cscg22-gearboy

CSCG 2022 Challenge 'Gearboy'
git clone https://git.sinitax.com/sinitax/cscg22-gearboy
Log | Files | Refs | sfeed.txt

k_tan.c (3932B)


      1/*
      2 * ====================================================
      3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      4 *
      5 * Developed at SunPro, a Sun Microsystems, Inc. business.
      6 * Permission to use, copy, modify, and distribute this
      7 * software is freely granted, provided that this notice
      8 * is preserved.
      9 * ====================================================
     10 */
     11
     12/* __kernel_tan( x, y, k )
     13 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
     14 * Input x is assumed to be bounded by ~pi/4 in magnitude.
     15 * Input y is the tail of x.
     16 * Input k indicates whether tan (if k=1) or
     17 * -1/tan (if k= -1) is returned.
     18 *
     19 * Algorithm
     20 *	1. Since tan(-x) = -tan(x), we need only to consider positive x.
     21 *	2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
     22 *	3. tan(x) is approximated by a odd polynomial of degree 27 on
     23 *	   [0,0.67434]
     24 *		  	         3             27
     25 *	   	tan(x) ~ x + T1*x + ... + T13*x
     26 *	   where
     27 *
     28 * 	        |tan(x)         2     4            26   |     -59.2
     29 * 	        |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
     30 * 	        |  x 					|
     31 *
     32 *	   Note: tan(x+y) = tan(x) + tan'(x)*y
     33 *		          ~ tan(x) + (1+x*x)*y
     34 *	   Therefore, for better accuracy in computing tan(x+y), let
     35 *		     3      2      2       2       2
     36 *		r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
     37 *	   then
     38 *		 		    3    2
     39 *		tan(x+y) = x + (T1*x + (x *(r+y)+y))
     40 *
     41 *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
     42 *		tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
     43 *		       = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
     44 */
     45
     46#include "math_libm.h"
     47#include "math_private.h"
     48
     49static const double
     50one   =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
     51pio4  =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
     52pio4lo=  3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
     53T[] =  {
     54  3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
     55  1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
     56  5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
     57  2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
     58  8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
     59  3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
     60  1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
     61  5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
     62  2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
     63  7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
     64  7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
     65 -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
     66  2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
     67};
     68
     69double __kernel_tan(double x, double y, int iy)
     70{
     71	double z,r,v,w,s;
     72	int32_t ix,hx;
     73	GET_HIGH_WORD(hx,x);
     74	ix = hx&0x7fffffff;	/* high word of |x| */
     75	if(ix<0x3e300000)			/* x < 2**-28 */
     76	    {if((int)x==0) {			/* generate inexact */
     77	        u_int32_t low;
     78		GET_LOW_WORD(low,x);
     79		if(((ix|low)|(iy+1))==0) return one/fabs(x);
     80		else return (iy==1)? x: -one/x;
     81	    }
     82	    }
     83	if(ix>=0x3FE59428) { 			/* |x|>=0.6744 */
     84	    if(hx<0) {x = -x; y = -y;}
     85	    z = pio4-x;
     86	    w = pio4lo-y;
     87	    x = z+w; y = 0.0;
     88	}
     89	z	=  x*x;
     90	w 	=  z*z;
     91    /* Break x^5*(T[1]+x^2*T[2]+...) into
     92     *	  x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
     93     *	  x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
     94     */
     95	r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
     96	v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
     97	s = z*x;
     98	r = y + z*(s*(r+v)+y);
     99	r += T[0]*s;
    100	w = x+r;
    101	if(ix>=0x3FE59428) {
    102	    v = (double)iy;
    103	    return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));
    104	}
    105	if(iy==1) return w;
    106	else {		/* if allow error up to 2 ulp,
    107			   simply return -1.0/(x+r) here */
    108     /*  compute -1.0/(x+r) accurately */
    109	    double a,t;
    110	    z  = w;
    111	    SET_LOW_WORD(z,0);
    112	    v  = r-(z - x); 	/* z+v = r+x */
    113	    t = a  = -1.0/w;	/* a = -1.0/w */
    114	    SET_LOW_WORD(t,0);
    115	    s  = 1.0+t*z;
    116	    return t+a*(s+t*v);
    117	}
    118}