cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

internal.h (12507B)


      1/*
      2 * MIPS internal definitions and helpers
      3 *
      4 * This work is licensed under the terms of the GNU GPL, version 2 or later.
      5 * See the COPYING file in the top-level directory.
      6 */
      7
      8#ifndef MIPS_INTERNAL_H
      9#define MIPS_INTERNAL_H
     10
     11#include "exec/memattrs.h"
     12#ifdef CONFIG_TCG
     13#include "tcg/tcg-internal.h"
     14#endif
     15
     16/*
     17 * MMU types, the first four entries have the same layout as the
     18 * CP0C0_MT field.
     19 */
     20enum mips_mmu_types {
     21    MMU_TYPE_NONE       = 0,
     22    MMU_TYPE_R4000      = 1,    /* Standard TLB */
     23    MMU_TYPE_BAT        = 2,    /* Block Address Translation */
     24    MMU_TYPE_FMT        = 3,    /* Fixed Mapping */
     25    MMU_TYPE_DVF        = 4,    /* Dual VTLB and FTLB */
     26    MMU_TYPE_R3000,
     27    MMU_TYPE_R6000,
     28    MMU_TYPE_R8000
     29};
     30
     31struct mips_def_t {
     32    const char *name;
     33    int32_t CP0_PRid;
     34    int32_t CP0_Config0;
     35    int32_t CP0_Config1;
     36    int32_t CP0_Config2;
     37    int32_t CP0_Config3;
     38    int32_t CP0_Config4;
     39    int32_t CP0_Config4_rw_bitmask;
     40    int32_t CP0_Config5;
     41    int32_t CP0_Config5_rw_bitmask;
     42    int32_t CP0_Config6;
     43    int32_t CP0_Config6_rw_bitmask;
     44    int32_t CP0_Config7;
     45    int32_t CP0_Config7_rw_bitmask;
     46    target_ulong CP0_LLAddr_rw_bitmask;
     47    int CP0_LLAddr_shift;
     48    int32_t SYNCI_Step;
     49    int32_t CCRes;
     50    int32_t CP0_Status_rw_bitmask;
     51    int32_t CP0_TCStatus_rw_bitmask;
     52    int32_t CP0_SRSCtl;
     53    int32_t CP1_fcr0;
     54    int32_t CP1_fcr31_rw_bitmask;
     55    int32_t CP1_fcr31;
     56    int32_t MSAIR;
     57    int32_t SEGBITS;
     58    int32_t PABITS;
     59    int32_t CP0_SRSConf0_rw_bitmask;
     60    int32_t CP0_SRSConf0;
     61    int32_t CP0_SRSConf1_rw_bitmask;
     62    int32_t CP0_SRSConf1;
     63    int32_t CP0_SRSConf2_rw_bitmask;
     64    int32_t CP0_SRSConf2;
     65    int32_t CP0_SRSConf3_rw_bitmask;
     66    int32_t CP0_SRSConf3;
     67    int32_t CP0_SRSConf4_rw_bitmask;
     68    int32_t CP0_SRSConf4;
     69    int32_t CP0_PageGrain_rw_bitmask;
     70    int32_t CP0_PageGrain;
     71    target_ulong CP0_EBaseWG_rw_bitmask;
     72    uint64_t insn_flags;
     73    enum mips_mmu_types mmu_type;
     74    int32_t SAARP;
     75};
     76
     77extern const char regnames[32][3];
     78extern const char fregnames[32][4];
     79
     80extern const struct mips_def_t mips_defs[];
     81extern const int mips_defs_number;
     82
     83int mips_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
     84int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
     85
     86#define USEG_LIMIT      ((target_ulong)(int32_t)0x7FFFFFFFUL)
     87#define KSEG0_BASE      ((target_ulong)(int32_t)0x80000000UL)
     88#define KSEG1_BASE      ((target_ulong)(int32_t)0xA0000000UL)
     89#define KSEG2_BASE      ((target_ulong)(int32_t)0xC0000000UL)
     90#define KSEG3_BASE      ((target_ulong)(int32_t)0xE0000000UL)
     91
     92#define KVM_KSEG0_BASE  ((target_ulong)(int32_t)0x40000000UL)
     93#define KVM_KSEG2_BASE  ((target_ulong)(int32_t)0x60000000UL)
     94
     95#if !defined(CONFIG_USER_ONLY)
     96
     97enum {
