k_rem_pio2.c (10359B)
1/* @(#)k_rem_pio2.c 5.1 93/09/24 */ 2/* 3 * ==================================================== 4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 5 * 6 * Developed at SunPro, a Sun Microsystems, Inc. business. 7 * Permission to use, copy, modify, and distribute this 8 * software is freely granted, provided that this notice 9 * is preserved. 10 * ==================================================== 11 */ 12 13#if defined(LIBM_SCCS) && !defined(lint) 14static const char rcsid[] = 15 "$NetBSD: k_rem_pio2.c,v 1.7 1995/05/10 20:46:25 jtc Exp $"; 16#endif 17 18/* 19 * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) 20 * double x[],y[]; int e0,nx,prec; int ipio2[]; 21 * 22 * __kernel_rem_pio2 return the last three digits of N with 23 * y = x - N*pi/2 24 * so that |y| < pi/2. 25 * 26 * The method is to compute the integer (mod 8) and fraction parts of 27 * (2/pi)*x without doing the full multiplication. In general we 28 * skip the part of the product that are known to be a huge integer ( 29 * more accurately, = 0 mod 8 ). Thus the number of operations are 30 * independent of the exponent of the input. 31 * 32 * (2/pi) is represented by an array of 24-bit integers in ipio2[]. 33 * 34 * Input parameters: 35 * x[] The input value (must be positive) is broken into nx 36 * pieces of 24-bit integers in double precision format. 37 * x[i] will be the i-th 24 bit of x. The scaled exponent 38 * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 39 * match x's up to 24 bits. 40 * 41 * Example of breaking a double positive z into x[0]+x[1]+x[2]: 42 * e0 = ilogb(z)-23 43 * z = scalbn(z,-e0) 44 * for i = 0,1,2 45 * x[i] = floor(z) 46 * z = (z-x[i])*2**24 47 * 48 * 49 * y[] ouput result in an array of double precision numbers. 50 * The dimension of y[] is: 51 * 24-bit precision 1 52 * 53-bit precision 2 53 * 64-bit precision 2 54 * 113-bit precision 3 55 * The actual value is the sum of them. Thus for 113-bit 56 * precison, one may have to do something like: 57 * 58 * long double t,w,r_head, r_tail; 59 * t = (long double)y[2] + (long double)y[1]; 60 * w = (long double)y[0]; 61 * r_head = t+w; 62 * r_tail = w - (r_head - t); 63 * 64 * e0 The exponent of x[0] 65 * 66 * nx dimension of x[] 67 * 68 * prec an integer indicating the precision: 69 * 0 24 bits (single) 70 * 1 53 bits (double) 71 * 2 64 bits (extended) 72 * 3 113 bits (quad) 73 * 74 * ipio2[] 75 * integer array, contains the (24*i)-th to (24*i+23)-th 76 * bit of 2/pi after binary point. The corresponding 77 * floating value is 78 * 79 * ipio2[i] * 2^(-24(i+1)). 80 * 81 * External function: 82 * double scalbn(), floor(); 83 * 84 * 85 * Here is the description of some local variables: 86 * 87 * jk jk+1 is the initial number of terms of ipio2[] needed 88 * in the computation. The recommended value is 2,3,4, 89 * 6 for single, double, extended,and quad. 90 * 91 * jz local integer variable indicating the number of 92 * terms of ipio2[] used. 93 * 94 * jx nx - 1 95 * 96 * jv index for pointing to the suitable ipio2[] for the 97 * computation. In general, we want 98 * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 99 * is an integer. Thus 100 * e0-3-24*jv >= 0 or (e0-3)/24 >= jv 101 * Hence jv = max(0,(e0-3)/24). 