Blip_Buffer.cpp (12088B)
1// Blip_Buffer 0.4.1. http://www.slack.net/~ant/ 2 3#include "Blip_Buffer.h" 4 5#include <assert.h> 6#include <limits.h> 7#include <string.h> 8#include <stdlib.h> 9#include <math.h> 10 11/* Copyright (C) 2003-2007 Shay Green. This module is free software; you 12can redistribute it and/or modify it under the terms of the GNU Lesser 13General Public License as published by the Free Software Foundation; either 14version 2.1 of the License, or (at your option) any later version. This 15module is distributed in the hope that it will be useful, but WITHOUT ANY 16WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS 17FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more 18details. You should have received a copy of the GNU Lesser General Public 19License along with this module; if not, write to the Free Software Foundation, 20Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ 21 22// TODO: use scoped for variables in treble_eq() 23 24#ifdef BLARGG_ENABLE_OPTIMIZER 25 #include BLARGG_ENABLE_OPTIMIZER 26#endif 27 28int const silent_buf_size = 1; // size used for Silent_Blip_Buffer 29 30Blip_Buffer::Blip_Buffer() 31{ 32 factor_ = (blip_ulong)LONG_MAX; 33 buffer_ = 0; 34 buffer_size_ = 0; 35 sample_rate_ = 0; 36 bass_shift_ = 0; 37 clock_rate_ = 0; 38 bass_freq_ = 16; 39 length_ = 0; 40 41 // assumptions code makes about implementation-defined features 42 #ifndef NDEBUG 43 // right shift of negative value preserves sign 44 buf_t_ i = -0x7FFFFFFE; 45 assert( (i >> 1) == -0x3FFFFFFF ); 46 47 // casting to short truncates to 16 bits and sign-extends 48 i = 0x18000; 49 assert( (short) i == -0x8000 ); 50 #endif 51 52 clear(); 53} 54 55Blip_Buffer::~Blip_Buffer() 56{ 57 if ( buffer_size_ != silent_buf_size ) 58 free( buffer_ ); 59} 60 61Silent_Blip_Buffer::Silent_Blip_Buffer() 62{ 63 factor_ = 0; 64 buffer_ = buf; 65 buffer_size_ = silent_buf_size; 66 clear(); 67} 68 69void Blip_Buffer::clear( int entire_buffer ) 70{ 71 offset_ = 0; 72 reader_accum_ = 0; 73 modified_ = 0; 74 if ( buffer_ ) 75 { 76 long count = (entire_buffer ? buffer_size_ : samples_avail()); 77 memset( buffer_, 0, (count + blip_buffer_extra_) * sizeof (buf_t_) ); 78 } 79} 80 81Blip_Buffer::blargg_err_t Blip_Buffer::set_sample_rate( long new_rate, int msec ) 82{ 83 if ( buffer_size_ == silent_buf_size ) 84 { 85 assert( 0 ); 86 return "Internal (tried to resize Silent_Blip_Buffer)"; 87 } 88 89 // start with maximum length that resampled time can represent 90 long new_size = (ULONG_MAX >> BLIP_BUFFER_ACCURACY) - blip_buffer_extra_ - 64; 91 if ( msec != blip_max_length ) 92 { 93 long s = (new_rate * (msec + 1) + 999) / 1000; 94 if ( s < new_size ) 95 new_size = s; 96 else 97 assert( 0 ); // fails if requested buffer length exceeds limit 98 } 99 100 if ( buffer_size_ != new_size ) 101 { 102 void* p = realloc( buffer_, (new_size + blip_buffer_extra_) * sizeof *buffer_ ); 103 if ( !p ) 104 return "Out of memory"; 105 buffer_ = (buf_t_*) p; 106 } 107 108 buffer_size_ = (int)new_size; 109 assert( buffer_size_ != silent_buf_size ); // size should never happen to match this 110 111 // update things based on the sample rate 112 sample_rate_ = new_rate; 113 length_ = (int)(new_size * 1000 / new_rate - 1); 114 if ( msec ) 115 