cscg22-gearboy

CSCG 2022 Challenge 'Gearboy'
git clone https://git.sinitax.com/sinitax/cscg22-gearboy
Log | Files | Refs | sfeed.txt

k_rem_pio2.c (10359B)


      1/* @(#)k_rem_pio2.c 5.1 93/09/24 */
      2/*
      3 * ====================================================
      4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      5 *
      6 * Developed at SunPro, a Sun Microsystems, Inc. business.
      7 * Permission to use, copy, modify, and distribute this
      8 * software is freely granted, provided that this notice
      9 * is preserved.
     10 * ====================================================
     11 */
     12
     13#if defined(LIBM_SCCS) && !defined(lint)
     14static const char rcsid[] =
     15    "$NetBSD: k_rem_pio2.c,v 1.7 1995/05/10 20:46:25 jtc Exp $";
     16#endif
     17
     18/*
     19 * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
     20 * double x[],y[]; int e0,nx,prec; int ipio2[];
     21 *
     22 * __kernel_rem_pio2 return the last three digits of N with
     23 *		y = x - N*pi/2
     24 * so that |y| < pi/2.
     25 *
     26 * The method is to compute the integer (mod 8) and fraction parts of
     27 * (2/pi)*x without doing the full multiplication. In general we
     28 * skip the part of the product that are known to be a huge integer (
     29 * more accurately, = 0 mod 8 ). Thus the number of operations are
     30 * independent of the exponent of the input.
     31 *
     32 * (2/pi) is represented by an array of 24-bit integers in ipio2[].
     33 *
     34 * Input parameters:
     35 * 	x[]	The input value (must be positive) is broken into nx
     36 *		pieces of 24-bit integers in double precision format.
     37 *		x[i] will be the i-th 24 bit of x. The scaled exponent
     38 *		of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
     39 *		match x's up to 24 bits.
     40 *
     41 *		Example of breaking a double positive z into x[0]+x[1]+x[2]:
     42 *			e0 = ilogb(z)-23
     43 *			z  = scalbn(z,-e0)
     44 *		for i = 0,1,2
     45 *			x[i] = floor(z)
     46 *			z    = (z-x[i])*2**24
     47 *
     48 *
     49 *	y[]	ouput result in an array of double precision numbers.
     50 *		The dimension of y[] is:
     51 *			24-bit  precision	1
     52 *			53-bit  precision	2
     53 *			64-bit  precision	2
     54 *			113-bit precision	3
     55 *		The actual value is the sum of them. Thus for 113-bit
     56 *		precison, one may have to do something like:
     57 *
     58 *		long double t,w,r_head, r_tail;
     59 *		t = (long double)y[2] + (long double)y[1];
     60 *		w = (long double)y[0];
     61 *		r_head = t+w;
     62 *		r_tail = w - (r_head - t);
     63 *
     64 *	e0	The exponent of x[0]
     65 *
     66 *	nx	dimension of x[]
     67 *
     68 *  	prec	an integer indicating the precision:
     69 *			0	24  bits (single)
     70 *			1	53  bits (double)
     71 *			2	64  bits (extended)
     72 *			3	113 bits (quad)
     73 *
     74 *	ipio2[]
     75 *		integer array, contains the (24*i)-th to (24*i+23)-th
     76 *		bit of 2/pi after binary point. The corresponding
     77 *		floating value is
     78 *
     79 *			ipio2[i] * 2^(-24(i+1)).
     80 *
     81 * External function:
     82 *	double scalbn(), floor();
     83 *
     84 *
     85 * Here is the description of some local variables:
     86 *
     87 * 	jk	jk+1 is the initial number of terms of ipio2[] needed
     88 *		in the computation. The recommended value is 2,3,4,
     89 *		6 for single, double, extended,and quad.
     90 *
     91 * 	jz	local integer variable indicating the number of
     92 *		terms of ipio2[] used.
     93 *
     94 *	jx	nx - 1
     95 *
     96 *	jv	index for pointing to the suitable ipio2[] for the
     97 *		computation. In general, we want
     98 *			( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
     99 *		is an integer. Thus
    100 *			e0-3-24*jv >= 0 or (e0-3)/24 >= jv
    101 *		Hence jv = max(0,(e0-3)/24).
    102 *
    103 *	jp	jp+1 is the number of terms in PIo2[] needed, jp = jk.
    104 *
    105 * 	q[]	double array with integral value, representing the
    106 *		24-bits chunk of the product of x and 2/pi.
    107 *
    108 *	q0	the corresponding exponent of q[0]. Note that the
    109 *		exponent for q[i] would be q0-24*i.