102 * 103 * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. 104 * 105 * q[] double array with integral value, representing the 106 * 24-bits chunk of the product of x and 2/pi. 107 * 108 * q0 the corresponding exponent of q[0]. Note that the 109 * exponent for q[i] would be q0-24*i. 110 * 111 * PIo2[] double precision array, obtained by cutting pi/2 112 * into 24 bits chunks. 113 * 114 * f[] ipio2[] in floating point 115 * 116 * iq[] integer array by breaking up q[] in 24-bits chunk. 117 * 118 * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] 119 * 120 * ih integer. If >0 it indicates q[] is >= 0.5, hence 121 * it also indicates the *sign* of the result. 122 * 123 */ 124 125 126/* 127 * Constants: 128 * The hexadecimal values are the intended ones for the following 129 * constants. The decimal values may be used, provided that the 130 * compiler will convert from decimal to binary accurately enough 131 * to produce the hexadecimal values shown. 132 */ 133 134#include "math_libm.h" 135#include "math_private.h" 136 137#include "SDL_assert.h" 138 139libm_hidden_proto(scalbn) 140 libm_hidden_proto(floor) 141#ifdef __STDC__ 142 static const int init_jk[] = { 2, 3, 4, 6 }; /* initial value for jk */ 143#else 144 static int init_jk[] = { 2, 3, 4, 6 }; 145#endif 146 147#ifdef __STDC__ 148static const double PIo2[] = { 149#else 150static double PIo2[] = { 151#endif 152 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ 153 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ 154 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ 155 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ 156 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ 157 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ 158 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ 159 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ 160}; 161 162#ifdef __STDC__ 163static const double 164#else 165static double 166#endif 167 zero = 0.0, one = 1.0, two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ 168 twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ 169 170#ifdef __STDC__ 171int attribute_hidden 172__kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, 173 const int32_t * ipio2) 174#else 175int attribute_hidden 176__kernel_rem_pio2(x, y, e0, nx, prec, ipio2) 177 double x[], y[]; 178 int e0, nx, prec; 179 int32_t ipio2[]; 180#endif 181{ 182 int32_t jz, jx, jv, jp, jk, carry, n, iq[20], i, j, k, m, q0, ih; 183 double z, fw, f[20], fq[20], q[20]; 184 185 /* initialize jk */ 186 SDL_assert((prec >= 0) && (prec < SDL_arraysize(init_jk))); 187 jk = init_jk[prec]; 188 SDL_assert((jk >= 2) && (jk <= 6)); 189 jp = jk; 190 191 /* determine jx,jv,q0, note that 3>q0 */ 192 SDL_assert(nx > 0); 193 jx = nx - 1; 194 jv = (e0 - 3) / 24; 195 if (jv < 0) 196 jv = 0; 197 q0 = e0 - 24 * (jv + 1); 198 199 /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ 200 j = jv - jx; 201 m = jx + jk; 202 for (i = 0; i <= m; i++, j++) 203 f[i] = (j < 0) ? zero : (double) ipio2[j]; 204 205 /* compute q[0],q[1],...q[jk] */ 206 for (i = 0; i <= jk; i++) { 207 for (j = 0, fw = 0.0; j <= jx; j++) 208 fw += x[j] * f[jx + i - j]; 209 q[i] = fw; 210 } 211 212 jz = jk; 213 recompute: 214 /* distill q[] into iq[] reversingly */ 215 for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--) { 