cscg22-gearboy

CSCG 2022 Challenge 'Gearboy'
git clone https://git.sinitax.com/sinitax/cscg22-gearboy
Log | Files | Refs | sfeed.txt

mmx.h (23891B)


      1/*	mmx.h
      2
      3	MultiMedia eXtensions GCC interface library for IA32.
      4
      5	To use this library, simply include this header file
      6	and compile with GCC.  You MUST have inlining enabled
      7	in order for mmx_ok() to work; this can be done by
      8	simply using -O on the GCC command line.
      9
     10	Compiling with -DMMX_TRACE will cause detailed trace
     11	output to be sent to stderr for each mmx operation.
     12	This adds lots of code, and obviously slows execution to
     13	a crawl, but can be very useful for debugging.
     14
     15	THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY
     16	EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
     17	LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY
     18	AND FITNESS FOR ANY PARTICULAR PURPOSE.
     19
     20	1997-99 by H. Dietz and R. Fisher
     21
     22 Notes:
     23	It appears that the latest gas has the pand problem fixed, therefore
     24	  I'll undefine BROKEN_PAND by default.
     25*/
     26
     27#ifndef _MMX_H
     28#define _MMX_H
     29
     30
     31/*	Warning:  at this writing, the version of GAS packaged
     32	with most Linux distributions does not handle the
     33	parallel AND operation mnemonic correctly.  If the
     34	symbol BROKEN_PAND is defined, a slower alternative
     35	coding will be used.  If execution of mmxtest results
     36	in an illegal instruction fault, define this symbol.
     37*/
     38#undef	BROKEN_PAND
     39
     40
     41/*	The type of an value that fits in an MMX register
     42	(note that long long constant values MUST be suffixed
     43	 by LL and unsigned long long values by ULL, lest
     44	 they be truncated by the compiler)
     45*/
     46typedef union
     47{
     48    long long q;                /* Quadword (64-bit) value */
     49    unsigned long long uq;      /* Unsigned Quadword */
     50    int d[2];                   /* 2 Doubleword (32-bit) values */
     51    unsigned int ud[2];         /* 2 Unsigned Doubleword */
     52    short w[4];                 /* 4 Word (16-bit) values */
     53    unsigned short uw[4];       /* 4 Unsigned Word */
     54    char b[8];                  /* 8 Byte (8-bit) values */
     55    unsigned char ub[8];        /* 8 Unsigned Byte */
     56    float s[2];                 /* Single-precision (32-bit) value */
     57} __attribute__ ((aligned(8))) mmx_t;   /* On an 8-byte (64-bit) boundary */
     58
     59
     60#if 0
     61/*	Function to test if multimedia instructions are supported...
     62*/
     63inline extern int
     64mm_support(void)
     65{
     66    /* Returns 1 if MMX instructions are supported,
     67       3 if Cyrix MMX and Extended MMX instructions are supported
     68       5 if AMD MMX and 3DNow! instructions are supported
     69       0 if hardware does not support any of these
     70     */
     71    register int rval = 0;
     72
     73    __asm__ __volatile__(
     74                            /* See if CPUID instruction is supported ... */
     75                            /* ... Get copies of EFLAGS into eax and ecx */
     76                            "pushf\n\t"
     77                            "popl %%eax\n\t" "movl %%eax, %%ecx\n\t"
     78                            /* ... Toggle the ID bit in one copy and store */
     79                            /*     to the EFLAGS reg */
     80                            "xorl $0x200000, %%eax\n\t"
     81                            "push %%eax\n\t" "popf\n\t"
     82                            /* ... Get the (hopefully modified) EFLAGS */
     83                            "pushf\n\t" "popl %%eax\n\t"
     84                            /* ... Compare and test result */
     85                            "xorl %%eax, %%ecx\n\t" "testl $0x200000, %%ecx\n\t" "jz NotSupported1\n\t" /* CPUID not supported */
     86                            /* Get standard CPUID information, and
     87                               go to a specific vendor section */
     88                            "movl $0, %%eax\n\t" "cpuid\n\t"
     89                            /* Check for Intel */
     90                            "cmpl $0x756e6547, %%ebx\n\t"
     91                            "jne TryAMD\n\t"
     92                            "cmpl $0x49656e69, %%edx\n\t"
     93                            "jne TryAMD\n\t"
     94                            "cmpl $0x6c65746e, %%ecx\n"
     95                            "jne TryAMD\n\t" "jmp Intel\n\t"
     96                            /* Check for AMD */
     97                            "\nTryAMD:\n\t"
     98                            "cmpl $0x68747541, %%ebx\n\t"
     99                            "jne TryCyrix\n\t"
    100                            "cmpl $0x69746e65, %%edx\n\t"
    101                            "jne TryCyrix\n\t"
    102                            "cmpl $0x444d4163, %%ecx\n"
    103                            "jne TryCyrix\n\t" "jmp AMD\n\t"
    104                            /* Check for Cyrix */
    105                            "\nTryCyrix:\n\t"
    106                            "cmpl $0x69727943, %%ebx\n\t"
    107                            "jne NotSupported2\n\t"
    108                            "cmpl $0x736e4978, %%edx\n\t"
    109                            "jne NotSupported3\n\t"
    110                            "cmpl $0x64616574, %%ecx\n\t"
    111                            "jne NotSupported4\n\t"
    112                            /* Drop through to Cyrix... */
    113                            /* Cyrix Section */
    114                            /* See if extended CPUID level 80000001 is supported */
    115                            /* The value of CPUID/80000001 for the 6x86MX is undefined
    116                               according to the Cyrix CPU Detection Guide (Preliminary
