cscg22-gearboy

CSCG 2022 Challenge 'Gearboy'
git clone https://git.sinitax.com/sinitax/cscg22-gearboy
Log | Files | Refs | sfeed.txt

Blip_Buffer.cpp (12088B)


      1// Blip_Buffer 0.4.1. http://www.slack.net/~ant/
      2
      3#include "Blip_Buffer.h"
      4
      5#include <assert.h>
      6#include <limits.h>
      7#include <string.h>
      8#include <stdlib.h>
      9#include <math.h>
     10
     11/* Copyright (C) 2003-2007 Shay Green. This module is free software; you
     12can redistribute it and/or modify it under the terms of the GNU Lesser
     13General Public License as published by the Free Software Foundation; either
     14version 2.1 of the License, or (at your option) any later version. This
     15module is distributed in the hope that it will be useful, but WITHOUT ANY
     16WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
     17FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
     18details. You should have received a copy of the GNU Lesser General Public
     19License along with this module; if not, write to the Free Software Foundation,
     20Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
     21
     22// TODO: use scoped for variables in treble_eq()
     23
     24#ifdef BLARGG_ENABLE_OPTIMIZER
     25	#include BLARGG_ENABLE_OPTIMIZER
     26#endif
     27
     28int const silent_buf_size = 1; // size used for Silent_Blip_Buffer
     29
     30Blip_Buffer::Blip_Buffer()
     31{
     32	factor_       = (blip_ulong)LONG_MAX;
     33	buffer_       = 0;
     34	buffer_size_  = 0;
     35	sample_rate_  = 0;
     36	bass_shift_   = 0;
     37	clock_rate_   = 0;
     38	bass_freq_    = 16;
     39	length_       = 0;
     40
     41	// assumptions code makes about implementation-defined features
     42	#ifndef NDEBUG
     43		// right shift of negative value preserves sign
     44		buf_t_ i = -0x7FFFFFFE;
     45		assert( (i >> 1) == -0x3FFFFFFF );
     46
     47		// casting to short truncates to 16 bits and sign-extends
     48		i = 0x18000;
     49		assert( (short) i == -0x8000 );
     50	#endif
     51
     52	clear();
     53}
     54
     55Blip_Buffer::~Blip_Buffer()
     56{
     57	if ( buffer_size_ != silent_buf_size )
     58		free( buffer_ );
     59}
     60
     61Silent_Blip_Buffer::Silent_Blip_Buffer()
     62{
     63	factor_      = 0;
     64	buffer_      = buf;
     65	buffer_size_ = silent_buf_size;
     66	clear();
     67}
     68
     69void Blip_Buffer::clear( int entire_buffer )
     70{
     71	offset_       = 0;
     72	reader_accum_ = 0;
     73	modified_     = 0;
     74	if ( buffer_ )
     75	{
     76		long count = (entire_buffer ? buffer_size_ : samples_avail());
     77		memset( buffer_, 0, (count + blip_buffer_extra_) * sizeof (buf_t_) );
     78	}
     79}
     80
     81Blip_Buffer::blargg_err_t Blip_Buffer::set_sample_rate( long new_rate, int msec )
     82{
     83	if ( buffer_size_ == silent_buf_size )
     84	{
     85		assert( 0 );
     86		return "Internal (tried to resize Silent_Blip_Buffer)";
     87	}
     88
     89	// start with maximum length that resampled time can represent
     90	long new_size = (ULONG_MAX >> BLIP_BUFFER_ACCURACY) - blip_buffer_extra_ - 64;
     91	if ( msec != blip_max_length )
     92	{
     93		long s = (new_rate * (msec + 1) + 999) / 1000;
     94		if ( s < new_size )
     95			new_size = s;
     96		else
     97			assert( 0 ); // fails if requested buffer length exceeds limit
     98	}
     99
    100	if ( buffer_size_ != new_size )
    101	{
    102		void* p = realloc( buffer_, (new_size + blip_buffer_extra_) * sizeof *buffer_ );
    103		if ( !p )
    104			return "Out of memory";
    105		buffer_ = (buf_t_*) p;
    106	}
    107
    108	buffer_size_ = (int)new_size;
    109	assert( buffer_size_ != silent_buf_size ); // size should never happen to match this
    110
