commit 4348e9bcc6e5dd2699c24c956be376546a58f7d3
parent e27d180ed44afae12fb299507ea0ad0d4d098ad1
Author: Louis Burda <quent.burda@gmail.com>
Date: Mon, 10 Apr 2023 11:12:34 -0400
Add day 13 solution
Diffstat:
8 files changed, 1053 insertions(+), 11 deletions(-)
diff --git a/src/12/part1 b/src/12/part1
@@ -1,8 +1,8 @@
--- Day 12: Passage Pathing ---
With your submarine's subterranean subsystems subsisting suboptimally, the only way you're getting
-out of this cave anytime soon is by finding a path yourself. Not just [1m[37ma[0m path - the only way to know
-if you've found the [1m[37mbest[0m path is to find [1m[37mall[0m of them.
+out of this cave anytime soon is by finding a path yourself. Not just [1m[97ma[0m path - the only way to know
+if you've found the [1m[97mbest[0m path is to find [1m[97mall[0m of them.
Fortunately, the sensors are still mostly working, and so you build a rough map of the remaining
caves (your puzzle input). For example:
@@ -27,14 +27,14 @@ c--A-----b--d
\ /
end
-Your goal is to find the number of distinct [1m[37mpaths[0m that start at start, end at end, and don't visit
-small caves more than once. There are two types of caves: [1m[37mbig[0m caves (written in uppercase, like A)
-and [1m[37msmall[0m caves (written in lowercase, like b). It would be a waste of time to visit any small cave
+Your goal is to find the number of distinct [1m[97mpaths[0m that start at start, end at end, and don't visit
+small caves more than once. There are two types of caves: [1m[97mbig[0m caves (written in uppercase, like A)
+and [1m[97msmall[0m caves (written in lowercase, like b). It would be a waste of time to visit any small cave
more than once, but big caves are large enough that it might be worth visiting them multiple times.
-So, all paths you find should [1m[37mvisit small caves at most once[0m, and can [1m[37mvisit big caves any number of
+So, all paths you find should [1m[97mvisit small caves at most once[0m, and can [1m[97mvisit big caves any number of
times[0m.
-Given these rules, there are [1m[37m10[0m paths through this example cave system:
+Given these rules, there are [1m[97m10[0m paths through this example cave system:
start,A,b,A,c,A,end
start,A,b,A,end
@@ -110,6 +110,6 @@ zg-he
pj-fs
start-RW
-[1m[37mHow many paths through this cave system are there that visit small caves at most once?[0m
+[1m[97mHow many paths through this cave system are there that visit small caves at most once?[0m
diff --git a/src/12/part2 b/src/12/part2
@@ -1,9 +1,9 @@
--- Part Two ---
After reviewing the available paths, you realize you might have time to visit a single small cave
-[1m[37mtwice[0m. Specifically, big caves can be visited any number of times, a single small cave can be
+[1m[97mtwice[0m. Specifically, big caves can be visited any number of times, a single small cave can be
visited at most twice, and the remaining small caves can be visited at most once. However, the caves
-named start and end can only be visited [1m[37mexactly once each[0m: once you leave the start cave, you may
+named start and end can only be visited [1m[97mexactly once each[0m: once you leave the start cave, you may
not return to it, and once you reach the end cave, the path must end immediately.
Now, the 36 possible paths through the first example above are:
@@ -48,6 +48,6 @@ start,b,end
The slightly larger example above now has 103 paths through it, and the even larger example now has
3509 paths through it.