     98    TLBRET_XI = -6,
     99    TLBRET_RI = -5,
    100    TLBRET_DIRTY = -4,
    101    TLBRET_INVALID = -3,
    102    TLBRET_NOMATCH = -2,
    103    TLBRET_BADADDR = -1,
    104    TLBRET_MATCH = 0
    105};
    106
    107int get_physical_address(CPUMIPSState *env, hwaddr *physical,
    108                         int *prot, target_ulong real_address,
    109                         MMUAccessType access_type, int mmu_idx);
    110hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
    111
    112typedef struct r4k_tlb_t r4k_tlb_t;
    113struct r4k_tlb_t {
    114    target_ulong VPN;
    115    uint32_t PageMask;
    116    uint16_t ASID;
    117    uint32_t MMID;
    118    unsigned int G:1;
    119    unsigned int C0:3;
    120    unsigned int C1:3;
    121    unsigned int V0:1;
    122    unsigned int V1:1;
    123    unsigned int D0:1;
    124    unsigned int D1:1;
    125    unsigned int XI0:1;
    126    unsigned int XI1:1;
    127    unsigned int RI0:1;
    128    unsigned int RI1:1;
    129    unsigned int EHINV:1;
    130    uint64_t PFN[2];
    131};
    132
    133struct CPUMIPSTLBContext {
    134    uint32_t nb_tlb;
    135    uint32_t tlb_in_use;
    136    int (*map_address)(struct CPUMIPSState *env, hwaddr *physical, int *prot,
    137                       target_ulong address, MMUAccessType access_type);
    138    void (*helper_tlbwi)(struct CPUMIPSState *env);
    139    void (*helper_tlbwr)(struct CPUMIPSState *env);
    140    void (*helper_tlbp)(struct CPUMIPSState *env);
    141    void (*helper_tlbr)(struct CPUMIPSState *env);
    142    void (*helper_tlbinv)(struct CPUMIPSState *env);
    143    void (*helper_tlbinvf)(struct CPUMIPSState *env);
    144    union {
    145        struct {
    146            r4k_tlb_t tlb[MIPS_TLB_MAX];
    147        } r4k;
    148    } mmu;
    149};
    150
    151void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc);
    152void cpu_mips_store_status(CPUMIPSState *env, target_ulong val);
    153void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val);
    154
    155extern const VMStateDescription vmstate_mips_cpu;
    156
    157#endif /* !CONFIG_USER_ONLY */
    158
    159static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env)
    160{
    161    return (env->CP0_Status & (1 << CP0St_IE)) &&
    162        !(env->CP0_Status & (1 << CP0St_EXL)) &&
    163        !(env->CP0_Status & (1 << CP0St_ERL)) &&
    164        !(env->hflags & MIPS_HFLAG_DM) &&
    165        /*
    166         * Note that the TCStatus IXMT field is initialized to zero,
    167         * and only MT capable cores can set it to one. So we don't
    168         * need to check for MT capabilities here.
    169         */
    170        !(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT));
    171}
    172
    173/* Check if there is pending and not masked out interrupt */
    174static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env)
    175{
    176    int32_t pending;
    177    int32_t status;
    178    bool r;
    179
    180    pending = env->CP0_Cause & CP0Ca_IP_mask;
    181    status = env->CP0_Status & CP0Ca_IP_mask;
    182
    183    if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
    184        /*
    185         * A MIPS configured with a vectorizing external interrupt controller
    186         * will feed a vector into the Cause pending lines. The core treats
    187         * the status lines as a vector level, not as individual masks.