    111	// update things based on the sample rate
    112	sample_rate_ = new_rate;
    113	length_ = (int)(new_size * 1000 / new_rate - 1);
    114	if ( msec )
    115		assert( length_ == msec ); // ensure length is same as that passed in
    116
    117	// update these since they depend on sample rate
    118	if ( clock_rate_ )
    119		clock_rate( clock_rate_ );
    120	bass_freq( bass_freq_ );
    121
    122	clear();
    123
    124	return 0; // success
    125}
    126
    127blip_resampled_time_t Blip_Buffer::clock_rate_factor( long rate ) const
    128{
    129	double ratio = (double) sample_rate_ / rate;
    130	blip_long factor = (blip_long) floor( ratio * (1L << BLIP_BUFFER_ACCURACY) + 0.5 );
    131	assert( factor > 0 || !sample_rate_ ); // fails if clock/output ratio is too large
    132	return (blip_resampled_time_t) factor;
    133}
    134
    135void Blip_Buffer::bass_freq( int freq )
    136{
    137	bass_freq_ = freq;
    138	int shift = 31;
    139	if ( freq > 0 )
    140	{
    141		shift = 13;
    142		long f = (freq << 16) / sample_rate_;
    143		while ( (f >>= 1) && --shift ) { }
    144	}
    145	bass_shift_ = shift;
    146}
    147
    148void Blip_Buffer::end_frame( blip_time_t t )
    149{
    150	offset_ += t * factor_;
    151	assert( samples_avail() <= (long) buffer_size_ ); // fails if time is past end of buffer
    152}
    153
    154long Blip_Buffer::count_samples( blip_time_t t ) const
    155{
    156	blip_resampled_time_t last_sample  = resampled_time( t ) >> BLIP_BUFFER_ACCURACY;
    157	blip_resampled_time_t first_sample = offset_ >> BLIP_BUFFER_ACCURACY;
    158	return long (last_sample - first_sample);
    159}
    160
    161blip_time_t Blip_Buffer::count_clocks( long count ) const
    162{
    163	if ( !factor_ )
    164	{
    165		assert( 0 ); // sample rate and clock rates must be set first
    166		return 0;
    167	}
    168
    169	if ( count > buffer_size_ )
    170		count = buffer_size_;
    171	blip_resampled_time_t time = (blip_resampled_time_t) count << BLIP_BUFFER_ACCURACY;
    172	return (blip_time_t) ((time - offset_ + factor_ - 1) / factor_);
    173}
    174
    175void Blip_Buffer::remove_samples( long count )
    176{
    177	if ( count )
    178	{
    179		remove_silence( count );
    180
    181		// copy remaining samples to beginning and clear old samples
    182		long remain = samples_avail() + blip_buffer_extra_;
    183		memmove( buffer_, buffer_ + count, remain * sizeof *buffer_ );
    184		memset( buffer_ + remain, 0, count * sizeof *buffer_ );
    185	}
    186}
    187
    188// Blip_Synth_
    189
    190Blip_Synth_Fast_::Blip_Synth_Fast_()
    191{
    192	buf          = 0;
    193	last_amp     = 0;
    194	delta_factor = 0;
    195}
    196
    197void Blip_Synth_Fast_::volume_unit( double new_unit )
    198{
    199	delta_factor = int (new_unit * (1L << blip_sample_bits) + 0.5);
    200}
    201
    202#if !BLIP_BUFFER_FAST
    203
    204Blip_Synth_::Blip_Synth_( short* p, int w ) :
    205	impulses( p ),
    206	width( w )
    207{
    208	volume_unit_ = 0.0;
    209	kernel_unit  = 0;
    210	buf          = 0;
    211	last_amp     = 0;
    212	delta_factor = 0;
    213}
    214
    215#undef PI
    216#define PI 3.1415926535897932384626433832795029
    217
    218static void gen_sinc( float* out, int count, double oversample, double treble, double cutoff )
    219{
    220	if ( cutoff >= 0.999 )
    221		cutoff = 0.999;
    222
    223	if ( treble < -300.0 )
    224		treble = -300.0;
    225	if ( treble > 5.0 )
    226		treble = 5.0;
    227
    228	double const maxh = 4096.0;
    229	double const rolloff = pow( 10.0, 1.0 / (maxh * 20.0) * treble / (1.0 - cutoff) );
    230	double const pow_a_n = pow( rolloff, maxh - maxh * cutoff );
    231	double const to_angle = PI / 2 / maxh / oversample;