    117                               Rev. 1.01 table 1), so we'll check the value of eax for
    118                               CPUID/0 to see if standard CPUID level 2 is supported.
    119                               According to the table, the only CPU which supports level
    120                               2 is also the only one which supports extended CPUID levels.
    121                             */
    122                            "cmpl $0x2, %%eax\n\t" "jne MMXtest\n\t"    /* Use standard CPUID instead */
    123                            /* Extended CPUID supported (in theory), so get extended
    124                               features */
    125                            "movl $0x80000001, %%eax\n\t" "cpuid\n\t" "testl $0x00800000, %%eax\n\t"    /* Test for MMX */
    126                            "jz NotSupported5\n\t"      /* MMX not supported */
    127                            "testl $0x01000000, %%eax\n\t"      /* Test for Ext'd MMX */
    128                            "jnz EMMXSupported\n\t" "movl $1, %0:\n\n\t"        /* MMX Supported */
    129                            "jmp Return\n\n" "EMMXSupported:\n\t" "movl $3, %0:\n\n\t"  /* EMMX and MMX Supported */
    130                            "jmp Return\n\t"
    131                            /* AMD Section */
    132                            "AMD:\n\t"
    133                            /* See if extended CPUID is supported */
    134                            "movl $0x80000000, %%eax\n\t" "cpuid\n\t" "cmpl $0x80000000, %%eax\n\t" "jl MMXtest\n\t"    /* Use standard CPUID instead */
    135                            /* Extended CPUID supported, so get extended features */
    136                            "movl $0x80000001, %%eax\n\t" "cpuid\n\t" "testl $0x00800000, %%edx\n\t"    /* Test for MMX */
    137                            "jz NotSupported6\n\t"      /* MMX not supported */
    138                            "testl $0x80000000, %%edx\n\t"      /* Test for 3DNow! */
    139                            "jnz ThreeDNowSupported\n\t" "movl $1, %0:\n\n\t"   /* MMX Supported */
    140                            "jmp Return\n\n" "ThreeDNowSupported:\n\t" "movl $5, %0:\n\n\t"     /* 3DNow! and MMX Supported */
    141                            "jmp Return\n\t"
    142                            /* Intel Section */
    143                            "Intel:\n\t"
    144                            /* Check for MMX */
    145                            "MMXtest:\n\t" "movl $1, %%eax\n\t" "cpuid\n\t" "testl $0x00800000, %%edx\n\t"      /* Test for MMX */
    146                            "jz NotSupported7\n\t"      /* MMX Not supported */
    147                            "movl $1, %0:\n\n\t"        /* MMX Supported */
    148                            "jmp Return\n\t"
    149                            /* Nothing supported */
    150                            "\nNotSupported1:\n\t" "#movl $101, %0:\n\n\t" "\nNotSupported2:\n\t" "#movl $102, %0:\n\n\t" "\nNotSupported3:\n\t" "#movl $103, %0:\n\n\t" "\nNotSupported4:\n\t" "#movl $104, %0:\n\n\t" "\nNotSupported5:\n\t" "#movl $105, %0:\n\n\t" "\nNotSupported6:\n\t" "#movl $106, %0:\n\n\t" "\nNotSupported7:\n\t" "#movl $107, %0:\n\n\t" "movl $0, %0:\n\n\t" "Return:\n\t":"=a"(rval):     /* no input */
    151                            :"eax", "ebx", "ecx", "edx");
    152
    153    /* Return */
    154    return (rval);
    155}
    156
    157/*	Function to test if mmx instructions are supported...
