REG_THRa: 361 case REG_THRb: 362 if (ch->sr & SR_TXRDY) { 363 uint8_t thr = reg; 364 DPRINTF("Write THR%c (0x%x)\n", channel + 'a', reg); 365 /* XXX this blocks entire thread. Rewrite to use 366 * qemu_chr_fe_write and background I/O callbacks */ 367 qemu_chr_fe_write_all(&ch->dev, &thr, 1); 368 } else { 369 DPRINTF("Write THR%c (0x%x), Tx disabled\n", channel + 'a', reg); 370 } 371 break; 372 373 /* Not implemented */ 374 case REG_ACR: 375 DPRINTF("Write ACR%c 0x%x\n", block + 'A', val); 376 break; 377 378 case REG_IMR: 379 DPRINTF("Write IMR%c 0x%x\n", block + 'A', val); 380 blk->imr = reg; 381 break; 382 383 /* Not implemented */ 384 case REG_OPCR: 385 DPRINTF("Write OPCR%c 0x%x\n", block + 'A', val); 386 break; 387 388 default: 389 DPRINTF("Write unknown/unsupported register 0x%02x %u\n", offset, val); 390 } 391 392 if (old_isr != blk->isr || old_imr != blk->imr) { 393 update_irq(dev, block); 394 } 395} 396 397static uint16_t id_read(IPackDevice *ip, uint8_t addr) 398{ 399 uint16_t ret = 0; 400 unsigned pos = addr / 2; /* The ID PROM data is stored every other byte */ 401 402 if (pos < ARRAY_SIZE(id_prom_data)) { 403 ret = id_prom_data[pos]; 404 } else { 405 DPRINTF("Attempt to read unavailable PROM data at 0x%x\n", addr); 406 } 407 408 return ret; 409} 410 411static void id_write(IPackDevice *ip, uint8_t addr, uint16_t val) 412{ 413 IPOctalState *dev = IPOCTAL(ip); 414 if (addr == 1) { 415 DPRINTF("Write IRQ vector: %u\n", (unsigned) val); 416 dev->irq_vector = val; /* Undocumented, but the hw works like that */ 417 } else { 418 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr); 419 } 420} 421 422static uint16_t int_read(IPackDevice *ip, uint8_t addr) 423{ 424 IPOctalState *dev = IPOCTAL(ip); 425 /* Read address 0 to ACK INT0# and address 2 to ACK INT1# */ 426 if (addr != 0 && addr != 2) { 427 DPRINTF("Attempt to read from 0x%x\n", addr); 428 return 0; 429 } else { 430 /* Update interrupts if necessary */ 431 update_irq(dev, addr); 432 return dev->irq_vector; 433 } 434} 435 436static void int_write(IPackDevice *ip, uint8_t addr, uint16_t val) 437{ 438 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr); 439} 440 441static uint16_t mem_read16(IPackDevice *ip, uint32_t addr) 442{ 443 DPRINTF("Attempt to read from 0x%x\n", addr); 444 return 0; 445} 446 447static void mem_write16(IPackDevice *ip, uint32_t addr, uint16_t val) 448{ 449 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr); 450} 451 452static uint8_t mem_read8(IPackDevice *ip, uint32_t addr) 453{ 454 DPRINTF("Attempt to read from 0x%x\n", addr); 455 return 0; 456} 457 458static void mem_write8(IPackDevice *ip, uint32_t addr, uint8_t val) 459{ 460 IPOctalState *dev = IPOCTAL(ip); 461 if (addr == 1) { 462 DPRINTF("Write IRQ vector: %u\n", (unsigned) val); 463 dev->irq_vector = val; 464 } else { 465 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr); 466 } 467} 468 469static int hostdev_can_receive(void *opaque) 470{ 471 SCC2698Channel *ch = opaque; 472 int available_bytes = RX_FIFO_SIZE - ch->rx_pending; 473 return ch->rx_enabled ? available_bytes : 0; 474} 475 476static void hostdev_receive(void *opaque, const uint8_t *buf, int size) 477{ 478 SCC2698Channel *ch = opaque; 479 IPOctalState *dev = ch->ipoctal; 480 unsigned pos = ch->rhr_idx + ch->rx_pending; 481 int i; 482 483 assert(size + ch->rx_pending <= RX_FIFO_SIZE); 484 485 /* Copy data to the RxFIFO */ 486 for (i = 0; i < size; i++) { 487 pos %= RX_FIFO_SIZE; 488 ch->rhr[pos++] = buf[i]; 489 } 490 491 ch->rx_pending += size; 492 493 /* If the RxFIFO was empty raise an interrupt */ 494 if (!