aoc-2021-rust

git clone https://git.sinitax.com/sinitax/aoc-2021-rust
Log | Files | Refs | README | sfeed.txt

commit 36b32528b80b0f6f4016e6b5b68880006b27dc10
parent 2703ebecc972deca76a4737ebadd1554100ff296
Author: Louis Burda <quent.burda@gmail.com>
Date:   Fri, 14 Apr 2023 01:39:33 -0400

Add day 17 solution

Diffstat:
Asrc/17/Cargo.toml | 7+++++++
Asrc/17/input | 2++
Asrc/17/part1 | 136+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Asrc/17/part2 | 28++++++++++++++++++++++++++++
Asrc/17/src/main.rs | 102+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Asrc/17/test1 | 1+
6 files changed, 276 insertions(+), 0 deletions(-)

diff --git a/src/17/Cargo.toml b/src/17/Cargo.toml @@ -0,0 +1,7 @@ +[package] +name = "day17" +version = "0.1.0" +edition = "2021" + +[dependencies] +aoc = { path = "../common/aoc" } diff --git a/src/17/input b/src/17/input @@ -0,0 +1,2 @@ +target area: x=25..67, y=-260..-200 + diff --git a/src/17/part1 b/src/17/part1 @@ -0,0 +1,136 @@ +--- Day 17: Trick Shot --- + +You finally decode the Elves' message. HI, the message says. You continue searching for the sleigh +keys. + +Ahead of you is what appears to be a large ocean trench. Could the keys have fallen into it? You'd +better send a probe to investigate. + +The probe launcher on your submarine can fire the probe with any integer velocity in the x (forward) +and y (upward, or downward if negative) directions. For example, an initial x,y velocity like 0,10 +would fire the probe straight up, while an initial velocity like 10,-1 would fire the probe forward +at a slight downward angle. + +The probe's x,y position starts at 0,0. Then, it will follow some trajectory by moving in +steps. On each step, these changes occur in the following order: + + + - The probe's x position increases by its x velocity. + + - The probe's y position increases by its y velocity. + + - Due to drag, the probe's x velocity changes by 1 toward the value 0; that is, it decreases by 1 +if it is greater than 0, increases by 1 if it is less than 0, or does not change if it is already 0. + + - Due to gravity, the probe's y velocity decreases by 1. + + +For the probe to successfully make it into the trench, the probe must be on some trajectory that +causes it to be within a target area after any step. The submarine computer has already calculated +this target area (your puzzle input). For example: + +target area: x=20..30, y=-10..-5 +This target area means that you need to find initial x,y velocity values such that after any step, +the probe's x position is at least 20 and at most 30, and the probe's y position is at least -10 and +at most -5. + +Given this target area, one initial velocity that causes the probe to be within the target area +after any step is 7,2: + +.............#....#............ +.......#..............#........ +............................... +S........................#..... +............................... +............................... +...........................#... +............................... +....................TTTTTTTTTTT +....................TTTTTTTTTTT +....................TTTTTTTT#TT +....................TTTTTTTTTTT +....................TTTTTTTTTTT +....................TTTTTTTTTTT + +In this diagram, S is the probe's initial position, 0,0. The x coordinate increases to the right, +and the y coordinate increases upward. In the bottom right, positions that are within the target +area are shown as T. After each step (until the target area is reached), the position of the probe +is marked with #. (The bottom-right # is both a position the probe reaches and a position in the +target area.) + +Another initial velocity that causes the probe to be within the target area after any step is 6,3: + +...............#..#............ +...........#........#.......... +............................... +......#..............#......... +............................... +............................... +S....................#......... +............................... +............................... +............................... +.....................