    158*/
    159inline extern int
    160mmx_ok(void)
    161{
    162    /* Returns 1 if MMX instructions are supported, 0 otherwise */
    163    return (mm_support() & 0x1);
    164}
    165#endif
    166
    167/*	Helper functions for the instruction macros that follow...
    168	(note that memory-to-register, m2r, instructions are nearly
    169	 as efficient as register-to-register, r2r, instructions;
    170	 however, memory-to-memory instructions are really simulated
    171	 as a convenience, and are only 1/3 as efficient)
    172*/
    173#ifdef	MMX_TRACE
    174
    175/*	Include the stuff for printing a trace to stderr...
    176*/
    177
    178#define	mmx_i2r(op, imm, reg) \
    179	{ \
    180		mmx_t mmx_trace; \
    181		mmx_trace.uq = (imm); \
    182		printf(#op "_i2r(" #imm "=0x%08x%08x, ", \
    183			mmx_trace.d[1], mmx_trace.d[0]); \
    184		__asm__ __volatile__ ("movq %%" #reg ", %0" \
    185				      : "=X" (mmx_trace) \
    186				      : /* nothing */ ); \
    187		printf(#reg "=0x%08x%08x) => ", \
    188			mmx_trace.d[1], mmx_trace.d[0]); \
    189		__asm__ __volatile__ (#op " %0, %%" #reg \
    190				      : /* nothing */ \
    191				      : "X" (imm)); \
    192		__asm__ __volatile__ ("movq %%" #reg ", %0" \
    193				      : "=X" (mmx_trace) \
    194				      : /* nothing */ ); \
    195		printf(#reg "=0x%08x%08x\n", \
    196			mmx_trace.d[1], mmx_trace.d[0]); \
    197	}
    198
    199#define	mmx_m2r(op, mem, reg) \
    200	{ \
    201		mmx_t mmx_trace; \
    202		mmx_trace = (mem); \
    203		printf(#op "_m2r(" #mem "=0x%08x%08x, ", \
    204			mmx_trace.d[1], mmx_trace.d[0]); \
    205		__asm__ __volatile__ ("movq %%" #reg ", %0" \
    206				      : "=X" (mmx_trace) \
    207				      : /* nothing */ ); \
    208		printf(#reg "=0x%08x%08x) => ", \
    209			mmx_trace.d[1], mmx_trace.d[0]); \
    210		__asm__ __volatile__ (#op " %0, %%" #reg \
    211				      : /* nothing */ \
    212				      : "X" (mem)); \
    213		__asm__ __volatile__ ("movq %%" #reg ", %0" \
    214				      : "=X" (mmx_trace) \
    215				      : /* nothing */ ); \
    216		printf(#reg "=0x%08x%08x\n", \
    217			mmx_trace.d[1], mmx_trace.d[0]); \
    218	}
    219
    220#define	mmx_r2m(op, reg, mem) \
    221	{ \
    222		mmx_t mmx_trace; \
    223		__asm__ __volatile__ ("movq %%" #reg ", %0" \
    224				      : "=X" (mmx_trace) \
    225				      : /* nothing */ ); \
    226		printf(#op "_r2m(" #reg "=0x%08x%08x, ", \
    227			mmx_trace.d[1], mmx_trace.d[0]); \
    228		mmx_trace = (mem); \
    229		printf(#mem "=0x%08x%08x) => ", \
    230			mmx_trace.d[1], mmx_trace.d[0]); \
    231		__asm__ __volatile__ (#op " %%" #reg ", %0" \
    232				      : "=X" (mem) \
    233				      : /* nothing */ ); \
    234		mmx_trace = (mem); \
    235		printf(#mem "=0x%08x%08x\n", \
    236			mmx_trace.d[1], mmx_trace.d[0]); \
    237	}
    238
    239#define	mmx_r2r(op, regs, regd) \
    240	{ \
    241		mmx_t mmx_trace; \
