cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

cpu.h (6800B)


      1/*
      2 * QEMU AVR CPU
      3 *
      4 * Copyright (c) 2016-2020 Michael Rolnik
      5 *
      6 * This library is free software; you can redistribute it and/or
      7 * modify it under the terms of the GNU Lesser General Public
      8 * License as published by the Free Software Foundation; either
      9 * version 2.1 of the License, or (at your option) any later version.
     10 *
     11 * This library is distributed in the hope that it will be useful,
     12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14 * Lesser General Public License for more details.
     15 *
     16 * You should have received a copy of the GNU Lesser General Public
     17 * License along with this library; if not, see
     18 * <http://www.gnu.org/licenses/lgpl-2.1.html>
     19 */
     20
     21#ifndef QEMU_AVR_CPU_H
     22#define QEMU_AVR_CPU_H
     23
     24#include "cpu-qom.h"
     25#include "exec/cpu-defs.h"
     26
     27#ifdef CONFIG_USER_ONLY
     28#error "AVR 8-bit does not support user mode"
     29#endif
     30
     31#define AVR_CPU_TYPE_SUFFIX "-" TYPE_AVR_CPU
     32#define AVR_CPU_TYPE_NAME(name) (name AVR_CPU_TYPE_SUFFIX)
     33#define CPU_RESOLVING_TYPE TYPE_AVR_CPU
     34
     35#define TCG_GUEST_DEFAULT_MO 0
     36
     37/*
     38 * AVR has two memory spaces, data & code.
     39 * e.g. both have 0 address
     40 * ST/LD instructions access data space
     41 * LPM/SPM and instruction fetching access code memory space
     42 */
     43#define MMU_CODE_IDX 0
     44#define MMU_DATA_IDX 1
     45
     46#define EXCP_RESET 1
     47#define EXCP_INT(n) (EXCP_RESET + (n) + 1)
     48
     49/* Number of CPU registers */
     50#define NUMBER_OF_CPU_REGISTERS 32
     51/* Number of IO registers accessible by ld/st/in/out */
     52#define NUMBER_OF_IO_REGISTERS 64
     53
     54/*
     55 * Offsets of AVR memory regions in host memory space.
     56 *
     57 * This is needed because the AVR has separate code and data address
     58 * spaces that both have start from zero but have to go somewhere in
     59 * host memory.
     60 *
     61 * It's also useful to know where some things are, like the IO registers.
     62 */
     63/* Flash program memory */
     64#define OFFSET_CODE 0x00000000
     65/* CPU registers, IO registers, and SRAM */
     66#define OFFSET_DATA 0x00800000
     67/* CPU registers specifically, these are mapped at the start of data */
     68#define OFFSET_CPU_REGISTERS OFFSET_DATA
     69/*
     70 * IO registers, including status register, stack pointer, and memory
     71 * mapped peripherals, mapped just after CPU registers
     72 */
     73#define OFFSET_IO_REGISTERS (OFFSET_DATA + NUMBER_OF_CPU_REGISTERS)
     74
     75typedef enum AVRFeature {
     76    AVR_FEATURE_SRAM,
     77
     78    AVR_FEATURE_1_BYTE_PC,
     79    AVR_FEATURE_2_BYTE_PC,
     80    AVR_FEATURE_3_BYTE_PC,
     81
     82    AVR_FEATURE_1_BYTE_SP,
     83    AVR_FEATURE_2_BYTE_SP,
     84
     85    AVR_FEATURE_BREAK,
     86    AVR_FEATURE_DES,
     87    AVR_FEATURE_RMW, /* Read Modify Write - XCH LAC LAS LAT */
     88
     89    AVR_FEATURE_EIJMP_EICALL,
     90    AVR_FEATURE_IJMP_ICALL,
     91    AVR_FEATURE_JMP_CALL,
     92
     93    AVR_FEATURE_ADIW_SBIW,
     94
     95    AVR_FEATURE_SPM,
     96    AVR_FEATURE_SPMX,
     97
     98    AVR_FEATURE_ELPMX,
     99    AVR_FEATURE_ELPM,
    100    AVR_FEATURE_LPMX,
    101    AVR_FEATURE_LPM,
    102
    103    AVR_FEATURE_MOVW,
    104    AVR_FEATURE_MUL,
    105    AVR_FEATURE_RAMPD,
    106    AVR_FEATURE_RAMPX,
    107    AVR_FEATURE_RAMPY,
    108    AVR_FEATURE_RAMPZ,
    109} AVRFeature;
    110
    111typedef struct CPUAVRState CPUAVRState;
    112
    113struct CPUAVRState {
    114    uint32_t pc_w; /* 0x003fffff up to 22 bits */
    115
    116    uint32_t sregC; /* 0x00000001 1 bit */
    117    uint32_t sregZ; /* 0x00000001 1 bit */
    118    uint32_t sregN; /* 0x00000001 1 bit */
    119    uint32_t sregV; /* 0x00000001 1 bit */
    120    uint32_t sregS; /* 0x00000001 1 bit */
    121    uint32_t sregH; /* 0x00000001 1 bit */
    122    uint32_t sregT; /* 0x00000001 1 bit */
    123    uint32_t sregI; /* 0x00000001 1 bit */
    124
    125    uint32_t rampD; /* 0x00ff0000 8 bits */
    126    uint32_t rampX; /* 0x00ff0000 8 bits */
    127    uint32_t rampY; /* 0x00ff0000 8 bits */
    128    uint32_t rampZ; /* 0x00ff0000 8 bits */
    129    uint32_t eind; /* 0x00ff0000 8 bits */
    130
    131    uint32_t r[NUMBER_OF_CPU_REGISTERS]; /* 8 bits each */
    132    uint32_t sp; /* 16 bits */
    133
    134    uint32_t skip; /* if set skip instruction */
    135
    136    uint64_t intsrc; /* interrupt sources */
    137    bool fullacc; /* CPU/MEM if true MEM only otherwise */
    138
    139    uint64_t features;
    140};
    141
    142/**
    143 *  AVRCPU:
    144 *  @env: #CPUAVRState
    145 *
    146 *  A AVR CPU.