-Given these new rules, [1m[37mhow many paths through this cave system are there?[0m
+Given these new rules, [1m[97mhow many paths through this cave system are there?[0m
diff --git a/src/13/Cargo.toml b/src/13/Cargo.toml
@@ -0,0 +1,7 @@
+[package]
+name = "day13"
+version = "0.1.0"
+edition = "2021"
+
+[dependencies]
+aoc = { path = "../common/aoc" }
diff --git a/src/13/input b/src/13/input
@@ -0,0 +1,764 @@
+1288,822
+842,72
+693,68
+561,254
+1007,192
+405,794
+929,45
+58,296
+411,317
+164,3
+894,317
+371,306
+272,205
+646,865
+1027,700
+920,667
+728,665
+1240,105
+390,227
+972,257
+561,640
+954,128
+440,194
+1136,712
+37,516
+1072,93
+1210,576
+390,486
+682,611
+343,368
+236,840
+366,889
+238,644
+55,130
+939,388
+619,726
+1092,23
+1180,458
+338,189
+176,516
+915,210
+550,100
+773,466
+351,554
+460,389
+266,560
+154,810
+604,646
+969,880
+627,793
+211,0
+842,520
+460,647
+678,72
+1007,702
+863,170
+371,836
+716,233
+1260,695
+682,84
+710,745
+852,94
+200,756
+574,383
+112,306
+1072,698
+1103,460
+617,826
+276,827
+1158,73
+959,702
+454,327
+90,502
+790,463
+480,742
+985,577
+1205,334
+298,766
+371,388
+320,754
+1004,252
+765,437
+1290,550
+1191,210
+1170,296
+865,522
+262,663
+504,714
+406,222
+174,630
+402,609
+30,169
+164,127
+1074,54
+663,77
+136,353
+316,632
+164,52
+512,718
+1038,82
+351,453
+1027,413
+68,600
+1110,756
+5,18
+1160,180
+632,822
+600,793
+798,718
+428,625
+964,443
+904,672
+596,122
+174,745
+366,403
+648,252
+1121,164
+920,606
+464,807
+749,254
+624,501
+1282,543
+1126,494
+554,891
+236,54
+333,483
+1233,459
+843,504
+928,171
+500,278
+1168,512
+937,504
+6,177
+830,264
+584,105
+1287,788
+375,250
+982,58
+788,695
+386,324
+1273,378
+88,129
+756,3
+218,471
+686,501
+20,326
+326,114
+885,750
+536,182
+209,56
+20,568
+944,98
+428,94
+1101,693
+644,413
+373,410
+912,830
+1096,833
+390,219
+0,828
+93,684
+1038,306
+1101,390
+1037,493
+1290,763
+288,403
+346,317
+1191,140
+840,821
+962,131
+1116,505
+688,458
+55,460
+416,196
+405,100
+856,474
+528,376
+929,849
+873,381
+483,621
+1002,317
+1004,730
+375,644
+279,250
+378,442
+1128,317
+1022,768
+681,843
+164,630
+80,606
+20,763
+112,588
+972,189
+514,150
+1084,766
+433,782
+373,484
+1180,436
+894,196
+1089,560
+1290,26
+1192,731
+576,672
+1185,145
+296,228
+38,441
+870,733
+1059,747
+1006,856
+1255,434
+1275,278
+718,38
+806,714
+1304,177
+313,14
+412,563
+877,112
+238,698
+976,502
+1168,624
+1139,397
+1038,588
+1010,308
+242,115
+679,393
+935,838
+959,620
+62,550
+8,29
+1230,383
+1256,745
+1252,632
+1184,376
+140,296
+1002,353
+594,774
+734,222
+1242,70
+1146,400
+296,725
+87,187
+786,10
+982,562
+1128,577
+1096,385
+542,285
+1198,588
+433,112
+161,82
+492,854
+209,504
+80,624
+984,556
+325,364
+126,868
+1128,50
+760,346
+1287,554
+1059,644
+54,745
+865,372
+283,33
+288,5
+1038,597
+944,348
+863,252
+994,262
+788,505
+37,378
+1174,311
+1124,374
+990,140
+383,764
+1037,885
+874,812
+1120,171
+662,754
+1119,116
+142,718
+492,171
+326,506
+1146,630
+1283,793
+234,382
+990,754
+1230,606
+1287,106
+1116,4
+1148,499
+296,666
+437,381
+944,770
+209,693
+472,437
+749,192
+296,218
+1248,102
+1183,502
+885,592
+8,865
+820,2
+130,94
+774,387
+1086,263
+119,140
+962,252
+1236,161
+683,793
+539,642
+147,190
+632,374
+932,173
+7,525
+50,621
+528,742
+806,266
+832,516
+835,256
+537,649
+1014,423
+15,816
+1166,661
+1223,747
+105,334
+408,507
+636,465
+1138,84
+273,9
+405,346
+1139,716
+761,560
+559,12
+328,836
+1238,665
+126,119
+1310,828
+981,418
+390,606
+348,252
+80,383
+600,275
+502,98
+875,130
+405,548
+756,563
+351,441
+232,292
+510,213
+358,808
+241,11
+1290,131
+190,171
+1232,672
+306,730
+340,404
+1198,509
+840,73
+744,765
+935,250
+612,462
+308,17
+174,264
+271,802
+970,404
+338,705
+229,750
+782,518
+937,670
+574,288
+271,259
+1148,575
+1303,817
+47,56
+808,613
+956,801
+28,543
+994,705
+130,542
+119,618
+775,460