    242		__asm__ __volatile__ ("movq %%" #regs ", %0" \
    243				      : "=X" (mmx_trace) \
    244				      : /* nothing */ ); \
    245		printf(#op "_r2r(" #regs "=0x%08x%08x, ", \
    246			mmx_trace.d[1], mmx_trace.d[0]); \
    247		__asm__ __volatile__ ("movq %%" #regd ", %0" \
    248				      : "=X" (mmx_trace) \
    249				      : /* nothing */ ); \
    250		printf(#regd "=0x%08x%08x) => ", \
    251			mmx_trace.d[1], mmx_trace.d[0]); \
    252		__asm__ __volatile__ (#op " %" #regs ", %" #regd); \
    253		__asm__ __volatile__ ("movq %%" #regd ", %0" \
    254				      : "=X" (mmx_trace) \
    255				      : /* nothing */ ); \
    256		printf(#regd "=0x%08x%08x\n", \
    257			mmx_trace.d[1], mmx_trace.d[0]); \
    258	}
    259
    260#define	mmx_m2m(op, mems, memd) \
    261	{ \
    262		mmx_t mmx_trace; \
    263		mmx_trace = (mems); \
    264		printf(#op "_m2m(" #mems "=0x%08x%08x, ", \
    265			mmx_trace.d[1], mmx_trace.d[0]); \
    266		mmx_trace = (memd); \
    267		printf(#memd "=0x%08x%08x) => ", \
    268			mmx_trace.d[1], mmx_trace.d[0]); \
    269		__asm__ __volatile__ ("movq %0, %%mm0\n\t" \
    270				      #op " %1, %%mm0\n\t" \
    271				      "movq %%mm0, %0" \
    272				      : "=X" (memd) \
    273				      : "X" (mems)); \
    274		mmx_trace = (memd); \
    275		printf(#memd "=0x%08x%08x\n", \
    276			mmx_trace.d[1], mmx_trace.d[0]); \
    277	}
    278
    279#else
    280
    281/*	These macros are a lot simpler without the tracing...
    282*/
    283
    284#define	mmx_i2r(op, imm, reg) \
    285	__asm__ __volatile__ (#op " %0, %%" #reg \
    286			      : /* nothing */ \
    287			      : "X" (imm) )
    288
    289#define	mmx_m2r(op, mem, reg) \
    290	__asm__ __volatile__ (#op " %0, %%" #reg \
    291			      : /* nothing */ \
    292			      : "m" (mem))
    293
    294#define	mmx_r2m(op, reg, mem) \
    295	__asm__ __volatile__ (#op " %%" #reg ", %0" \
    296			      : "=m" (mem) \
    297			      : /* nothing */ )
    298
    299#define	mmx_r2r(op, regs, regd) \
    300	__asm__ __volatile__ (#op " %" #regs ", %" #regd)
    301
    302#define	mmx_m2m(op, mems, memd) \
    303	__asm__ __volatile__ ("movq %0, %%mm0\n\t" \
    304			      #op " %1, %%mm0\n\t" \
    305			      "movq %%mm0, %0" \
    306			      : "=X" (memd) \
    307			      : "X" (mems))
    308
    309#endif
    310
    311
    312/*	1x64 MOVe Quadword
    313	(this is both a load and a store...
    314	 in fact, it is the only way to store)
    315*/
    316#define	movq_m2r(var, reg)	mmx_m2r(movq, var, reg)
    317#define	movq_r2m(reg, var)	mmx_r2m(movq, reg, var)
    318#define	movq_r2r(regs, regd)	mmx_r2r(movq, regs, regd)
    319#define	movq(vars, vard) \
    320	__asm__ __volatile__ ("movq %1, %%mm0\n\t" \
    321			      "movq %%mm0, %0" \
    322			      : "=X" (vard) \
    323			      : "X" (vars))
    324
    325
    326/*	1x32 MOVe Doubleword
    327	(like movq, this is both load and store...