#......... +....................TTTTTTTTTTT +....................TTTTTTTTTTT +....................TTTTTTTTTTT +....................TTTTTTTTTTT +....................T#TTTTTTTTT +....................TTTTTTTTTTT + +Another one is 9,0: + +S........#..................... +.................#............. +............................... +........................#...... +............................... +....................TTTTTTTTTTT +....................TTTTTTTTTT# +....................TTTTTTTTTTT +....................TTTTTTTTTTT +....................TTTTTTTTTTT +....................TTTTTTTTTTT + +One initial velocity that doesn't cause the probe to be within the target area after any step is +17,-4: + +S.............................................................. +............................................................... +............................................................... +............................................................... +.................#............................................. +....................TTTTTTTTTTT................................ +....................TTTTTTTTTTT................................ +....................TTTTTTTTTTT................................ +....................TTTTTTTTTTT................................ +....................TTTTTTTTTTT..#............................. +....................TTTTTTTTTTT................................ +............................................................... +............................................................... +............................................................... +............................................................... +................................................#.............. +............................................................... +............................................................... +............................................................... +............................................................... +............................................................... +............................................................... +..............................................................# + +The probe appears to pass through the target area, but is never within it after any step. Instead, +it continues down and to the right - only the first few steps are shown. + +If you're going to fire a highly scientific probe out of a super cool probe launcher, you might as +well do it with style. How high can you make the probe go while still reaching the target area? + +In the above example, using an initial velocity of 6,9 is the best you can do, causing the probe to +reach a maximum y position of 45. (Any higher initial y velocity causes the probe to overshoot the +target area entirely.) + +Find the initial velocity that causes the probe to reach the highest y position and still eventually +be within the target area after any step. What is the highest y position it reaches on this +trajectory? + + diff --git a/src/17/part2 b/src/17/part2 @@ -0,0 +1,28 @@ +--- Part Two --- + +Maybe a fancy trick shot isn't the best idea; after all, you only have one probe, so you had better +not miss. + +To get the best idea of what your options are for launching the probe, you need to find +every initial velocity that causes the probe to eventually be within the target area after any step. + +In the above example, there are 112 different initial velocity values that meet these criteria: + +23,-10 25,-9 27,-5 29,-6 22,-6 21,-7 9,0 27,-7 24,-5 +25,-7 26,-6 25,-5 6,8 11,-2 20,-5 29,-10 6,3 28,-7 +8,0 30,-6 29,-8 20,-10 6,7 6,4 6,1 14,-4 21,-6 +26,-10 7,-1 7,7 8,-1 21,-9 6,2 20,-7 30,-10 14,-3 +20,-8 13,-2 7,3 28,-8 29,-9 15,-3 22,-5 26,-8 25,-8 +25,-6 15,-4 9,-2 15,-2 12,-2 28,-9 12,-3 24,-6 23,-7 +25,-10 7,8 11,-3 26,-7 7,1 23,-9 6,0 22,-10 27,-6 +8,1 22,-8 13,-4 7,6 28,-6 11,-4 12,-4 26,-9 7,4 +24,-10 23,-8 30,-8 7,0 9,-1 10,-1 26,-5 22,-9 6,5 +7,5 