k_cos.c (3404B)
1/* @(#)k_cos.c 5.1 93/09/24 */ 2/* 3 * ==================================================== 4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 5 * 6 * Developed at SunPro, a Sun Microsystems, Inc. business. 7 * Permission to use, copy, modify, and distribute this 8 * software is freely granted, provided that this notice 9 * is preserved. 10 * ==================================================== 11 */ 12 13#if defined(LIBM_SCCS) && !defined(lint) 14static const char rcsid[] = 15 "$NetBSD: k_cos.c,v 1.8 1995/05/10 20:46:22 jtc Exp $"; 16#endif 17 18/* 19 * __kernel_cos( x, y ) 20 * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 21 * Input x is assumed to be bounded by ~pi/4 in magnitude. 22 * Input y is the tail of x. 23 * 24 * Algorithm 25 * 1. Since cos(-x) = cos(x), we need only to consider positive x. 26 * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. 27 * 3. cos(x) is approximated by a polynomial of degree 14 on 28 * [0,pi/4] 29 * 4 14 30 * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x 31 * where the remez error is 32 * 33 * | 2 4 6 8 10 12 14 | -58 34 * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 35 * | | 36 * 37 * 4 6 8 10 12 14 38 * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then 39 * cos(x) = 1 - x*x/2 + r 40 * since cos(x+y) ~ cos(x) - sin(x)*y 41 * ~ cos(x) - x*y, 42 * a correction term is necessary in cos(x) and hence 43 * cos(x+y) = 1 - (x*x/2 - (r - x*y)) 44 * For better accuracy when x > 0.3, let qx = |x|/4 with 45 * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. 46 * Then 47 * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)). 48 * Note that 1-qx and (x*x/2-qx) is EXACT here, and the 49 * magnitude of the latter is at least a quarter of x*x/2, 50 * thus, reducing the rounding error in the subtraction. 51 */ 52 53#include "math_libm.h" 54#include "math_private.h" 55 56#ifdef __STDC__ 57static const double 58#else 59static double 60#endif 61 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ 62 C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ 63 C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ 64 C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ 65 C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ 66 C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ 67 C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ 68 69#ifdef __STDC__ 70double attribute_hidden 71__kernel_cos(double x, double y) 72#else 73double attribute_hidden 74__kernel_cos(x, y) 75 double x, y; 76#endif 77{ 78 double a, hz, z, r, qx; 79 int32_t ix; 80 GET_HIGH_WORD(ix, x); 81 ix &= 0x7fffffff; /* ix = |x|'s high word */ 82 if (ix < 0x3e400000) { /* if x < 2**27 */ 83 if (((int) x) == 0) 84 return one; /* generate inexact */ 85 } 86 z = x * x; 87 r = z * (C1 + z * (C2 + z * (C3 + z * (C4 + z * (C5 + z * C6))))); 88 if (ix < 0x3FD33333) /* if |x| < 0.3 */ 89 return one - (0.5 * z - (z * r - x * y)); 90 else { 91 if (ix > 0x3fe90000) { /* x > 0.78125 */ 92 qx = 0.28125; 93 } else { 94 INSERT_WORDS(qx, ix - 0x00200000, 0); /* x/4 */ 95 } 96 hz = 0.5 * z - qx; 97 a = one - qx; 98 return a - (hz - (z * r - x * y)); 99 } 100}