    188         */
    189        r = pending > status;
    190    } else {
    191        /*
    192         * A MIPS configured with compatibility or VInt (Vectored Interrupts)
    193         * treats the pending lines as individual interrupt lines, the status
    194         * lines are individual masks.
    195         */
    196        r = (pending & status) != 0;
    197    }
    198    return r;
    199}
    200
    201void msa_reset(CPUMIPSState *env);
    202
    203/* cp0_timer.c */
    204uint32_t cpu_mips_get_count(CPUMIPSState *env);
    205void cpu_mips_store_count(CPUMIPSState *env, uint32_t value);
    206void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value);
    207void cpu_mips_start_count(CPUMIPSState *env);
    208void cpu_mips_stop_count(CPUMIPSState *env);
    209
    210static inline void mips_env_set_pc(CPUMIPSState *env, target_ulong value)
    211{
    212    env->active_tc.PC = value & ~(target_ulong)1;
    213    if (value & 1) {
    214        env->hflags |= MIPS_HFLAG_M16;
    215    } else {
    216        env->hflags &= ~(MIPS_HFLAG_M16);
    217    }
    218}
    219
    220static inline void restore_pamask(CPUMIPSState *env)
    221{
    222    if (env->hflags & MIPS_HFLAG_ELPA) {
    223        env->PAMask = (1ULL << env->PABITS) - 1;
    224    } else {
    225        env->PAMask = PAMASK_BASE;
    226    }
    227}
    228
    229static inline int mips_vpe_active(CPUMIPSState *env)
    230{
    231    int active = 1;
    232
    233    /* Check that the VPE is enabled.  */
    234    if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) {
    235        active = 0;
    236    }
    237    /* Check that the VPE is activated.  */
    238    if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) {
    239        active = 0;
    240    }
    241
    242    /*
    243     * Now verify that there are active thread contexts in the VPE.
    244     *
    245     * This assumes the CPU model will internally reschedule threads
    246     * if the active one goes to sleep. If there are no threads available
    247     * the active one will be in a sleeping state, and we can turn off
    248     * the entire VPE.
    249     */
    250    if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) {
    251        /* TC is not activated.  */
    252        active = 0;
    253    }
    254    if (env->active_tc.CP0_TCHalt & 1) {
    255        /* TC is in halt state.  */
    256        active = 0;
    257    }
    258
    259    return active;
    260}
    261
    262static inline int mips_vp_active(CPUMIPSState *env)
    263{
    264    CPUState *other_cs = first_cpu;
    265
    266    /* Check if the VP disabled other VPs (which means the VP is enabled) */
    267    if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
    268        return 1;
    269    }
    270
    271    /* Check if the virtual processor is disabled due to a DVP */
    272    CPU_FOREACH(other_cs) {
    273        MIPSCPU *other_cpu = MIPS_CPU(other_cs);
    274        if ((&other_cpu->env != env) &&
    275            ((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
    276            return 0;
    277        }
    278    }
    279    return 1;
    280}
    281
    282static inline void compute_hflags(CPUMIPSState *env)
    283{
    284    env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
    285                     MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
    286                     MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
    287                     MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA |
    288                     MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL);
    289    if (env->CP0_Status & (1 << CP0St_ERL)) {
    290        env->hflags |= MIPS_HFLAG_ERL;
    291    }
    292    if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
    293        !(env->CP0_Status & (1 << CP0St_ERL)) &&
    294        !(env->hflags & MIPS_HFLAG_DM)) {
    295        env->hflags |= (env->CP0_Status >> CP0St_KSU) &
    296                       MIPS_HFLAG_KSU;
    297    }
    298#if defined(TARGET_MIPS64)
    299    if ((env->insn_flags & ISA_MIPS3) &&