    110 *
    111 *	PIo2[]	double precision array, obtained by cutting pi/2
    112 *		into 24 bits chunks.
    113 *
    114 *	f[]	ipio2[] in floating point
    115 *
    116 *	iq[]	integer array by breaking up q[] in 24-bits chunk.
    117 *
    118 *	fq[]	final product of x*(2/pi) in fq[0],..,fq[jk]
    119 *
    120 *	ih	integer. If >0 it indicates q[] is >= 0.5, hence
    121 *		it also indicates the *sign* of the result.
    122 *
    123 */
    124
    125
    126/*
    127 * Constants:
    128 * The hexadecimal values are the intended ones for the following
    129 * constants. The decimal values may be used, provided that the
    130 * compiler will convert from decimal to binary accurately enough
    131 * to produce the hexadecimal values shown.
    132 */
    133
    134#include "math_libm.h"
    135#include "math_private.h"
    136
    137#include "SDL_assert.h"
    138
    139libm_hidden_proto(scalbn)
    140    libm_hidden_proto(floor)
    141#ifdef __STDC__
    142     static const int init_jk[] = { 2, 3, 4, 6 };       /* initial value for jk */
    143#else
    144     static int init_jk[] = { 2, 3, 4, 6 };
    145#endif
    146
    147#ifdef __STDC__
    148static const double PIo2[] = {
    149#else
    150static double PIo2[] = {
    151#endif
    152    1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
    153    7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
    154    5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
    155    3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
    156    1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
    157    1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
    158    2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
    159    2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
    160};
    161
    162#ifdef __STDC__
    163static const double
    164#else
    165static double
    166#endif
    167  zero = 0.0, one = 1.0, two24 = 1.67772160000000000000e+07,    /* 0x41700000, 0x00000000 */
    168    twon24 = 5.96046447753906250000e-08;        /* 0x3E700000, 0x00000000 */
    169
    170#ifdef __STDC__
    171int attribute_hidden
    172__kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec,
    173                  const int32_t * ipio2)
    174#else
    175int attribute_hidden
    176__kernel_rem_pio2(x, y, e0, nx, prec, ipio2)
    177     double x[], y[];
    178     int e0, nx, prec;
    179     int32_t ipio2[];
    180#endif
    181{
    182    int32_t jz, jx, jv, jp, jk, carry, n, iq[20], i, j, k, m, q0, ih;
    183    double z, fw, f[20], fq[20], q[20];
    184
    185    /* initialize jk */
    186    SDL_assert((prec >= 0) && (prec < SDL_arraysize(init_jk)));
    187    jk = init_jk[prec];
    188    SDL_assert((jk >= 2) && (jk <= 6));
    189    jp = jk;
    190
    191    /* determine jx,jv,q0, note that 3>q0 */
    192    SDL_assert(nx > 0);
    193    jx = nx - 1;
    194    jv = (e0 - 3) / 24;
    195    if (jv < 0)
    196        jv = 0;
    197    q0 = e0 - 24 * (jv + 1);
    198
    199    /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
    200    j = jv - jx;
    201    m = jx + jk;
    202    for (i = 0; i <= m; i++, j++)
    203        f[i] = (j < 0) ? zero : (double) ipio2[j];
    204
    205    /* compute q[0],q[1],...q[jk] */
    206    for (i = 0; i <= jk; i++) {
    207        for (j = 0, fw = 0.0; j <= jx; j++)
    208            fw += x[j] * f[jx + i - j];
    209        q[i] = fw;
    210    }
    211
    212    jz = jk;
    213  recompute:
    214    /* distill q[] into iq[] reversingly */
    215    for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--) {
    216        fw = (double) ((int32_t) (twon24 * z));
    217        iq[i] = (int32_t) (z - two24 * fw);
    218        z = q[j - 1] + fw;
    219    }
    220
    221    /* compute n */
    222    z = scalbn(z, q0);          /* actual value of z */
    223    z -= 8.0 * floor(z * 0.125);        /* trim off integer >= 8 */
    224    n = (int32_t) z;
    225    z -= (double) n;
    226    ih = 0;
    227    if (q0 > 0) {               /* need iq[jz-1] to determine n */
    228        i = (iq[jz - 1] >> (24 - q0));
    229        n += i;
    230        iq[jz - 1] -= i << (24 - q0);
    231        ih = iq[jz - 1] >> (23 - q0);
    232    } else if (q0 == 0)
    233        ih = iq[jz - 1] >> 23;