    328	 but is most useful for moving things between
    329	 mmx registers and ordinary registers)
    330*/
    331#define	movd_m2r(var, reg)	mmx_m2r(movd, var, reg)
    332#define	movd_r2m(reg, var)	mmx_r2m(movd, reg, var)
    333#define	movd_r2r(regs, regd)	mmx_r2r(movd, regs, regd)
    334#define	movd(vars, vard) \
    335	__asm__ __volatile__ ("movd %1, %%mm0\n\t" \
    336			      "movd %%mm0, %0" \
    337			      : "=X" (vard) \
    338			      : "X" (vars))
    339
    340
    341/*	2x32, 4x16, and 8x8 Parallel ADDs
    342*/
    343#define	paddd_m2r(var, reg)	mmx_m2r(paddd, var, reg)
    344#define	paddd_r2r(regs, regd)	mmx_r2r(paddd, regs, regd)
    345#define	paddd(vars, vard)	mmx_m2m(paddd, vars, vard)
    346
    347#define	paddw_m2r(var, reg)	mmx_m2r(paddw, var, reg)
    348#define	paddw_r2r(regs, regd)	mmx_r2r(paddw, regs, regd)
    349#define	paddw(vars, vard)	mmx_m2m(paddw, vars, vard)
    350
    351#define	paddb_m2r(var, reg)	mmx_m2r(paddb, var, reg)
    352#define	paddb_r2r(regs, regd)	mmx_r2r(paddb, regs, regd)
    353#define	paddb(vars, vard)	mmx_m2m(paddb, vars, vard)
    354
    355
    356/*	4x16 and 8x8 Parallel ADDs using Saturation arithmetic
    357*/
    358#define	paddsw_m2r(var, reg)	mmx_m2r(paddsw, var, reg)
    359#define	paddsw_r2r(regs, regd)	mmx_r2r(paddsw, regs, regd)
    360#define	paddsw(vars, vard)	mmx_m2m(paddsw, vars, vard)
    361
    362#define	paddsb_m2r(var, reg)	mmx_m2r(paddsb, var, reg)
    363#define	paddsb_r2r(regs, regd)	mmx_r2r(paddsb, regs, regd)
    364#define	paddsb(vars, vard)	mmx_m2m(paddsb, vars, vard)
    365
    366
    367/*	4x16 and 8x8 Parallel ADDs using Unsigned Saturation arithmetic
    368*/
    369#define	paddusw_m2r(var, reg)	mmx_m2r(paddusw, var, reg)
    370#define	paddusw_r2r(regs, regd)	mmx_r2r(paddusw, regs, regd)
    371#define	paddusw(vars, vard)	mmx_m2m(paddusw, vars, vard)
    372
    373#define	paddusb_m2r(var, reg)	mmx_m2r(paddusb, var, reg)
    374#define	paddusb_r2r(regs, regd)	mmx_r2r(paddusb, regs, regd)
    375#define	paddusb(vars, vard)	mmx_m2m(paddusb, vars, vard)
    376
    377
    378/*	2x32, 4x16, and 8x8 Parallel SUBs
    379*/
    380#define	psubd_m2r(var, reg)	mmx_m2r(psubd, var, reg)
    381#define	psubd_r2r(regs, regd)	mmx_r2r(psubd, regs, regd)
    382#define	psubd(vars, vard)	mmx_m2m(psubd, vars, vard)
    383
    384#define	psubw_m2r(var, reg)	mmx_m2r(psubw, var, reg)
    385#define	psubw_r2r(regs, regd)	mmx_r2r(psubw, regs, regd)
    386#define	psubw(vars, vard)	mmx_m2m(psubw, vars, vard)
    387
    388#define	psubb_m2r(var, reg)	mmx_m2r(psubb, var, reg)
    389#define	psubb_r2r(regs, regd)	mmx_r2r(psubb, regs, regd)
    390#define	psubb(vars, vard)	mmx_m2m(psubb, vars, vard)
    391
    392
    393/*	4x16 and 8x8 Parallel SUBs using Saturation arithmetic
    394*/
    395#define	psubsw_m2r(var, reg)	mmx_m2r(psubsw, var, reg)
    396#define	psubsw_r2r(regs, regd)	mmx_r2r(psubsw, regs, regd)
    397#define	psubsw(vars, vard)	mmx_m2m(psubsw, vars, vard)
    398
    399#define	psubsb_m2r(var, reg)	mmx_m2r(psubsb, var, reg)
    400#define	psubsb_r2r(regs, regd)	mmx_r2r(psubsb, regs, regd)
    401#define	psubsb(vars, vard)	mmx_m2m(psubsb, vars, vard)
    402
    403
