cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

single_cpdo.c (5502B)


      1/*
      2    NetWinder Floating Point Emulator
      3    (c) Rebel.COM, 1998,1999
      4
      5    Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
      6
      7    This program is free software; you can redistribute it and/or modify
      8    it under the terms of the GNU General Public License as published by
      9    the Free Software Foundation; either version 2 of the License, or
     10    (at your option) any later version.
     11
     12    This program is distributed in the hope that it will be useful,
     13    but WITHOUT ANY WARRANTY; without even the implied warranty of
     14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15    GNU General Public License for more details.
     16
     17    You should have received a copy of the GNU General Public License
     18    along with this program; if not, see <http://www.gnu.org/licenses/>.
     19*/
     20
     21#include "qemu/osdep.h"
     22#include "fpa11.h"
     23#include "fpu/softfloat.h"
     24#include "fpopcode.h"
     25
     26float32 float32_exp(float32 Fm);
     27float32 float32_ln(float32 Fm);
     28float32 float32_sin(float32 rFm);
     29float32 float32_cos(float32 rFm);
     30float32 float32_arcsin(float32 rFm);
     31float32 float32_arctan(float32 rFm);
     32float32 float32_log(float32 rFm);
     33float32 float32_tan(float32 rFm);
     34float32 float32_arccos(float32 rFm);
     35float32 float32_pow(float32 rFn,float32 rFm);
     36float32 float32_pol(float32 rFn,float32 rFm);
     37
     38unsigned int SingleCPDO(const unsigned int opcode)
     39{
     40   FPA11 *fpa11 = GET_FPA11();
     41   float32 rFm, rFn = float32_zero;
     42   unsigned int Fd, Fm, Fn, nRc = 1;
     43
     44   Fm = getFm(opcode);
     45   if (CONSTANT_FM(opcode))
     46   {
     47     rFm = getSingleConstant(Fm);
     48   }
     49   else
     50   {
     51     switch (fpa11->fType[Fm])
     52     {
     53        case typeSingle:
     54          rFm = fpa11->fpreg[Fm].fSingle;
     55        break;
     56
     57        default: return 0;
     58     }
     59   }
     60
     61   if (!MONADIC_INSTRUCTION(opcode))
     62   {
     63      Fn = getFn(opcode);
     64      switch (fpa11->fType[Fn])
     65      {
     66        case typeSingle:
     67          rFn = fpa11->fpreg[Fn].fSingle;
     68        break;
     69
     70        default: return 0;
     71      }
     72   }
     73
     74   Fd = getFd(opcode);
     75   switch (opcode & MASK_ARITHMETIC_OPCODE)
     76   {
     77      /* dyadic opcodes */
     78      case ADF_CODE:
     79         fpa11->fpreg[Fd].fSingle = float32_add(rFn,rFm, &fpa11->fp_status);
     80      break;
     81
     82      case MUF_CODE:
     83      case FML_CODE:
     84        fpa11->fpreg[Fd].fSingle = float32_mul(rFn,rFm, &fpa11->fp_status);
     85      break;
     86
     87      case SUF_CODE:
     88         fpa11->fpreg[Fd].fSingle = float32_sub(rFn,rFm, &fpa11->fp_status);
     89      break;
     90
     91      case RSF_CODE:
     92         fpa11->fpreg[Fd].fSingle = float32_sub(rFm,rFn, &fpa11->fp_status);
     93      break;
     94
     95      case DVF_CODE:
     96      case FDV_CODE:
     97         fpa11->fpreg[Fd].fSingle = float32_div(rFn,rFm, &fpa11->fp_status);
     98      break;
     99
    100      case RDF_CODE:
    101      case FRD_CODE:
    102         fpa11->fpreg[Fd].fSingle = float32_div(rFm,rFn, &fpa11->fp_status);
    103      break;
    104
    105#if 0
    106      case POW_CODE:
    107         fpa11->fpreg[Fd].fSingle = float32_pow(rFn,rFm);