    232	for ( int i = 0; i < count; i++ )
    233	{
    234		double angle = ((i - count) * 2 + 1) * to_angle;
    235		double c = rolloff * cos( (maxh - 1.0) * angle ) - cos( maxh * angle );
    236		double cos_nc_angle = cos( maxh * cutoff * angle );
    237		double cos_nc1_angle = cos( (maxh * cutoff - 1.0) * angle );
    238		double cos_angle = cos( angle );
    239
    240		c = c * pow_a_n - rolloff * cos_nc1_angle + cos_nc_angle;
    241		double d = 1.0 + rolloff * (rolloff - cos_angle - cos_angle);
    242		double b = 2.0 - cos_angle - cos_angle;
    243		double a = 1.0 - cos_angle - cos_nc_angle + cos_nc1_angle;
    244
    245		out [i] = (float) ((a * d + c * b) / (b * d)); // a / b + c / d
    246	}
    247}
    248
    249void blip_eq_t::generate( float* out, int count ) const
    250{
    251	// lower cutoff freq for narrow kernels with their wider transition band
    252	// (8 points->1.49, 16 points->1.15)
    253	double oversample = blip_res * 2.25 / count + 0.85;
    254	double half_rate = sample_rate * 0.5;
    255	if ( cutoff_freq )
    256		oversample = half_rate / cutoff_freq;
    257	double cutoff = rolloff_freq * oversample / half_rate;
    258
    259	gen_sinc( out, count, blip_res * oversample, treble, cutoff );
    260
    261	// apply (half of) hamming window
    262	double to_fraction = PI / (count - 1);
    263	for ( int i = count; i--; )
    264		out [i] *= 0.54f - 0.46f * (float) cos( i * to_fraction );
    265}
    266
    267void Blip_Synth_::adjust_impulse()
    268{
    269	// sum pairs for each phase and add error correction to end of first half
    270	int const size = impulses_size();
    271	for ( int p = blip_res; p-- >= blip_res / 2; )
    272	{
    273		int p2 = blip_res - 2 - p;
    274		long error = kernel_unit;
    275		for ( int i = 1; i < size; i += blip_res )
    276		{
    277			error -= impulses [i + p ];
    278			error -= impulses [i + p2];
    279		}
    280		if ( p == p2 )
    281			error /= 2; // phase = 0.5 impulse uses same half for both sides
    282		impulses [size - blip_res + p] += (short) error;
    283		//printf( "error: %ld\n", error );
    284	}
    285
    286	//for ( int i = blip_res; i--; printf( "\n" ) )
    287	//  for ( int j = 0; j < width / 2; j++ )
    288	//      printf( "%5ld,", impulses [j * blip_res + i + 1] );
    289}
    290
    291void Blip_Synth_::treble_eq( blip_eq_t const& eq )
    292{
    293	float fimpulse [blip_res / 2 * (blip_widest_impulse_ - 1) + blip_res * 2];
    294
    295	int const half_size = blip_res / 2 * (width - 1);
    296	eq.generate( &fimpulse [blip_res], half_size );
    297
    298	int i;
    299
    300	// need mirror slightly past center for calculation
    301	for ( i = blip_res; i--; )
    302		fimpulse [blip_res + half_size + i] = fimpulse [blip_res + half_size - 1 - i];
    303
    304	// starts at 0
    305	for ( i = 0; i < blip_res; i++ )
    306		fimpulse [i] = 0.0f;
    307
    308	// find rescale factor
    309	double total = 0.0;
    310	for ( i = 0; i < half_size; i++ )
    311		total += fimpulse [blip_res + i];
    312
    313	//double const base_unit = 44800.0 - 128 * 18; // allows treble up to +0 dB
    314	//double const base_unit = 37888.0; // allows treble to +5 dB
    315	double const base_unit = 32768.0; // necessary for blip_unscaled to work
    316	double rescale = base_unit / 2 / total;
    317	kernel_unit = (long) base_unit;
    318
    319	// integrate, first difference, rescale, convert to int
    320	double sum = 0.0;
    321	double next = 0.0;
    322	int const size = this->impulses_size();
    323	for ( i = 0; i < size; i++ )
    324	{
    325		impulses [i] = (short) (int) floor( (next - sum) * rescale + 0.5 );
    326		sum += fimpulse [i];
    327		next += fimpulse [i + blip_res];
    328	}
    329	adjust_impulse();
    330
    331	// volume might require rescaling