216 fw = (double) ((int32_t) (twon24 * z)); 217 iq[i] = (int32_t) (z - two24 * fw); 218 z = q[j - 1] + fw; 219 } 220 221 /* compute n */ 222 z = scalbn(z, q0); /* actual value of z */ 223 z -= 8.0 * floor(z * 0.125); /* trim off integer >= 8 */ 224 n = (int32_t) z; 225 z -= (double) n; 226 ih = 0; 227 if (q0 > 0) { /* need iq[jz-1] to determine n */ 228 i = (iq[jz - 1] >> (24 - q0)); 229 n += i; 230 iq[jz - 1] -= i << (24 - q0); 231 ih = iq[jz - 1] >> (23 - q0); 232 } else if (q0 == 0) 233 ih = iq[jz - 1] >> 23; 234 else if (z >= 0.5) 235 ih = 2; 236 237 if (ih > 0) { /* q > 0.5 */ 238 n += 1; 239 carry = 0; 240 for (i = 0; i < jz; i++) { /* compute 1-q */ 241 j = iq[i]; 242 if (carry == 0) { 243 if (j != 0) { 244 carry = 1; 245 iq[i] = 0x1000000 - j; 246 } 247 } else 248 iq[i] = 0xffffff - j; 249 } 250 if (q0 > 0) { /* rare case: chance is 1 in 12 */ 251 switch (q0) { 252 case 1: 253 iq[jz - 1] &= 0x7fffff; 254 break; 255 case 2: 256 iq[jz - 1] &= 0x3fffff; 257 break; 258 } 259 } 260 if (ih == 2) { 261 z = one - z; 262 if (carry != 0) 263 z -= scalbn(one, q0); 264 } 265 } 266 267 /* check if recomputation is needed */ 268 if (z == zero) { 269 j = 0; 270 for (i = jz - 1; i >= jk; i--) 271 j |= iq[i]; 272 if (j == 0) { /* need recomputation */ 273 for (k = 1; iq[jk - k] == 0; k++); /* k = no. of terms needed */ 274 275 for (i = jz + 1; i <= jz + k; i++) { /* add q[jz+1] to q[jz+k] */ 276 f[jx + i] = (double) ipio2[jv + i]; 277 for (j = 0, fw = 0.0; j <= jx; j++) 278 fw += x[j] * f[jx + i - j]; 279 q[i] = fw; 280 } 281 jz += k; 282 goto recompute; 283 } 284 } 285 286 /* chop off zero terms */ 287 if (z == 0.0) { 288 jz -= 1; 289 q0 -= 24; 290 while (iq[jz] == 0) { 291 jz--; 292 q0 -= 24; 293 } 294 } else { /* break z into 24-bit if necessary */ 295 z = scalbn(z, -q0); 296 if (z >= two24) { 297 fw = (double) ((int32_t) (twon24 * z)); 298 iq[jz] = (int32_t) (z - two24 * fw); 299 jz += 1; 300 q0 += 24; 301 iq[jz] = (int32_t) fw; 302 } else 303 iq[jz] = (int32_t) z; 304 } 305 306 /* convert integer "bit" chunk to floating-point value */ 307 fw = scalbn(one, q0); 308 for (i = jz; i >= 0; i--) { 309 q[i] = fw * (double) iq[i]; 310 fw *= twon24; 311 } 312 313 /* compute PIo2[0,...,jp]*q[jz,...,0] */ 314 for (i = jz; i >= 0; i--) { 315 for (fw = 0.0, k = 0; k <= jp && k <= jz - i; k++) 316 fw += PIo2[k] * q[i + k]; 317 fq[jz - i] = fw; 318 } 319 320 /* compress fq[] into y[] */ 321 switch (prec) { 322 case 0: 323 fw = 0.0; 324 for (i = jz; i >= 0; i--) 325 fw += fq[i]; 326 y[0] = (ih == 0) ? fw : -fw; 327 break; 328 case 1: 329 case 2: 330 fw = 0.0; 331 for (i = jz; i >= 0; i--) 332 fw += fq[i]; 333 y[0] = (ih == 0) ? fw : -fw; 334 fw = fq[0] - fw; 335 for (i = 1; i <= jz; i++) 336 fw += fq[i]; 337 y[1] = (ih == 0) ? fw : -fw; 338 break; 339 case 3: /* painful */ 340 for (i = jz; i > 0; i--) { 341 fw = fq[i - 1] + fq[i]; 342 fq[i] += fq[i - 1] - fw; 343 fq[i - 1] = fw; 344 } 345 for (i = jz; i > 1; i--) { 346 fw = fq[i - 1] + fq[i]; 347 fq[i] += fq[i - 1] - fw; 348 fq[i - 1] = fw; 349 } 350 for (fw = 0.0, i = jz; i >= 2; i--) 351 fw += fq[i]; 352 if (ih == 0) { 353 y[0] = fq[0]; 354 y[1] = fq[1]; 355 y[2] = fw; 356 } else { 357 y[0] = -fq[0]; 358 y[1] = -fq[1]; 359 y[2] = -fw; 360 } 361 } 362 return n & 7; 363}