assert( length_ == msec ); // ensure length is same as that passed in 116 117 // update these since they depend on sample rate 118 if ( clock_rate_ ) 119 clock_rate( clock_rate_ ); 120 bass_freq( bass_freq_ ); 121 122 clear(); 123 124 return 0; // success 125} 126 127blip_resampled_time_t Blip_Buffer::clock_rate_factor( long rate ) const 128{ 129 double ratio = (double) sample_rate_ / rate; 130 blip_long factor = (blip_long) floor( ratio * (1L << BLIP_BUFFER_ACCURACY) + 0.5 ); 131 assert( factor > 0 || !sample_rate_ ); // fails if clock/output ratio is too large 132 return (blip_resampled_time_t) factor; 133} 134 135void Blip_Buffer::bass_freq( int freq ) 136{ 137 bass_freq_ = freq; 138 int shift = 31; 139 if ( freq > 0 ) 140 { 141 shift = 13; 142 long f = (freq << 16) / sample_rate_; 143 while ( (f >>= 1) && --shift ) { } 144 } 145 bass_shift_ = shift; 146} 147 148void Blip_Buffer::end_frame( blip_time_t t ) 149{ 150 offset_ += t * factor_; 151 assert( samples_avail() <= (long) buffer_size_ ); // fails if time is past end of buffer 152} 153 154long Blip_Buffer::count_samples( blip_time_t t ) const 155{ 156 blip_resampled_time_t last_sample = resampled_time( t ) >> BLIP_BUFFER_ACCURACY; 157 blip_resampled_time_t first_sample = offset_ >> BLIP_BUFFER_ACCURACY; 158 return long (last_sample - first_sample); 159} 160 161blip_time_t Blip_Buffer::count_clocks( long count ) const 162{ 163 if ( !factor_ ) 164 { 165 assert( 0 ); // sample rate and clock rates must be set first 166 return 0; 167 } 168 169 if ( count > buffer_size_ ) 170 count = buffer_size_; 171 blip_resampled_time_t time = (blip_resampled_time_t) count << BLIP_BUFFER_ACCURACY; 172 return (blip_time_t) ((time - offset_ + factor_ - 1) / factor_); 173} 174 175void Blip_Buffer::remove_samples( long count ) 176{ 177 if ( count ) 178 { 179 remove_silence( count ); 180 181 // copy remaining samples to beginning and clear old samples 182 long remain = samples_avail() + blip_buffer_extra_; 183 memmove( buffer_, buffer_ + count, remain * sizeof *buffer_ ); 184 memset( buffer_ + remain, 0, count * sizeof *buffer_ ); 185 } 186} 187 188// Blip_Synth_ 189 190Blip_Synth_Fast_::Blip_Synth_Fast_() 191{ 192 buf = 0; 193 last_amp = 0; 194 delta_factor = 0; 195} 196 197void Blip_Synth_Fast_::volume_unit( double new_unit ) 198{ 199 delta_factor = int (new_unit * (1L << blip_sample_bits) + 0.5); 200} 201 202#if !BLIP_BUFFER_FAST 203 204Blip_Synth_::Blip_Synth_( short* p, int w ) : 205 impulses( p ), 206 width( w ) 207{ 208 volume_unit_ = 0.0; 209 kernel_unit = 0; 210 buf = 0; 211 last_amp = 0; 212 delta_factor = 0; 213} 214 215#undef PI 216#define PI 3.1415926535897932384626433832795029 217 218static void gen_sinc( float* out, int count, double oversample, double treble, double cutoff ) 219{ 220 if ( cutoff >= 0.999 ) 221 cutoff = 0.999; 222 223 if ( treble < -300.0 ) 224 treble = -300.0; 225 if ( treble > 5.0 ) 226 treble = 5.0; 227 228 double const maxh = 4096.0; 229 double const rolloff = pow( 10.0, 1.0 / (maxh * 20.0) * treble / (1.0 - cutoff) ); 230 double const pow_a_n = pow( rolloff, maxh - maxh * cutoff ); 231 double const to_angle = PI / 2 / maxh / oversample; 232 for ( int i = 0; i < count; i++ ) 233 { 234 double angle = ((i - count) * 2 + 1) * to_angle; 235 double