23,-6 28,-10 10,-2 11,-1 20,-9 14,-2 29,-7 13,-3 +23,-5 24,-8 27,-9 30,-7 28,-5 21,-10 7,9 6,6 21,-5 +27,-10 7,2 30,-9 21,-8 22,-7 24,-9 20,-6 6,9 29,-5 +8,-2 27,-8 30,-5 24,-7 + +How many distinct initial velocity values cause the probe to be within the target area after any +step? + + diff --git a/src/17/src/main.rs b/src/17/src/main.rs @@ -0,0 +1,102 @@ +/* vx: starting velocity, tx: target + * + * tx = vx * s - s * (s - 1) / 2 + * 0 = -s^2 + s + 2 * vx * s - 2 * tx + * 0 = s^2 - (1 + 2 * vx) * s + 2 * tx + * s = (1 + 2 * vx) / 2 +- sqrt((1 + 2 * vx)^2 / 4 - 2 * tx) + * + * ty = vy * s - s * (s - 1) / 2 + * vy = ty / s + (s - 1) / 2 + * + * tx' = vx - s + 1/2 + * max height reached at s = vx, ty = vy * vx - vx * (vx - 1) / 2 + * + * 0 = s^2 - s (vx + vy + 1) + tx + ty + * + * for vx != vy: s = (tx - ty) / (vx - vy) + * for vx == vy: s = (vx + vy + 1) / 2 +- sqrt((vx + vy + 1)^2/4 - tx - ty) + * + * vx is bounded by the distance tx and minimum value that still reaches tx: + * s = vx, tx = vx * vx - vx * (vx - 1) / 2 + * 2 tx = 2 vx^2 - vx^2 + vx + * 0 = vx^2 + vx - 2 tx + * => vx_min = -1/2 +- sqrt(1/4 + 2 tx), vx_max = tx + * ^ can also derive via term in sqrt(..) when solve vx eq for s + * + * - itere over target position x values + * - iterate over possible vx + * - determine step count s in one dimension: + * s = (1 + 2 * vx) / 2 - sqrt((1 + 2 * vx)^2 / 4 - 2 * tx) + * - if s = vx.. there are infinitely many s > vx that fulfill the conditions + * => use ty * 2 as a bounds, since vy = ty / s + (s - 1) / 2 + * - itere over target position y values + * - compute whole-numbered velocity that will hit target, else skip + * - compute max height of arch: + * maxy = y(vy) + */ + +#[derive(PartialEq,Eq,PartialOrd,Ord)] +struct Trajectory { + vx: isize, + vy: isize, +} + +fn parse_input(input: &str) -> (isize, isize, isize, isize) { + let (line, _) = input.split_once("\n").unwrap(); + let (_, rest) = line.split_once("target area: ").unwrap(); + let lambda = |r: &str| r.split_once("=").unwrap().1 + .split("..").map(|v| v.parse::<isize>().unwrap()).collect(); + let ranges: Vec<Vec<isize>> = rest.split(", ").map(lambda).collect(); + return (ranges[0][0], ranges[0][1], ranges[1][0], ranges[1][1]) +} + +fn gen_trajectories(minx: isize, maxx: isize, miny: isize, maxy: isize) -> Vec<Trajectory> { + let mut trajectories: Vec<Trajectory> = Vec::new(); + for tx in minx..maxx+1 { + let minvx = f32::ceil(-0.5 + f32::sqrt(0.25 + 2.0 * (tx as f32))) as isize; + for vx in isize::max(1, minvx)..tx+1 { + let t = (1.0 + 2.0 * (vx as f32)) / 2.0; + let u = f32::sqrt(t * t - 2.0 * (tx as f32)); + let s = if t > u { t - u } else { t + u }; + assert!(s > 0.0); + if s != s.round() { continue; } + let si = s as isize; + for ty in miny..maxy+1 { + for sn in if si == vx { si..isize::abs(ty)*2+1 } else { si..si+1 } { + let vy = (ty as f32) / (sn as f32) + ((sn as f32) - 1.0) / 2.0; + aoc::debugln!("{} {} ({}) {} {}", tx, ty, sn, vx, vy); + if vy != vy.round() { continue; } + let t = Trajectory { vx, vy: vy as isize }; + let _ = t.vx; /* silence warn about unused var */ + trajectories.push(t); + } + } + } + } + return trajectories; +} + +fn part1(aoc: &mut aoc::Info) { + let (minx, maxx, miny, maxy) = parse_input(&aoc.input); + let trajectories = gen_trajectories(minx, maxx, miny, maxy); + let maxy_f = |vy| f32::floor((vy as f32) * (vy as f32) + - (vy as f32) * ((vy as f32) - 1.0) / 2.0) as isize; + let answer = trajectories.iter().map(|t| maxy_f(t.vy)).max().unwrap(); + aoc.answer = Some(format!("{}", answer)); + aoc.solution = Some("33670"); +} + +fn part2(aoc: &mut aoc::Info) { + let (minx, maxx, miny, maxy) = parse_input(&aoc.input); + let mut trajectories = gen_trajectories(minx, maxx, miny, maxy); + trajectories.sort(); + trajectories.dedup(); + let answer = trajectories.len(); + aoc.answer = Some(format!("{}", answer)); + aoc.solution = Some("4903"); +} + +fn main() { + aoc::run(part1, part2); +} + diff --git a/src/17/test1 b/src/17/test1 @@ -0,0 +1 @@ +target area: x=20..30, y=-10..-5