+519,824
+1248,744
+574,848
+1303,824
+592,102
+303,702
+303,340
+928,619
+219,578
+798,644
+1037,849
+150,180
+1305,876
+1180,94
+908,285
+706,646
+490,52
+214,283
+6,588
+236,137
+584,718
+218,306
+850,330
+981,866
+1136,264
+818,171
+710,275
+0,605
+873,65
+207,434
+1255,460
+952,808
+850,135
+1201,737
+594,661
+718,856
+23,788
+1184,308
+1044,101
+416,698
+325,577
+1165,887
+535,140
+162,575
+1021,602
+932,721
+118,546
+1184,294
+634,868
+584,294
+528,518
+596,150
+902,507
+627,742
+810,278
+63,266
+115,476
+985,317
+870,161
+529,590
+214,611
+20,131
+49,520
+1039,259
+972,262
+26,588
+1261,520
+375,838
+1027,861
+343,526
+771,642
+1146,127
+838,577
+77,459
+907,634
+492,275
+1195,670
+1235,634
+126,308
+62,38
+58,324
+390,288
+191,116
+905,794
+478,378
+846,737
+1163,190
+830,546
+1230,507
+1031,364
+674,429
+1084,317
+1220,392
+791,824
+592,344
+522,505
+174,149
+464,82
+1220,502
+276,4
+346,353
+112,385
+266,793
+1077,192
+1062,448
+42,432
+528,824
+346,577
+1084,128
+383,802
+395,210
+1027,33
+592,150
+1195,700
+574,894
+648,754
+592,856
+1267,77
+1267,58
+340,490
+749,702
+421,702
+863,460
+251,147
+1238,341
+698,462
+440,611
+249,346
+964,281
+172,138
+664,865
+115,726
+136,801
+155,845
+810,362
+283,506
+412,779
+219,477
+944,5
+226,128
+1022,403
+636,429
+984,562
+388,334
+70,401
+764,759
+1074,502
+50,695
+846,157
+972,632
+666,413
+1146,3
+383,316
+1149,82
+356,128
+1180,800
+103,44
+174,712
+273,493
+629,51
+499,49
+1274,742
+416,252
+683,242
+596,296
+316,637
+882,129
+1103,684
+226,317
+1077,702
+1093,65
+846,807
+817,812
+144,233
+130,800
+724,70
+522,340
+985,364
+1310,156
+1207,850
+683,652
+959,254
+1297,462
+390,675
+856,518
+1248,38
+574,831
+1061,548
+447,460
+818,40
+182,801
+676,26
+308,613
+272,689
+1292,541
+333,484
+694,348
+1146,842
+792,353
+1185,749
+492,619
+54,149
+207,460
+736,270
+681,51
+1222,250
+985,353
+319,402
+316,262
+272,306
+20,282
+406,672
+990,541
+1027,194
+584,124
+1260,646
+190,801
+850,759
+1178,505
+1091,130
+1103,194
+325,353
+194,505
+1223,187
+686,277
+105,177
+308,283
+216,763
+288,546
+1260,173
+13,462
+523,852
+512,644
+850,389
+806,378
+1263,56
+764,135
+718,150
+736,0
+773,354
+1092,471
+440,733
+1138,810
+874,530
+775,684
+959,640
+818,275
+775,434
+1155,49
+841,80
+88,196
+546,135
+1265,873
+782,586
+283,413
+1081,144
+308,353
+200,138
+929,401
+80,224
+354,588
+550,346
+1222,765
+522,695
+832,378
+920,219
+937,581
+171,397
+728,229
+830,854
+25,51
+226,331
+1037,9
+1176,431
+686,871
+694,98
+928,597
+1038,569
+939,588
+288,768
+375,56
+827,621
+709,401
+1021,292
+340,42
+281,448
+1148,52
+744,250
+422,548
+437,9
+1014,725
+662,140
+1002,283
+928,588
+736,471
+792,541
+70,124
+726,572
+300,84
+157,746
+390,238
+1260,273
+1088,520
+447,252
+1078,346
+234,512
+577,883
+1002,765
+288,348
+207,724
+249,11
+185,528
+771,224
+464,535
+714,122
+731,260
+691,726
+616,403
+694,403
+1168,718
+279,530
+894,698
+686,23
+771,726
+1280,169
+892,392
+413,435
+781,590
+1175,742
+774,182
+313,880
+828,138
+88,250
+539,224
+582,105
+724,518
+551,268
+490,891
+23,106
+991,402
+229,144
+566,250
+1285,51
+1068,779
+182,577
+472,885
+770,840
+1007,340
+80,288
+644,848
+574,176
+251,644
+1014,218
+1272,43
+248,448
+468,520
+810,616
+25,724
+348,642
+194,389
+604,695
+189,164
+216,131
+1116,564
+674,465
+125,749
+907,147
+10,413
+937,410
+550,822
+
+fold along x=655
+fold along y=447
+fold along x=327
+fold along y=223
+fold along x=163
+fold along y=111
+fold along x=81
+fold along y=55
+fold along x=40
+fold along y=27
+fold along y=13
+fold along y=6
+
diff --git a/src/13/part1 b/src/13/part1
@@ -0,0 +1,133 @@
+--- Day 13: Transparent Origami ---
+
+You reach another volcanically active part of the cave. It would be nice if you could do some kind
+of thermal imaging so you could tell ahead of time which caves are too hot to safely enter.