    147 */
    148typedef struct AVRCPU {
    149    /*< private >*/
    150    CPUState parent_obj;
    151    /*< public >*/
    152
    153    CPUNegativeOffsetState neg;
    154    CPUAVRState env;
    155} AVRCPU;
    156
    157extern const struct VMStateDescription vms_avr_cpu;
    158
    159void avr_cpu_do_interrupt(CPUState *cpu);
    160bool avr_cpu_exec_interrupt(CPUState *cpu, int int_req);
    161hwaddr avr_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
    162int avr_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
    163int avr_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
    164int avr_print_insn(bfd_vma addr, disassemble_info *info);
    165vaddr avr_cpu_gdb_adjust_breakpoint(CPUState *cpu, vaddr addr);
    166
    167static inline int avr_feature(CPUAVRState *env, AVRFeature feature)
    168{
    169    return (env->features & (1U << feature)) != 0;
    170}
    171
    172static inline void set_avr_feature(CPUAVRState *env, int feature)
    173{
    174    env->features |= (1U << feature);
    175}
    176
    177#define cpu_list avr_cpu_list
    178#define cpu_mmu_index avr_cpu_mmu_index
    179
    180static inline int avr_cpu_mmu_index(CPUAVRState *env, bool ifetch)
    181{
    182    return ifetch ? MMU_CODE_IDX : MMU_DATA_IDX;
    183}
    184
    185void avr_cpu_tcg_init(void);
    186
    187void avr_cpu_list(void);
    188int cpu_avr_exec(CPUState *cpu);
    189int avr_cpu_memory_rw_debug(CPUState *cs, vaddr address, uint8_t *buf,
    190                            int len, bool is_write);
    191
    192enum {
    193    TB_FLAGS_FULL_ACCESS = 1,
    194    TB_FLAGS_SKIP = 2,
    195};
    196
    197static inline void cpu_get_tb_cpu_state(CPUAVRState *env, target_ulong *pc,
    198                                        target_ulong *cs_base, uint32_t *pflags)
    199{
    200    uint32_t flags = 0;
    201
    202    *pc = env->pc_w * 2;
    203    *cs_base = 0;
    204
    205    if (env->fullacc) {
    206        flags |= TB_FLAGS_FULL_ACCESS;
    207    }
    208    if (env->skip) {
    209        flags |= TB_FLAGS_SKIP;
    210    }
    211
    212    *pflags = flags;
    213}
    214
    215static inline int cpu_interrupts_enabled(CPUAVRState *env)
    216{
    217    return env->sregI != 0;
    218}
    219
    220static inline uint8_t cpu_get_sreg(CPUAVRState *env)
    221{
    222    uint8_t sreg;
    223    sreg = (env->sregC) << 0
    224         | (env->sregZ) << 1
    225         | (env->sregN) << 2
    226         | (env->sregV) << 3
    227         | (env->sregS) << 4
    228         | (env->sregH) << 5
    229         | (env->sregT) << 6
    230         | (env->sregI) << 7;
    231    return sreg;
    232}
    233
    234static inline void cpu_set_sreg(CPUAVRState *env, uint8_t sreg)
    235{
    236    env->sregC = (sreg >> 0) & 0x01;
    237    env->sregZ = (sreg >> 1) & 0x01;
    238    env->sregN = (sreg >> 2) & 0x01;
    239    env->sregV = (sreg >> 3) & 0x01;
    240    env->sregS = (sreg >> 4) & 0x01;
    241    env->sregH = (sreg >> 5) & 0x01;
    242    env->sregT = (sreg >> 6) & 0x01;
    243    env->sregI = (sreg >> 7) & 0x01;
    244}
    245
    246bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
    247                      MMUAccessType access_type, int mmu_idx,
    248                      bool probe, uintptr_t retaddr);
    249
    250typedef CPUAVRState CPUArchState;
    251typedef AVRCPU ArchCPU;
    252
    253#include "exec/cpu-all.h"
    254
    255#endif /* !defined (QEMU_AVR_CPU_H) */