    234    else if (z >= 0.5)
    235        ih = 2;
    236
    237    if (ih > 0) {               /* q > 0.5 */
    238        n += 1;
    239        carry = 0;
    240        for (i = 0; i < jz; i++) {      /* compute 1-q */
    241            j = iq[i];
    242            if (carry == 0) {
    243                if (j != 0) {
    244                    carry = 1;
    245                    iq[i] = 0x1000000 - j;
    246                }
    247            } else
    248                iq[i] = 0xffffff - j;
    249        }
    250        if (q0 > 0) {           /* rare case: chance is 1 in 12 */
    251            switch (q0) {
    252            case 1:
    253                iq[jz - 1] &= 0x7fffff;
    254                break;
    255            case 2:
    256                iq[jz - 1] &= 0x3fffff;
    257                break;
    258            }
    259        }
    260        if (ih == 2) {
    261            z = one - z;
    262            if (carry != 0)
    263                z -= scalbn(one, q0);
    264        }
    265    }
    266
    267    /* check if recomputation is needed */
    268    if (z == zero) {
    269        j = 0;
    270        for (i = jz - 1; i >= jk; i--)
    271            j |= iq[i];
    272        if (j == 0) {           /* need recomputation */
    273            for (k = 1; iq[jk - k] == 0; k++);  /* k = no. of terms needed */
    274
    275            for (i = jz + 1; i <= jz + k; i++) {        /* add q[jz+1] to q[jz+k] */
    276                f[jx + i] = (double) ipio2[jv + i];
    277                for (j = 0, fw = 0.0; j <= jx; j++)
    278                    fw += x[j] * f[jx + i - j];
    279                q[i] = fw;
    280            }
    281            jz += k;
    282            goto recompute;
    283        }
    284    }
    285
    286    /* chop off zero terms */
    287    if (z == 0.0) {
    288        jz -= 1;
    289        q0 -= 24;
    290        while (iq[jz] == 0) {
    291            jz--;
    292            q0 -= 24;
    293        }
    294    } else {                    /* break z into 24-bit if necessary */
    295        z = scalbn(z, -q0);
    296        if (z >= two24) {
    297            fw = (double) ((int32_t) (twon24 * z));
    298            iq[jz] = (int32_t) (z - two24 * fw);
    299            jz += 1;
    300            q0 += 24;
    301            iq[jz] = (int32_t) fw;
    302        } else
    303            iq[jz] = (int32_t) z;
    304    }
    305
    306    /* convert integer "bit" chunk to floating-point value */
    307    fw = scalbn(one, q0);
    308    for (i = jz; i >= 0; i--) {
    309        q[i] = fw * (double) iq[i];
    310        fw *= twon24;
    311    }
    312
    313    /* compute PIo2[0,...,jp]*q[jz,...,0] */
    314    for (i = jz; i >= 0; i--) {
    315        for (fw = 0.0, k = 0; k <= jp && k <= jz - i; k++)
    316            fw += PIo2[k] * q[i + k];
    317        fq[jz - i] = fw;
    318    }
    319
    320    /* compress fq[] into y[] */
    321    switch (prec) {
    322    case 0:
    323        fw = 0.0;
    324        for (i = jz; i >= 0; i--)
    325            fw += fq[i];
    326        y[0] = (ih == 0) ? fw : -fw;
    327        break;
    328    case 1:
    329    case 2:
    330        fw = 0.0;
    331        for (i = jz; i >= 0; i--)
    332            fw += fq[i];
    333        y[0] = (ih == 0) ? fw : -fw;
    334        fw = fq[0] - fw;
    335        for (i = 1; i <= jz; i++)
    336            fw += fq[i];
    337        y[1] = (ih == 0) ? fw : -fw;
    338        break;
    339    case 3:                    /* painful */
    340        for (i = jz; i > 0; i--) {
    341            fw = fq[i - 1] + fq[i];
    342            fq[i] += fq[i - 1] - fw;
    343            fq[i - 1] = fw;
    344        }
    345        for (i = jz; i > 1; i--) {
    346            fw = fq[i - 1] + fq[i];
    347            fq[i] += fq[i - 1] - fw;
    348            fq[i - 1] = fw;
    349        }
    350        for (fw = 0.0, i = jz; i >= 2; i--)
    351            fw += fq[i];
    352        if (ih == 0) {
    353            y[0] = fq[0];
    354            y[1] = fq[1];
    355            y[2] = fw;
    356        } else {
    357            y[0] = -fq[0];
    358            y[1] = -fq[1];
    359            y[2] = -fw;
    360        }
    361    }
    362    return n & 7;
    363}