    108      break;
    109
    110      case RPW_CODE:
    111         fpa11->fpreg[Fd].fSingle = float32_pow(rFm,rFn);
    112      break;
    113#endif
    114
    115      case RMF_CODE:
    116         fpa11->fpreg[Fd].fSingle = float32_rem(rFn,rFm, &fpa11->fp_status);
    117      break;
    118
    119#if 0
    120      case POL_CODE:
    121         fpa11->fpreg[Fd].fSingle = float32_pol(rFn,rFm);
    122      break;
    123#endif
    124
    125      /* monadic opcodes */
    126      case MVF_CODE:
    127         fpa11->fpreg[Fd].fSingle = rFm;
    128      break;
    129
    130      case MNF_CODE:
    131         fpa11->fpreg[Fd].fSingle = float32_chs(rFm);
    132      break;
    133
    134      case ABS_CODE:
    135         fpa11->fpreg[Fd].fSingle = float32_abs(rFm);
    136      break;
    137
    138      case RND_CODE:
    139      case URD_CODE:
    140         fpa11->fpreg[Fd].fSingle = float32_round_to_int(rFm, &fpa11->fp_status);
    141      break;
    142
    143      case SQT_CODE:
    144         fpa11->fpreg[Fd].fSingle = float32_sqrt(rFm, &fpa11->fp_status);
    145      break;
    146
    147#if 0
    148      case LOG_CODE:
    149         fpa11->fpreg[Fd].fSingle = float32_log(rFm);
    150      break;
    151
    152      case LGN_CODE:
    153         fpa11->fpreg[Fd].fSingle = float32_ln(rFm);
    154      break;
    155
    156      case EXP_CODE:
    157         fpa11->fpreg[Fd].fSingle = float32_exp(rFm);
    158      break;
    159
    160      case SIN_CODE:
    161         fpa11->fpreg[Fd].fSingle = float32_sin(rFm);
    162      break;
    163
    164      case COS_CODE:
    165         fpa11->fpreg[Fd].fSingle = float32_cos(rFm);
    166      break;
    167
    168      case TAN_CODE:
    169         fpa11->fpreg[Fd].fSingle = float32_tan(rFm);
    170      break;
    171
    172      case ASN_CODE:
    173         fpa11->fpreg[Fd].fSingle = float32_arcsin(rFm);
    174      break;
    175
    176      case ACS_CODE:
    177         fpa11->fpreg[Fd].fSingle = float32_arccos(rFm);
    178      break;
    179
    180      case ATN_CODE:
    181         fpa11->fpreg[Fd].fSingle = float32_arctan(rFm);
    182      break;
    183#endif
    184
    185      case NRM_CODE:
    186      break;
    187
    188      default:
    189      {
    190        nRc = 0;
    191      }
    192   }
    193
    194   if (0 != nRc) fpa11->fType[Fd] = typeSingle;
    195   return nRc;
    196}
    197
    198#if 0
    199float32 float32_exp(float32 Fm)
    200{
    201//series
    202}
    203
    204float32 float32_ln(float32 Fm)
    205{
    206//series
    207}
    208
    209float32 float32_sin(float32 rFm)
    210{
    211//series
    212}
    213
    214float32 float32_cos(float32 rFm)
    215{
    216//series
    217}
    218
    219float32 float32_arcsin(float32 rFm)
    220{
    221//series
    222}
    223
    224float32 float32_arctan(float32 rFm)
    225{
    226  //series
    227}
    228
    229float32 float32_arccos(float32 rFm)
    230{
    231   //return float32_sub(halfPi,float32_arcsin(rFm));
    232}
    233
    234float32 float32_log(float32 rFm)
    235{
    236  return float32_div(float32_ln(rFm),getSingleConstant(7));
    237}
    238
    239float32 float32_tan(float32 rFm)
    240{
    241  return float32_div(float32_sin(rFm),float32_cos(rFm));
    242}
    243
    244float32 float32_pow(float32 rFn,float32 rFm)
    245{
    246  return float32_exp(float32_mul(rFm,float32_ln(rFn)));
    247}
    248
    249float32 float32_pol(float32 rFn,float32 rFm)
    250{
    251  return float32_arctan(float32_div(rFn,rFm));
    252}
    253#endif