+
+Fortunately, the submarine seems to be equipped with a thermal camera! When you activate it, you are
+greeted with:
+
+Congratulations on your purchase! To activate this infrared thermal imaging
+camera system, please enter the code found on page 1 of the manual.
+
+Apparently, the Elves have never used this feature. To your surprise, you manage to find the manual;
+as you go to open it, page 1 falls out. It's a large sheet of transparent paper! The transparent
+paper is marked with random dots and includes instructions on how to fold it up (your puzzle input).
+For example:
+
+6,10
+0,14
+9,10
+0,3
+10,4
+4,11
+6,0
+6,12
+4,1
+0,13
+10,12
+3,4
+3,0
+8,4
+1,10
+2,14
+8,10
+9,0
+
+fold along y=7
+fold along x=5
+
+The first section is a list of dots on the transparent paper. 0,0 represents the top-left
+coordinate. The first value, x, increases to the right. The second value, y, increases downward.
+So, the coordinate 3,0 is to the right of 0,0, and the coordinate 0,7 is below 0,0. The coordinates
+in this example form the following pattern, where # is a dot on the paper and . is an empty,
+unmarked position:
+
+...#..#..#.
+....#......
+...........
+#..........
+...#....#.#
+...........
+...........
+...........
+...........
+...........
+.#....#.##.
+....#......
+......#...#
+#..........
+#.#........
+
+Then, there is a list of [1m[97mfold instructions[0m. Each instruction indicates a line on the transparent
+paper and wants you to fold the paper [1m[97mup[0m (for horizontal y=... lines) or [1m[97mleft[0m (for vertical x=...
+lines). In this example, the first fold instruction is fold along y=7, which designates the line
+formed by all of the positions where y is 7 (marked here with -):
+
+...#..#..#.
+....#......
+...........
+#..........
+...#....#.#
+...........
+...........
+-----------
+...........
+...........
+.#....#.##.
+....#......
+......#...#
+#..........
+#.#........
+
+Because this is a horizontal line, fold the bottom half [1m[97mup[0m. Some of the dots might end up
+overlapping after the fold is complete, but dots will never appear exactly on a fold line. The
+result of doing this fold looks like this:
+
+#.##..#..#.
+#...#......
+......#...#
+#...#......
+.#.#..#.###
+...........
+...........
+
+Now, only 17 dots are visible.
+
+Notice, for example, the two dots in the bottom left corner before the transparent paper is folded;
+after the fold is complete, those dots appear in the top left corner (at 0,0 and 0,1). Because the
+paper is transparent, the dot just below them in the result (at 0,3) remains visible, as it can be
+seen through the transparent paper.
+
+Also notice that some dots can end up [1m[97moverlapping[0m; in this case, the dots merge together and become
+a single dot.
+
+The second fold instruction is fold along x=5, which indicates this line:
+
+#.##.|#..#.
+#...#|.....
+.....|#...#
+#...#|.....
+.#.#.|#.###
+.....|.....
+.....|.....
+
+Because this is a vertical line, fold [1m[97mleft[0m:
+
+#####
+#...#
+#...#
+#...#
+#####
+.....
+.....
+
+The instructions made a square!
+
+The transparent paper is pretty big, so for now, focus on just completing the first fold. After the
+first fold in the example above, [1m[97m17[0m dots are visible - dots that end up overlapping after the fold
+is completed count as a single dot.
+
+[1m[97mHow many dots are visible after completing just the first fold instruction on your transparent
+paper?[0m
+
+
diff --git a/src/13/part2 b/src/13/part2
@@ -0,0 +1,8 @@
+--- Part Two ---
+
+Finish folding the transparent paper according to the instructions. The manual says the code is
+always [1m[97meight capital letters[0m.
