cscg22-gearboy

CSCG 2022 Challenge 'Gearboy'
git clone https://git.sinitax.com/sinitax/cscg22-gearboy
Log | Files | Refs | sfeed.txt

e_log.c (5278B)


      1/* @(#)e_log.c 5.1 93/09/24 */
      2/*
      3 * ====================================================
      4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      5 *
      6 * Developed at SunPro, a Sun Microsystems, Inc. business.
      7 * Permission to use, copy, modify, and distribute this
      8 * software is freely granted, provided that this notice
      9 * is preserved.
     10 * ====================================================
     11 */
     12
     13#if defined(LIBM_SCCS) && !defined(lint)
     14static const char rcsid[] =
     15    "$NetBSD: e_log.c,v 1.8 1995/05/10 20:45:49 jtc Exp $";
     16#endif
     17
     18/* __ieee754_log(x)
     19 * Return the logrithm of x
     20 *
     21 * Method :
     22 *   1. Argument Reduction: find k and f such that
     23 *			x = 2^k * (1+f),
     24 *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
     25 *
     26 *   2. Approximation of log(1+f).
     27 *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
     28 *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
     29 *	     	 = 2s + s*R
     30 *      We use a special Reme algorithm on [0,0.1716] to generate
     31 * 	a polynomial of degree 14 to approximate R The maximum error
     32 *	of this polynomial approximation is bounded by 2**-58.45. In
     33 *	other words,
     34 *		        2      4      6      8      10      12      14
     35 *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
     36 *  	(the values of Lg1 to Lg7 are listed in the program)
     37 *	and
     38 *	    |      2          14          |     -58.45
     39 *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2
     40 *	    |                             |
     41 *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
     42 *	In order to guarantee error in log below 1ulp, we compute log
     43 *	by
     44 *		log(1+f) = f - s*(f - R)	(if f is not too large)
     45 *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
     46 *
     47 *	3. Finally,  log(x) = k*ln2 + log(1+f).
     48 *			    = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
     49 *	   Here ln2 is split into two floating point number:
     50 *			ln2_hi + ln2_lo,
     51 *	   where n*ln2_hi is always exact for |n| < 2000.
     52 *
     53 * Special cases:
     54 *	log(x) is NaN with signal if x < 0 (including -INF) ;
     55 *	log(+INF) is +INF; log(0) is -INF with signal;
     56 *	log(NaN) is that NaN with no signal.
     57 *
     58 * Accuracy:
     59 *	according to an error analysis, the error is always less than
     60 *	1 ulp (unit in the last place).
     61 *
     62 * Constants:
     63 * The hexadecimal values are the intended ones for the following
     64 * constants. The decimal values may be used, provided that the
     65 * compiler will convert from decimal to binary accurately enough
     66 * to produce the hexadecimal values shown.
     67 */
     68
     69#include "math_libm.h"
     70#include "math_private.h"
     71
     72#ifdef __STDC__
     73static const double
     74#else
     75static double
     76#endif
     77  ln2_hi = 6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
     78    ln2_lo = 1.90821492927058770002e-10,        /* 3dea39ef 35793c76 */
     79    two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
     80    Lg1 = 6.666666666666735130e-01,     /* 3FE55555 55555593 */
     81    Lg2 = 3.999999999940941908e-01,     /* 3FD99999 9997FA04 */
     82    Lg3 = 2.857142874366239149e-01,     /* 3FD24924 94229359 */
     83    Lg4 = 2.222219843214978396e-01,     /* 3FCC71C5 1D8E78AF */
     84    Lg5 = 1.818357216161805012e-01,     /* 3FC74664 96CB03DE */
     85    Lg6 = 1.531383769920937332e-01,     /* 3FC39A09 D078C69F */
     86    Lg7 = 1.479819860511658591e-01;     /* 3FC2F112 DF3E5244 */
     87
     88#ifdef __STDC__
     89static const double zero = 0.0;
     90#else
     91static double zero = 0.0;
     92#endif
     93
     94#ifdef __STDC__
     95double attribute_hidden
     96__ieee754_log(double x)
     97#else
     98double attribute_hidden
     99__ieee754_log(x)
    100     double x;
    101#endif
    102{
    103    double hfsq, f, s, z, R, w, t1, t2, dk;
    104    int32_t k, hx, i, j;
    105    u_int32_t lx;
    106
    107    EXTRACT_WORDS(hx, lx, x);
    108
    109    k = 0;
    110    if (hx < 0x00100000) {      /* x < 2**-1022  */
    111        if (((hx & 0x7fffffff) | lx) == 0)
    112            return -two54 / zero;       /* log(+-0)=-inf */
    113        if (hx < 0)
    114            return (x - x) / zero;      /* log(-#) = NaN */
    115        k -= 54;
    116        x *= two54;             /* subnormal number, scale up x */
    117        GET_HIGH_WORD(hx, x);
    118    }
    119    if (hx >= 0x7ff00000)
    120        return x + x;
    121    k += (hx >> 20) - 1023;
    122    hx &= 0x000fffff;
    123    i = (hx + 0x95f64) & 0x100000;
    124    SET_HIGH_WORD(x, hx | (i ^ 0x3ff00000));    /* normalize x or x/2 */
    125    k += (i >> 20);
    126    f = x - 1.0;
    127    if ((0x000fffff & (2 + hx)) < 3) {  /* |f| < 2**-20 */
    128        if (f == zero) {
    129            if (k == 0)
    130                return zero;
    131            else {
    132                dk = (double) k;
    133                return dk * ln2_hi + dk * ln2_lo;
    134            }
    135        }
    136        R = f * f * (0.5 - 0.33333333333333333 * f);
    137        if (k == 0)
    138            return f - R;
    139        else {
    140            dk = (double) k;
    141            return dk * ln2_hi - ((R - dk * ln2_lo) - f);
    142        }
    143    }
    144    s = f / (2.0 + f);
    145    dk = (double) k;
    146    z = s * s;
    147    i = hx - 0x6147a;
    148    w = z * z;
    149    j = 0x6b851 - hx;
    150    t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
    151    t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
    152    i |= j;
    153    R = t2 + t1;
    154    if (i > 0) {
    155        hfsq = 0.5 * f * f;
    156        if (k == 0)
    157            return f - (hfsq - s * (hfsq + R));
    158        else
    159            return dk * ln2_hi - ((hfsq - (s * (hfsq + R) + dk * ln2_lo)) -
    160                                  f);
    161    } else {
    162        if (k == 0)
    163            return f - s * (f - R);
    164        else
    165            return dk * ln2_hi - ((s * (f - R) - dk * ln2_lo) - f);
    166    }
    167}