    300        (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
    301         (env->CP0_Status & (1 << CP0St_PX)) ||
    302         (env->CP0_Status & (1 << CP0St_UX)))) {
    303        env->hflags |= MIPS_HFLAG_64;
    304    }
    305
    306    if (!(env->insn_flags & ISA_MIPS3)) {
    307        env->hflags |= MIPS_HFLAG_AWRAP;
    308    } else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) &&
    309               !(env->CP0_Status & (1 << CP0St_UX))) {
    310        env->hflags |= MIPS_HFLAG_AWRAP;
    311    } else if (env->insn_flags & ISA_MIPS_R6) {
    312        /* Address wrapping for Supervisor and Kernel is specified in R6 */
    313        if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) &&
    314             !(env->CP0_Status & (1 << CP0St_SX))) ||
    315            (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) &&
    316             !(env->CP0_Status & (1 << CP0St_KX)))) {
    317            env->hflags |= MIPS_HFLAG_AWRAP;
    318        }
    319    }
    320#endif
    321    if (((env->CP0_Status & (1 << CP0St_CU0)) &&
    322         !(env->insn_flags & ISA_MIPS_R6)) ||
    323        !(env->hflags & MIPS_HFLAG_KSU)) {
    324        env->hflags |= MIPS_HFLAG_CP0;
    325    }
    326    if (env->CP0_Status & (1 << CP0St_CU1)) {
    327        env->hflags |= MIPS_HFLAG_FPU;
    328    }
    329    if (env->CP0_Status & (1 << CP0St_FR)) {
    330        env->hflags |= MIPS_HFLAG_F64;
    331    }
    332    if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) &&
    333        (env->CP0_Config5 & (1 << CP0C5_SBRI))) {
    334        env->hflags |= MIPS_HFLAG_SBRI;
    335    }
    336    if (env->insn_flags & ASE_DSP_R3) {
    337        /*
    338         * Our cpu supports DSP R3 ASE, so enable
    339         * access to DSP R3 resources.
    340         */
    341        if (env->CP0_Status & (1 << CP0St_MX)) {
    342            env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
    343                           MIPS_HFLAG_DSP_R3;
    344        }
    345    } else if (env->insn_flags & ASE_DSP_R2) {
    346        /*
    347         * Our cpu supports DSP R2 ASE, so enable
    348         * access to DSP R2 resources.
    349         */
    350        if (env->CP0_Status & (1 << CP0St_MX)) {
    351            env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2;
    352        }
    353
    354    } else if (env->insn_flags & ASE_DSP) {
    355        /*
    356         * Our cpu supports DSP ASE, so enable
    357         * access to DSP resources.
    358         */
    359        if (env->CP0_Status & (1 << CP0St_MX)) {
    360            env->hflags |= MIPS_HFLAG_DSP;
    361        }
    362
    363    }
    364    if (env->insn_flags & ISA_MIPS_R2) {
    365        if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
    366            env->hflags |= MIPS_HFLAG_COP1X;
    367        }
    368    } else if (env->insn_flags & ISA_MIPS_R1) {
    369        if (env->hflags & MIPS_HFLAG_64) {
    370            env->hflags |= MIPS_HFLAG_COP1X;
    371        }
    372    } else if (env->insn_flags & ISA_MIPS4) {
    373        /*
    374         * All supported MIPS IV CPUs use the XX (CU3) to enable
    375         * and disable the MIPS IV extensions to the MIPS III ISA.
    376         * Some other MIPS IV CPUs ignore the bit, so the check here
    377         * would be too restrictive for them.
    378         */
    379        if (env->CP0_Status & (1U << CP0St_CU3)) {
    380            env->hflags |= MIPS_HFLAG_COP1X;
    381        }
    382    }
    383    if (ase_msa_available(env)) {
    384        if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) {
    385            env->hflags |= MIPS_HFLAG_MSA;
    386        }
    387    }
    388    if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
    389        if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
    390            env->hflags |= MIPS_HFLAG_FRE;
    391        }
    392    }
    393    if (env->CP0_Config3 & (1 << CP0C3_LPA)) {
    394        if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) {
    395            env->hflags |= MIPS_HFLAG_ELPA;
    396        }
    397    }
    398}
    399
    400#endif