c = rolloff * cos( (maxh - 1.0) * angle ) - cos( maxh * angle ); 236 double cos_nc_angle = cos( maxh * cutoff * angle ); 237 double cos_nc1_angle = cos( (maxh * cutoff - 1.0) * angle ); 238 double cos_angle = cos( angle ); 239 240 c = c * pow_a_n - rolloff * cos_nc1_angle + cos_nc_angle; 241 double d = 1.0 + rolloff * (rolloff - cos_angle - cos_angle); 242 double b = 2.0 - cos_angle - cos_angle; 243 double a = 1.0 - cos_angle - cos_nc_angle + cos_nc1_angle; 244 245 out [i] = (float) ((a * d + c * b) / (b * d)); // a / b + c / d 246 } 247} 248 249void blip_eq_t::generate( float* out, int count ) const 250{ 251 // lower cutoff freq for narrow kernels with their wider transition band 252 // (8 points->1.49, 16 points->1.15) 253 double oversample = blip_res * 2.25 / count + 0.85; 254 double half_rate = sample_rate * 0.5; 255 if ( cutoff_freq ) 256 oversample = half_rate / cutoff_freq; 257 double cutoff = rolloff_freq * oversample / half_rate; 258 259 gen_sinc( out, count, blip_res * oversample, treble, cutoff ); 260 261 // apply (half of) hamming window 262 double to_fraction = PI / (count - 1); 263 for ( int i = count; i--; ) 264 out [i] *= 0.54f - 0.46f * (float) cos( i * to_fraction ); 265} 266 267void Blip_Synth_::adjust_impulse() 268{ 269 // sum pairs for each phase and add error correction to end of first half 270 int const size = impulses_size(); 271 for ( int p = blip_res; p-- >= blip_res / 2; ) 272 { 273 int p2 = blip_res - 2 - p; 274 long error = kernel_unit; 275 for ( int i = 1; i < size; i += blip_res ) 276 { 277 error -= impulses [i + p ]; 278 error -= impulses [i + p2]; 279 } 280 if ( p == p2 ) 281 error /= 2; // phase = 0.5 impulse uses same half for both sides 282 impulses [size - blip_res + p] += (short) error; 283 //printf( "error: %ld\n", error ); 284 } 285 286 //for ( int i = blip_res; i--; printf( "\n" ) ) 287 // for ( int j = 0; j < width / 2; j++ ) 288 // printf( "%5ld,", impulses [j * blip_res + i + 1] ); 289} 290 291void Blip_Synth_::treble_eq( blip_eq_t const& eq ) 292{ 293 float fimpulse [blip_res / 2 * (blip_widest_impulse_ - 1) + blip_res * 2]; 294 295 int const half_size = blip_res / 2 * (width - 1); 296 eq.generate( &fimpulse [blip_res], half_size ); 297 298 int i; 299 300 // need mirror slightly past center for calculation 301 for ( i = blip_res; i--; ) 302 fimpulse [blip_res + half_size + i] = fimpulse [blip_res + half_size - 1 - i]; 303 304 // starts at 0 305 for ( i = 0; i < blip_res; i++ ) 306 fimpulse [i] = 0.0f; 307 308 // find rescale factor 309 double total = 0.0; 310 for ( i = 0; i < half_size; i++ ) 311 total += fimpulse [blip_res + i]; 312 313 //double const base_unit = 44800.0 - 128 * 18; // allows treble up to +0 dB 314 //double const base_unit = 37888.0; // allows treble to +5 dB 315 double const base_unit = 32768.0; // necessary for blip_unscaled to work 316 double rescale = base_unit / 2 / total; 317 kernel_unit = (long) base_unit; 318 319 // integrate, first difference, rescale, convert to int 320 double sum = 0.0; 321 double next = 0.0; 322 int const size = this->impulses_size(); 323 for ( i = 0; i < size; i++ ) 324 { 325 impulses [i] = (short) (int) floor( (next - sum) * rescale + 0.5 ); 326 sum += fimpulse [i]; 327 next += fimpulse [i + blip_res]; 328 } 