(ch->sr & SR_RXRDY)) { 495 unsigned block, channel = 0; 496 /* Find channel number to update the ISR register */ 497 while (&dev->ch[channel] != ch) { 498 channel++; 499 } 500 block = channel / 2; 501 dev->blk[block].isr |= ISR_RXRDY(channel); 502 ch->sr |= SR_RXRDY; 503 update_irq(dev, block); 504 } 505} 506 507static void hostdev_event(void *opaque, QEMUChrEvent event) 508{ 509 SCC2698Channel *ch = opaque; 510 switch (event) { 511 case CHR_EVENT_OPENED: 512 DPRINTF("Device %s opened\n", ch->dev->label); 513 break; 514 case CHR_EVENT_BREAK: { 515 uint8_t zero = 0; 516 DPRINTF("Device %s received break\n", ch->dev->label); 517 518 if (!(ch->sr & SR_BREAK)) { 519 IPOctalState *dev = ch->ipoctal; 520 unsigned block, channel = 0; 521 522 while (&dev->ch[channel] != ch) { 523 channel++; 524 } 525 block = channel / 2; 526 527 ch->sr |= SR_BREAK; 528 dev->blk[block].isr |= ISR_BREAK(channel); 529 } 530 531 /* Put a zero character in the buffer */ 532 hostdev_receive(ch, &zero, 1); 533 } 534 break; 535 default: 536 DPRINTF("Device %s received event %d\n", ch->dev->label, event); 537 } 538} 539 540static void ipoctal_realize(DeviceState *dev, Error **errp) 541{ 542 IPOctalState *s = IPOCTAL(dev); 543 unsigned i; 544 545 for (i = 0; i < N_CHANNELS; i++) { 546 SCC2698Channel *ch = &s->ch[i]; 547 ch->ipoctal = s; 548 549 /* Redirect IP-Octal channels to host character devices */ 550 if (qemu_chr_fe_backend_connected(&ch->dev)) { 551 qemu_chr_fe_set_handlers(&ch->dev, hostdev_can_receive, 552 hostdev_receive, hostdev_event, 553 NULL, ch, NULL, true); 554 DPRINTF("Redirecting channel %u to %s\n", i, ch->dev->label); 555 } else { 556 DPRINTF("Could not redirect channel %u, no chardev set\n", i); 557 } 558 } 559} 560 561static Property ipoctal_properties[] = { 562 DEFINE_PROP_CHR("chardev0", IPOctalState, ch[0].dev), 563 DEFINE_PROP_CHR("chardev1", IPOctalState, ch[1].dev), 564 DEFINE_PROP_CHR("chardev2", IPOctalState, ch[2].dev), 565 DEFINE_PROP_CHR("chardev3", IPOctalState, ch[3].dev), 566 DEFINE_PROP_CHR("chardev4", IPOctalState, ch[4].dev), 567 DEFINE_PROP_CHR("chardev5", IPOctalState, ch[5].dev), 568 DEFINE_PROP_CHR("chardev6", IPOctalState, ch[6].dev), 569 DEFINE_PROP_CHR("chardev7", IPOctalState, ch[7].dev), 570 DEFINE_PROP_END_OF_LIST(), 571}; 572 573static void ipoctal_class_init(ObjectClass *klass, void *data) 574{ 575 DeviceClass *dc = DEVICE_CLASS(klass); 576 IPackDeviceClass *ic = IPACK_DEVICE_CLASS(klass); 577 578 ic->realize = ipoctal_realize; 579 ic->io_read = io_read; 580 ic->io_write = io_write; 581 ic->id_read = id_read; 582 ic->id_write = id_write; 583 ic->int_read = int_read; 584 ic->int_write = int_write; 585 ic->mem_read16 = mem_read16; 586 ic->mem_write16 = mem_write16; 587 ic->mem_read8 = mem_read8; 588 ic->mem_write8 = mem_write8; 589 590 set_bit(DEVICE_CATEGORY_INPUT, dc->categories); 591 dc->desc = "GE IP-Octal 232 8-channel RS-232 IndustryPack"; 592 device_class_set_props(dc, ipoctal_properties); 593 dc->vmsd = &vmstate_ipoctal; 594} 595 596static const TypeInfo ipoctal_info = { 597 .name = TYPE_IPOCTAL, 598 .parent = TYPE_IPACK_DEVICE, 599 .instance_size = sizeof(IPOctalState), 600 .class_init = ipoctal_class_init, 601}; 602 603static void ipoctal_register_types(void) 604{ 605 type_register_static(&ipoctal_info); 606} 607 608type_init(ipoctal_register_types)