#include "cachepc.h" static cacheline *build_cache_ds(cache_ctx *ctx, cacheline **cacheline_ptr_arr); static void build_randomized_list_for_cache_set(cache_ctx *ctx, cacheline **cacheline_ptr_arr); static cacheline **allocate_cache_ds(cache_ctx *ctx); static uint16_t get_virt_cache_set(cache_ctx *ctx, void *ptr); static void *aligned_alloc(size_t alignment, size_t size); cache_ctx * get_cache_ctx(cache_level cache_level) { cache_ctx *ctx; ctx = kzalloc(sizeof(cache_ctx), GFP_KERNEL); BUG_ON(ctx == NULL); if (cache_level == L1) { ctx->addressing = L1_ADDRESSING; ctx->sets = L1_SETS; ctx->associativity = L1_ASSOCIATIVITY; ctx->access_time = L1_ACCESS_TIME; } else if (cache_level == L2) { ctx->addressing = L2_ADDRESSING; ctx->sets = L2_SETS; ctx->associativity = L2_ASSOCIATIVITY; ctx->access_time = L2_ACCESS_TIME; } else { return NULL; } ctx->cache_level = cache_level; ctx->nr_of_cachelines = ctx->sets * ctx->associativity; ctx->set_size = CACHELINE_SIZE * ctx->associativity; ctx->cache_size = ctx->sets * ctx->set_size; return ctx; } /* * Initialises the complete cache data structure for the given context */ cacheline * cachepc_prepare_ds(cache_ctx *ctx) { cacheline **cacheline_ptr_arr; cacheline *cache_ds; cacheline_ptr_arr = allocate_cache_ds(ctx); cache_ds = build_cache_ds(ctx, cacheline_ptr_arr); kfree(cacheline_ptr_arr); return cache_ds; } void cachepc_save_msrmt(cacheline *head, const char *prefix, int index) { char filename[256]; snprintf(filename, sizeof(filename), "%s.%i", prefix, index); } void cache_print_msrmts(cacheline *head) { cacheline *curr_cl; curr_cl = head; do { if (IS_FIRST(curr_cl->flags)) { printk(KERN_WARNING "Count for cache set %i: %llu\n", curr_cl->cache_set, curr_cl->count); } curr_cl = curr_cl->prev; } while (curr_cl != head); } /* * Create a randomized doubly linked list with the following structure: * set A <--> set B <--> ... <--> set X <--> set A * where each set is one of the cache sets, in a random order. * The sets are a doubly linked list of cachelines themselves: * set A: * line[A + x0 * #sets] <--> line[A + x1 * #sets] <--> ... * where x0, x1, ..., xD is a random permutation of 1, 2, ..., D * and D = Associativity = | cache set | */ cacheline *build_cache_ds(cache_ctx *ctx, cacheline **cl_ptr_arr) { cacheline **cl_ptr_arr_sorted; cacheline *curr_cl, *next_cl; cacheline *cache_ds; uint32_t *idx_per_set; uint32_t idx_curr_set, set_offset; uint32_t i, j, set, set_len; uint32_t *idx_map; idx_per_set = kzalloc(ctx->sets * sizeof(uint32_t), GFP_KERNEL); BUG_ON(idx_per_set == NULL); cl_ptr_arr_sorted = kmalloc(ctx->nr_of_cachelines * sizeof(cacheline *), GFP_KERNEL); BUG_ON(cl_ptr_arr_sorted == NULL); set_len = ctx->associativity; for (i = 0; i < ctx->nr_of_cachelines; ++i) { set_offset = cl_ptr_arr[i]->cache_set * set_len; idx_curr_set = idx_per_set[cl_ptr_arr[i]->cache_set]; cl_ptr_arr_sorted[set_offset + idx_curr_set] = cl_ptr_arr[i]; idx_per_set[cl_ptr_arr[i]->cache_set] += 1; } // Build doubly linked list for every set for (set = 0; set < ctx->sets; ++set) { set_offset = set * set_len; build_randomized_list_for_cache_set(ctx, cl_ptr_arr_sorted + set_offset); } // Relink the sets among each other idx_map = kzalloc(ctx->sets * sizeof(uint32_t), GFP_KERNEL); BUG_ON(idx_map == NULL); gen_random_indices(idx_map, ctx->sets); curr_cl = cl_ptr_arr_sorted[idx_map[0] * set_len]->prev; for (j = 0; j < ctx->sets; ++j) { curr_cl->next = cl_ptr_arr_sorted[idx_map[(j + 1) % ctx->sets] * set_len]; next_cl = curr_cl->next->prev; curr_cl->next->prev = curr_cl; curr_cl = next_cl; } cache_ds = cl_ptr_arr_sorted[idx_map[0] * set_len]; kfree(cl_ptr_arr_sorted); kfree(idx_per_set); kfree(idx_map); return cache_ds; } /* * Helper function to build a randomised list of cacheline structs for a set */ void build_randomized_list_for_cache_set(cache_ctx *ctx, cacheline **cacheline_ptr_arr) { cacheline *curr_cl; uint32_t len, *idx_map; uint16_t i; len = ctx->associativity; idx_map = kzalloc(len * sizeof(uint32_t), GFP_KERNEL); BUG_ON(idx_map == NULL); gen_random_indices(idx_map, len); for (i = 0; i < len; ++i) { curr_cl = cacheline_ptr_arr[idx_map[i]]; curr_cl->next = cacheline_ptr_arr[idx_map[(i + 1) % len]]; curr_cl->prev = cacheline_ptr_arr[idx_map[(len - 1 + i) % len]]; curr_cl->count = 0; if (curr_cl == cacheline_ptr_arr[0]) { curr_cl->flags = SET_FIRST(DEFAULT_FLAGS); curr_cl->prev->flags = SET_LAST(DEFAULT_FLAGS); } else { curr_cl->flags = curr_cl->flags | DEFAULT_FLAGS; } } kfree(idx_map); } /* * Allocate a data structure that fills the complete cache, i.e. consisting * of `associativity` many cache lines for each cache set. */ cacheline ** allocate_cache_ds(cache_ctx *ctx) { cacheline **cl_ptr_arr, *cl_arr; uint32_t i; cl_ptr_arr = (cacheline **) kzalloc(ctx->nr_of_cachelines * sizeof(cacheline *), GFP_KERNEL); BUG_ON(cl_ptr_arr == NULL); BUG_ON(ctx->addressing != VIRTUAL); // For virtual addressing, allocating a consecutive chunk of memory is enough cl_arr = (cacheline *) aligned_alloc(PAGE_SIZE, ctx->cache_size); BUG_ON(cl_arr == NULL); for (i = 0; i < ctx->nr_of_cachelines; ++i) { cl_ptr_arr[i] = cl_arr + i; cl_ptr_arr[i]->cache_set = get_virt_cache_set(ctx, cl_ptr_arr[i]); } return cl_ptr_arr; } uint16_t get_virt_cache_set(cache_ctx *ctx, void *ptr) { return (uint16_t) ((((uintptr_t) ptr) & SET_MASK(ctx->sets)) / CACHELINE_SIZE); } void * aligned_alloc(size_t alignment, size_t size) { void *p; if (size % alignment != 0) size = size - (size % alignment) + alignment; p = kmalloc(size, GFP_KERNEL); BUG_ON(((uintptr_t) p) % alignment != 0); return p; }