329 adjust_impulse(); 330 331 // volume might require rescaling 332 double vol = volume_unit_; 333 if ( vol ) 334 { 335 volume_unit_ = 0.0; 336 volume_unit( vol ); 337 } 338} 339 340void Blip_Synth_::volume_unit( double new_unit ) 341{ 342 if ( new_unit != volume_unit_ ) 343 { 344 // use default eq if it hasn't been set yet 345 if ( !kernel_unit ) 346 treble_eq( -8.0 ); 347 348 volume_unit_ = new_unit; 349 double factor = new_unit * (1L << blip_sample_bits) / kernel_unit; 350 351 if ( factor > 0.0 ) 352 { 353 int shift = 0; 354 355 // if unit is really small, might need to attenuate kernel 356 while ( factor < 2.0 ) 357 { 358 shift++; 359 factor *= 2.0; 360 } 361 362 if ( shift ) 363 { 364 kernel_unit >>= shift; 365 assert( kernel_unit > 0 ); // fails if volume unit is too low 366 367 // keep values positive to avoid round-towards-zero of sign-preserving 368 // right shift for negative values 369 long offset = 0x8000 + (1 << (shift - 1)); 370 long offset2 = 0x8000 >> shift; 371 for ( int i = impulses_size(); i--; ) 372 impulses [i] = (short) (int) (((impulses [i] + offset) >> shift) - offset2); 373 adjust_impulse(); 374 } 375 } 376 delta_factor = (int) floor( factor + 0.5 ); 377 //printf( "delta_factor: %d, kernel_unit: %d\n", delta_factor, kernel_unit ); 378 } 379} 380#endif 381 382long Blip_Buffer::read_samples( blip_sample_t* out_, long max_samples, int stereo ) 383{ 384 long count = samples_avail(); 385 if ( count > max_samples ) 386 count = max_samples; 387 388 if ( count ) 389 { 390 int const bass = BLIP_READER_BASS( *this ); 391 BLIP_READER_BEGIN( reader, *this ); 392 BLIP_READER_ADJ_( reader, count ); 393 blip_sample_t* BLIP_RESTRICT out = out_ + count; 394 blip_long offset = (blip_long) -count; 395 396 if ( !stereo ) 397 { 398 do 399 { 400 blip_long s = BLIP_READER_READ( reader ); 401 BLIP_READER_NEXT_IDX_( reader, bass, offset ); 402 BLIP_CLAMP( s, s ); 403 out [offset] = (blip_sample_t) s; 404 } 405 while ( ++offset ); 406 } 407 else 408 { 409 do 410 { 411 blip_long s = BLIP_READER_READ( reader ); 412 BLIP_READER_NEXT_IDX_( reader, bass, offset ); 413 BLIP_CLAMP( s, s ); 414 out [offset * 2] = (blip_sample_t) s; 415 } 416 while ( ++offset ); 417 } 418 419 BLIP_READER_END( reader, *this ); 420 421 remove_samples( count ); 422 } 423 return count; 424} 425 426void Blip_Buffer::mix_samples( blip_sample_t const* in, long count ) 427{ 428 if ( buffer_size_ == silent_buf_size ) 429 { 430 assert( 0 ); 431 return; 432 } 433 434 buf_t_* out = buffer_ + (offset_ >> BLIP_BUFFER_ACCURACY) + blip_widest_impulse_ / 2; 435 436 int const sample_shift = blip_sample_bits - 16; 437 int prev = 0; 438 while ( count-- ) 439 { 440 blip_long s = (blip_long) *in++ << sample_shift; 441 *out += s - prev; 442 prev = s; 443 ++out; 444 } 445 *out -= prev; 446} 447 448void Blip_Buffer::save_state( blip_buffer_state_t* out ) 449{ 450 assert( samples_avail() == 0 ); 451 out->offset_ = offset_; 452 out->reader_accum_ = reader_accum_; 453 memcpy( out->buf, &buffer_ [offset_ >> BLIP_BUFFER_ACCURACY], sizeof out->buf ); 454} 455 456void Blip_Buffer::load_state( blip_buffer_state_t const& in ) 457{ 458 clear( false ); 459 460 offset_ = in.offset_; 461 reader_accum_ = in.reader_accum_; 462 memcpy( buffer_, in.buf, sizeof in.buf ); 463}