    404/*	4x16 and 8x8 Parallel SUBs using Unsigned Saturation arithmetic
    405*/
    406#define	psubusw_m2r(var, reg)	mmx_m2r(psubusw, var, reg)
    407#define	psubusw_r2r(regs, regd)	mmx_r2r(psubusw, regs, regd)
    408#define	psubusw(vars, vard)	mmx_m2m(psubusw, vars, vard)
    409
    410#define	psubusb_m2r(var, reg)	mmx_m2r(psubusb, var, reg)
    411#define	psubusb_r2r(regs, regd)	mmx_r2r(psubusb, regs, regd)
    412#define	psubusb(vars, vard)	mmx_m2m(psubusb, vars, vard)
    413
    414
    415/*	4x16 Parallel MULs giving Low 4x16 portions of results
    416*/
    417#define	pmullw_m2r(var, reg)	mmx_m2r(pmullw, var, reg)
    418#define	pmullw_r2r(regs, regd)	mmx_r2r(pmullw, regs, regd)
    419#define	pmullw(vars, vard)	mmx_m2m(pmullw, vars, vard)
    420
    421
    422/*	4x16 Parallel MULs giving High 4x16 portions of results
    423*/
    424#define	pmulhw_m2r(var, reg)	mmx_m2r(pmulhw, var, reg)
    425#define	pmulhw_r2r(regs, regd)	mmx_r2r(pmulhw, regs, regd)
    426#define	pmulhw(vars, vard)	mmx_m2m(pmulhw, vars, vard)
    427
    428
    429/*	4x16->2x32 Parallel Mul-ADD
    430	(muls like pmullw, then adds adjacent 16-bit fields
    431	 in the multiply result to make the final 2x32 result)
    432*/
    433#define	pmaddwd_m2r(var, reg)	mmx_m2r(pmaddwd, var, reg)
    434#define	pmaddwd_r2r(regs, regd)	mmx_r2r(pmaddwd, regs, regd)
    435#define	pmaddwd(vars, vard)	mmx_m2m(pmaddwd, vars, vard)
    436
    437
    438/*	1x64 bitwise AND
    439*/
    440#ifdef	BROKEN_PAND
    441#define	pand_m2r(var, reg) \
    442	{ \
    443		mmx_m2r(pandn, (mmx_t) -1LL, reg); \
    444		mmx_m2r(pandn, var, reg); \
    445	}
    446#define	pand_r2r(regs, regd) \
    447	{ \
    448		mmx_m2r(pandn, (mmx_t) -1LL, regd); \
    449		mmx_r2r(pandn, regs, regd) \
    450	}
    451#define	pand(vars, vard) \
    452	{ \
    453		movq_m2r(vard, mm0); \
    454		mmx_m2r(pandn, (mmx_t) -1LL, mm0); \
    455		mmx_m2r(pandn, vars, mm0); \
    456		movq_r2m(mm0, vard); \
    457	}
    458#else
    459#define	pand_m2r(var, reg)	mmx_m2r(pand, var, reg)
    460#define	pand_r2r(regs, regd)	mmx_r2r(pand, regs, regd)
    461#define	pand(vars, vard)	mmx_m2m(pand, vars, vard)
    462#endif
    463
    464
    465/*	1x64 bitwise AND with Not the destination
    466*/
    467#define	pandn_m2r(var, reg)	mmx_m2r(pandn, var, reg)
    468#define	pandn_r2r(regs, regd)	mmx_r2r(pandn, regs, regd)
    469#define	pandn(vars, vard)	mmx_m2m(pandn, vars, vard)
    470
    471
    472/*	1x64 bitwise OR
    473*/
    474#define	por_m2r(var, reg)	mmx_m2r(por, var, reg)
    475#define	por_r2r(regs, regd)	mmx_r2r(por, regs, regd)
    476#define	por(vars, vard)	mmx_m2m(por, vars, vard)
    477
    478
    479/*	1x64 bitwise eXclusive OR
    480*/
    481#define	pxor_m2r(var, reg)	mmx_m2r(pxor, var, reg)
    482#define	pxor_r2r(regs, regd)	mmx_r2r(pxor, regs, regd)
    483#define	pxor(vars, vard)	mmx_m2m(pxor, vars, vard)
    484
    485
    486/*	2x32, 4x16, and 8x8 Parallel CoMPare for EQuality
    487	(resulting fields are either 0 or -1)
    488*/
    489#define	pcmpeqd_m2r(var, reg)	mmx_m2r(pcmpeqd, var, reg)
    490#define	pcmpeqd_r2r(regs, regd)	mmx_r2r(pcmpeqd, regs, regd)
    491#define	pcmpeqd(vars, vard)	mmx_m2m(pcmpeqd, vars, vard)
    492