    332	double vol = volume_unit_;
    333	if ( vol )
    334	{
    335		volume_unit_ = 0.0;
    336		volume_unit( vol );
    337	}
    338}
    339
    340void Blip_Synth_::volume_unit( double new_unit )
    341{
    342	if ( new_unit != volume_unit_ )
    343	{
    344		// use default eq if it hasn't been set yet
    345		if ( !kernel_unit )
    346			treble_eq( -8.0 );
    347
    348		volume_unit_ = new_unit;
    349		double factor = new_unit * (1L << blip_sample_bits) / kernel_unit;
    350
    351		if ( factor > 0.0 )
    352		{
    353			int shift = 0;
    354
    355			// if unit is really small, might need to attenuate kernel
    356			while ( factor < 2.0 )
    357			{
    358				shift++;
    359				factor *= 2.0;
    360			}
    361
    362			if ( shift )
    363			{
    364				kernel_unit >>= shift;
    365				assert( kernel_unit > 0 ); // fails if volume unit is too low
    366
    367				// keep values positive to avoid round-towards-zero of sign-preserving
    368				// right shift for negative values
    369				long offset = 0x8000 + (1 << (shift - 1));
    370				long offset2 = 0x8000 >> shift;
    371				for ( int i = impulses_size(); i--; )
    372					impulses [i] = (short) (int) (((impulses [i] + offset) >> shift) - offset2);
    373				adjust_impulse();
    374			}
    375		}
    376		delta_factor = (int) floor( factor + 0.5 );
    377		//printf( "delta_factor: %d, kernel_unit: %d\n", delta_factor, kernel_unit );
    378	}
    379}
    380#endif
    381
    382long Blip_Buffer::read_samples( blip_sample_t* out_, long max_samples, int stereo )
    383{
    384	long count = samples_avail();
    385	if ( count > max_samples )
    386		count = max_samples;
    387
    388	if ( count )
    389	{
    390		int const bass = BLIP_READER_BASS( *this );
    391		BLIP_READER_BEGIN( reader, *this );
    392		BLIP_READER_ADJ_( reader, count );
    393		blip_sample_t* BLIP_RESTRICT out = out_ + count;
    394		blip_long offset = (blip_long) -count;
    395
    396		if ( !stereo )
    397		{
    398			do
    399			{
    400				blip_long s = BLIP_READER_READ( reader );
    401				BLIP_READER_NEXT_IDX_( reader, bass, offset );
    402				BLIP_CLAMP( s, s );
    403				out [offset] = (blip_sample_t) s;
    404			}
    405			while ( ++offset );
    406		}
    407		else
    408		{
    409			do
    410			{
    411				blip_long s = BLIP_READER_READ( reader );
    412				BLIP_READER_NEXT_IDX_( reader, bass, offset );
    413				BLIP_CLAMP( s, s );
    414				out [offset * 2] = (blip_sample_t) s;
    415			}
    416			while ( ++offset );
    417		}
    418
    419		BLIP_READER_END( reader, *this );
    420
    421		remove_samples( count );
    422	}
    423	return count;
    424}
    425
    426void Blip_Buffer::mix_samples( blip_sample_t const* in, long count )
    427{
    428	if ( buffer_size_ == silent_buf_size )
    429	{
    430		assert( 0 );
    431		return;
    432	}
    433
    434	buf_t_* out = buffer_ + (offset_ >> BLIP_BUFFER_ACCURACY) + blip_widest_impulse_ / 2;
    435
    436	int const sample_shift = blip_sample_bits - 16;
    437	int prev = 0;
    438	while ( count-- )
    439	{
    440		blip_long s = (blip_long) *in++ << sample_shift;
    441		*out += s - prev;
    442		prev = s;
    443		++out;
    444	}
    445	*out -= prev;
    446}
    447
    448void Blip_Buffer::save_state( blip_buffer_state_t* out )
    449{
    450	assert( samples_avail() == 0 );
    451	out->offset_       = offset_;
    452	out->reader_accum_ = reader_accum_;
    453	memcpy( out->buf, &buffer_ [offset_ >> BLIP_BUFFER_ACCURACY], sizeof out->buf );
    454}
    455
    456void Blip_Buffer::load_state( blip_buffer_state_t const& in )
    457{
    458	clear( false );
    459
    460	offset_       = in.offset_;
    461	reader_accum_ = in.reader_accum_;
    462	memcpy( buffer_, in.buf, sizeof in.buf );
    463}