+
+[1m[97mWhat code do you use to activate the infrared thermal imaging camera system?[0m
+
+
diff --git a/src/13/src/main.rs b/src/13/src/main.rs
@@ -0,0 +1,108 @@
+use std::collections::HashMap;
+use aoc::{debug, debugln};
+
+#[derive(PartialEq,Eq,Hash,Clone)]
+struct Pos {
+ x: i32,
+ y: i32
+}
+
+struct Fold {
+ c: char,
+ v: i32
+}
+
+fn parse_input(input: &String) -> (Vec<Pos>, Vec<Fold>) {
+ let (pos_lines, rest) = input.split_once("\n\n").unwrap();
+ let positions = pos_lines.lines().map(|l| Pos {
+ x: l.split(',').nth(0).unwrap().parse().unwrap(),
+ y: l.split(',').nth(1).unwrap().parse().unwrap()
+ }).collect();
+
+ let fold_lines = rest.split_once("\n\n").unwrap().0.lines();
+ let folds = fold_lines.map(|l| Fold {
+ c: l.split_once("along ").unwrap().1.chars().next().unwrap(),
+ v: l.split_once("=").unwrap().1.parse().unwrap()
+ }).collect();
+
+ return (positions, folds);
+}
+
+fn do_fold(posmap: &mut HashMap<Pos, bool>, fold: &Fold) {
+ let mut added: Vec<(Pos, Pos)> = Vec::new();
+ for (pos, v) in posmap.iter() {
+ if !v { continue; }
+ let mut npos = pos.clone();
+ if fold.c == 'x' && pos.x > fold.v {
+ npos.x = fold.v + (fold.v - pos.x);
+ added.push((pos.clone(), npos));
+ } else if fold.c == 'y' && pos.y > fold.v {
+ npos.y = fold.v + (fold.v - pos.y);
+ added.push((pos.clone(), npos));
+ }
+ }
+
+ for (old,new) in added {
+ posmap.remove(&old);
+ posmap.remove(&new);
+ posmap.insert(new, true);
+ }
+}
+
+fn print_map(posmap: &HashMap<Pos,bool>) {
+ let maxx = posmap.iter().max_by_key(|p| p.0.x).unwrap().0.x;
+ let maxy = posmap.iter().max_by_key(|p| p.0.y).unwrap().0.y;
+ let minx = posmap.iter().min_by_key(|p| p.0.x).unwrap().0.x;
+ let miny = posmap.iter().min_by_key(|p| p.0.y).unwrap().0.y;
+ for y in miny..maxy+1 {
+ for x in minx..maxx+1 {
+ let pos = Pos { x, y };
+ let val = posmap.get(&pos);
+ let inuse = val.is_some() && val.unwrap().clone();
+ debug!("{}", if inuse { '#' } else { ' ' });
+ }
+ debugln!("");
+ }
+}
+
+fn part1(aoc: &mut aoc::Info) {
+ let (pos, folds) = parse_input(&aoc.input);
+
+ let mut posmap: HashMap<Pos, bool> = HashMap::new();
+ for p in pos { posmap.insert(p, true); }
+
+ print_map(&posmap);
+
+ do_fold(&mut posmap, &folds[0]);
+
+ print_map(&posmap);
+
+ let count = posmap.iter().filter(|x| x.1.clone()).count();
+
+ aoc.answer = Some(format!("{}", count));
+ aoc.solution = Some("610");
+}
+
+fn part2(aoc: &mut aoc::Info) {
+ let (pos, folds) = parse_input(&aoc.input);
+
+ let mut posmap: HashMap<Pos, bool> = HashMap::new();
+ for p in pos { posmap.insert(p, true); }
+
+ print_map(&posmap);
+
+ for fold in folds {
+ do_fold(&mut posmap, &fold);
+ }
+
+ print_map(&posmap);
+
+ /* read from output */
+ aoc.answer = Some(format!("PZFJHRFZ"));
+ aoc.solution = Some("PZFJHRFZ");
+}
+
+fn main() {
+ aoc::run(part1, part2);
+}
+
diff --git a/src/13/test1 b/src/13/test1
@@ -0,0 +1,22 @@
+6,10
+0,14
+9,10
+0,3
+10,4
+4,11
+6,0
+6,12
+4,1
+0,13
+10,12
+3,4
+3,0
+8,4
+1,10
+2,14
+8,10
+9,0
+
+fold along y=7
+fold along x=5
+