    493#define	pcmpeqw_m2r(var, reg)	mmx_m2r(pcmpeqw, var, reg)
    494#define	pcmpeqw_r2r(regs, regd)	mmx_r2r(pcmpeqw, regs, regd)
    495#define	pcmpeqw(vars, vard)	mmx_m2m(pcmpeqw, vars, vard)
    496
    497#define	pcmpeqb_m2r(var, reg)	mmx_m2r(pcmpeqb, var, reg)
    498#define	pcmpeqb_r2r(regs, regd)	mmx_r2r(pcmpeqb, regs, regd)
    499#define	pcmpeqb(vars, vard)	mmx_m2m(pcmpeqb, vars, vard)
    500
    501
    502/*	2x32, 4x16, and 8x8 Parallel CoMPare for Greater Than
    503	(resulting fields are either 0 or -1)
    504*/
    505#define	pcmpgtd_m2r(var, reg)	mmx_m2r(pcmpgtd, var, reg)
    506#define	pcmpgtd_r2r(regs, regd)	mmx_r2r(pcmpgtd, regs, regd)
    507#define	pcmpgtd(vars, vard)	mmx_m2m(pcmpgtd, vars, vard)
    508
    509#define	pcmpgtw_m2r(var, reg)	mmx_m2r(pcmpgtw, var, reg)
    510#define	pcmpgtw_r2r(regs, regd)	mmx_r2r(pcmpgtw, regs, regd)
    511#define	pcmpgtw(vars, vard)	mmx_m2m(pcmpgtw, vars, vard)
    512
    513#define	pcmpgtb_m2r(var, reg)	mmx_m2r(pcmpgtb, var, reg)
    514#define	pcmpgtb_r2r(regs, regd)	mmx_r2r(pcmpgtb, regs, regd)
    515#define	pcmpgtb(vars, vard)	mmx_m2m(pcmpgtb, vars, vard)
    516
    517
    518/*	1x64, 2x32, and 4x16 Parallel Shift Left Logical
    519*/
    520#define	psllq_i2r(imm, reg)	mmx_i2r(psllq, imm, reg)
    521#define	psllq_m2r(var, reg)	mmx_m2r(psllq, var, reg)
    522#define	psllq_r2r(regs, regd)	mmx_r2r(psllq, regs, regd)
    523#define	psllq(vars, vard)	mmx_m2m(psllq, vars, vard)
    524
    525#define	pslld_i2r(imm, reg)	mmx_i2r(pslld, imm, reg)
    526#define	pslld_m2r(var, reg)	mmx_m2r(pslld, var, reg)
    527#define	pslld_r2r(regs, regd)	mmx_r2r(pslld, regs, regd)
    528#define	pslld(vars, vard)	mmx_m2m(pslld, vars, vard)
    529
    530#define	psllw_i2r(imm, reg)	mmx_i2r(psllw, imm, reg)
    531#define	psllw_m2r(var, reg)	mmx_m2r(psllw, var, reg)
    532#define	psllw_r2r(regs, regd)	mmx_r2r(psllw, regs, regd)
    533#define	psllw(vars, vard)	mmx_m2m(psllw, vars, vard)
    534
    535
    536/*	1x64, 2x32, and 4x16 Parallel Shift Right Logical
    537*/
    538#define	psrlq_i2r(imm, reg)	mmx_i2r(psrlq, imm, reg)
    539#define	psrlq_m2r(var, reg)	mmx_m2r(psrlq, var, reg)
    540#define	psrlq_r2r(regs, regd)	mmx_r2r(psrlq, regs, regd)
    541#define	psrlq(vars, vard)	mmx_m2m(psrlq, vars, vard)
    542
    543#define	psrld_i2r(imm, reg)	mmx_i2r(psrld, imm, reg)
    544#define	psrld_m2r(var, reg)	mmx_m2r(psrld, var, reg)
    545#define	psrld_r2r(regs, regd)	mmx_r2r(psrld, regs, regd)
    546#define	psrld(vars, vard)	mmx_m2m(psrld, vars, vard)
    547
    548#define	psrlw_i2r(imm, reg)	mmx_i2r(psrlw, imm, reg)
    549#define	psrlw_m2r(var, reg)	mmx_m2r(psrlw, var, reg)
    550#define	psrlw_r2r(regs, regd)	mmx_r2r(psrlw, regs, regd)
    551#define	psrlw(vars, vard)	mmx_m2m(psrlw, vars, vard)
    552
    553
    554/*	2x32 and 4x16 Parallel Shift Right Arithmetic
    555*/
    556#define	psrad_i2r(imm, reg)	mmx_i2r(psrad, imm, reg)
    557#define	psrad_m2r(var, reg)	mmx_m2r(psrad, var, reg)
    558#define	psrad_r2r(regs, regd)	mmx_r2r(psrad, regs, regd)
    559#define	psrad(vars, vard)	mmx_m2m(psrad, vars, vard)
    560
    561#define	psraw_i2r(imm, reg)	mmx_i2r(psraw, imm, reg)
    562#define	psraw_m2r(var, reg)	mmx_m2r(psraw, var, reg)
