s_cos.c (2333B)
1/* @(#)s_cos.c 5.1 93/09/24 */ 2/* 3 * ==================================================== 4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 5 * 6 * Developed at SunPro, a Sun Microsystems, Inc. business. 7 * Permission to use, copy, modify, and distribute this 8 * software is freely granted, provided that this notice 9 * is preserved. 10 * ==================================================== 11 */ 12 13#if defined(LIBM_SCCS) && !defined(lint) 14static const char rcsid[] = 15 "$NetBSD: s_cos.c,v 1.7 1995/05/10 20:47:02 jtc Exp $"; 16#endif 17 18/* cos(x) 19 * Return cosine function of x. 20 * 21 * kernel function: 22 * __kernel_sin ... sine function on [-pi/4,pi/4] 23 * __kernel_cos ... cosine function on [-pi/4,pi/4] 24 * __ieee754_rem_pio2 ... argument reduction routine 25 * 26 * Method. 27 * Let S,C and T denote the sin, cos and tan respectively on 28 * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 29 * in [-pi/4 , +pi/4], and let n = k mod 4. 30 * We have 31 * 32 * n sin(x) cos(x) tan(x) 33 * ---------------------------------------------------------- 34 * 0 S C T 35 * 1 C -S -1/T 36 * 2 -S -C T 37 * 3 -C S -1/T 38 * ---------------------------------------------------------- 39 * 40 * Special cases: 41 * Let trig be any of sin, cos, or tan. 42 * trig(+-INF) is NaN, with signals; 43 * trig(NaN) is that NaN; 44 * 45 * Accuracy: 46 * TRIG(x) returns trig(x) nearly rounded 47 */ 48 49#include "math_libm.h" 50#include "math_private.h" 51 52libm_hidden_proto(cos) 53#ifdef __STDC__ 54 double cos(double x) 55#else 56 double cos(x) 57 double x; 58#endif 59{ 60 double y[2], z = 0.0; 61 int32_t n, ix; 62 63 /* High word of x. */ 64 GET_HIGH_WORD(ix, x); 65 66 /* |x| ~< pi/4 */ 67 ix &= 0x7fffffff; 68 if (ix <= 0x3fe921fb) 69 return __kernel_cos(x, z); 70 71 /* cos(Inf or NaN) is NaN */ 72 else if (ix >= 0x7ff00000) 73 return x - x; 74 75 /* argument reduction needed */ 76 else { 77 n = __ieee754_rem_pio2(x, y); 78 switch (n & 3) { 79 case 0: 80 return __kernel_cos(y[0], y[1]); 81 case 1: 82 return -__kernel_sin(y[0], y[1], 1); 83 case 2: 84 return -__kernel_cos(y[0], y[1]); 85 default: 86 return __kernel_sin(y[0], y[1], 1); 87 } 88 } 89} 90 91libm_hidden_def(cos)