    563#define	psraw_r2r(regs, regd)	mmx_r2r(psraw, regs, regd)
    564#define	psraw(vars, vard)	mmx_m2m(psraw, vars, vard)
    565
    566
    567/*	2x32->4x16 and 4x16->8x8 PACK and Signed Saturate
    568	(packs source and dest fields into dest in that order)
    569*/
    570#define	packssdw_m2r(var, reg)	mmx_m2r(packssdw, var, reg)
    571#define	packssdw_r2r(regs, regd) mmx_r2r(packssdw, regs, regd)
    572#define	packssdw(vars, vard)	mmx_m2m(packssdw, vars, vard)
    573
    574#define	packsswb_m2r(var, reg)	mmx_m2r(packsswb, var, reg)
    575#define	packsswb_r2r(regs, regd) mmx_r2r(packsswb, regs, regd)
    576#define	packsswb(vars, vard)	mmx_m2m(packsswb, vars, vard)
    577
    578
    579/*	4x16->8x8 PACK and Unsigned Saturate
    580	(packs source and dest fields into dest in that order)
    581*/
    582#define	packuswb_m2r(var, reg)	mmx_m2r(packuswb, var, reg)
    583#define	packuswb_r2r(regs, regd) mmx_r2r(packuswb, regs, regd)
    584#define	packuswb(vars, vard)	mmx_m2m(packuswb, vars, vard)
    585
    586
    587/*	2x32->1x64, 4x16->2x32, and 8x8->4x16 UNPaCK Low
    588	(interleaves low half of dest with low half of source
    589	 as padding in each result field)
    590*/
    591#define	punpckldq_m2r(var, reg)	mmx_m2r(punpckldq, var, reg)
    592#define	punpckldq_r2r(regs, regd) mmx_r2r(punpckldq, regs, regd)
    593#define	punpckldq(vars, vard)	mmx_m2m(punpckldq, vars, vard)
    594
    595#define	punpcklwd_m2r(var, reg)	mmx_m2r(punpcklwd, var, reg)
    596#define	punpcklwd_r2r(regs, regd) mmx_r2r(punpcklwd, regs, regd)
    597#define	punpcklwd(vars, vard)	mmx_m2m(punpcklwd, vars, vard)
    598
    599#define	punpcklbw_m2r(var, reg)	mmx_m2r(punpcklbw, var, reg)
    600#define	punpcklbw_r2r(regs, regd) mmx_r2r(punpcklbw, regs, regd)
    601#define	punpcklbw(vars, vard)	mmx_m2m(punpcklbw, vars, vard)
    602
    603
    604/*	2x32->1x64, 4x16->2x32, and 8x8->4x16 UNPaCK High
    605	(interleaves high half of dest with high half of source
    606	 as padding in each result field)
    607*/
    608#define	punpckhdq_m2r(var, reg)	mmx_m2r(punpckhdq, var, reg)
    609#define	punpckhdq_r2r(regs, regd) mmx_r2r(punpckhdq, regs, regd)
    610#define	punpckhdq(vars, vard)	mmx_m2m(punpckhdq, vars, vard)
    611
    612#define	punpckhwd_m2r(var, reg)	mmx_m2r(punpckhwd, var, reg)
    613#define	punpckhwd_r2r(regs, regd) mmx_r2r(punpckhwd, regs, regd)
    614#define	punpckhwd(vars, vard)	mmx_m2m(punpckhwd, vars, vard)
    615
    616#define	punpckhbw_m2r(var, reg)	mmx_m2r(punpckhbw, var, reg)
    617#define	punpckhbw_r2r(regs, regd) mmx_r2r(punpckhbw, regs, regd)
    618#define	punpckhbw(vars, vard)	mmx_m2m(punpckhbw, vars, vard)
    619
    620
    621/*	Empty MMx State
    622	(used to clean-up when going from mmx to float use
    623	 of the registers that are shared by both; note that
    624	 there is no float-to-mmx operation needed, because
    625	 only the float tag word info is corruptible)
    626*/
    627#ifdef	MMX_TRACE
    628
    629#define	emms() \
    630	{ \
    631		printf("emms()\n"); \
    632		__asm__ __volatile__ ("emms"); \
    633	}
    634
    635#else
    636
    637#define	emms()			__asm__ __volatile__ ("emms")
    638
    639#endif
    640
    641#endif
    642/* vi: set ts=4 sw=4 expandtab: */