aboutsummaryrefslogtreecommitdiffstats
path: root/src/15/solve.py
blob: cc16c9d809374330cc013ac219254bb0ab2895f5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import sys
sys.path.append("../common")
import aoc

data = aoc.data.split("\n")
actors = list()

def parse_entity(x, y):
    global actors
    c = data[y][x]
    if c == "#":
        return 1
    else:
        if c == "G":
            actors.append([x, y, 200, 1, len(actors), 3])
        elif c == "E":
            actors.append([x, y, 200, 0, len(actors), 3])
        return 0

ylen = len(data)
xlen = len(data[0])

adjacent = [[0, -1], [-1, 0], [1, 0], [0, 1]] # first in reading order
vmap = list()

def set_game():
    global vmap, actors
    actors = list()
    vmap = [[parse_entity(x, y) for x in range(xlen)] for y in range(ylen)]


def inmap(cmap, cx, cy):
    for i in range(len(cmap)):
        ent = cmap[i]
        if ent[0] == cx and ent[1] == cy:
            return i
    return None

def iswall(x,y):
    return vmap[y][x] != 0

def isblocked(x, y):
    return (vmap[y][x] != 0 or inmap(actors, x, y) != None)

def freeAdjacent(x, y):
    poslist = list()
    for dir in adjacent:
        nx = x + dir[0]
        ny = y + dir[1]
        if not isblocked(nx, ny):
            poslist.append((nx,ny))
    return poslist

def flatten(l):
    flat = list()
    for ll in l:
        flat += ll
    return flat

def drawMap():
    global actors

    for y in range(ylen):
        for x in range(xlen):
            ind = inmap(actors, x, y)
            aoc.debug(("G" if actors[ind][3] == 1 else "E") \
                if ind != None else ("." if vmap[y][x] == 0 else "#"), end="")
        aoc.debug()

def getSteps(cmap, a1):
    # adjacent squares
    npos = [[a1[0] + dir[0], a1[1] + dir[1]] for dir in adjacent]

    # pos of enemy and distance
    steps = [[np[0], np[1], cmap[np[0], np[1]]] for np in npos if (np[0], np[1]) in cmap]

    return steps

def closestStep(a1, a2):
    countmap = dict()
    next = dict()
    next[(a2[0], a2[1])] = 0
    counter = 0
    steps = list()
    while len(next) > 0 and len(steps) == 0: # first steps available will be shortest
        countmap = {**countmap, **next} # merge dictionaries
        counter += 1
        temp = dict()
        for n in next:
            for dir in adjacent:
                nx = n[0]+dir[0]
                ny = n[1]+dir[1]
                if not isblocked(nx, ny) and (nx, ny) not in countmap and (nx, ny) not in temp:
                    temp[(nx,ny)] = counter
        next = temp
        steps = getSteps(countmap, a1)

    # if reachable
    if len(steps) != 0:
        return sorted(steps, key = lambda x : (x[1], x[0]))[0]
    else:
        return [None]

def move(a):
    global actors

    # best steps from enemies
    steps = [[na[0], na[1]] + closestStep(a, na) for na in actors if na[3] != a[3]]

    # only where step is possible
    steps = [s for s in steps if s[2] != None]

    # skip when none possible
    if len(steps) == 0:
        return

    # best move
    bestmove = sorted(steps, key = lambda x : (x[4], x[1], x[0]))[0]
    a[0] = bestmove[2]
    a[1] = bestmove[3]

def getInrange(a):
    global actors

    inrange = list()
    for dir in adjacent:
        nx = a[0] + dir[0]
        ny = a[1] + dir[1]
        ind = inmap(actors, nx, ny)
        if ind != None and actors[ind][3] != a[3]:
            inrange.append(ind)
    return inrange

def next_tick(tick):
    global actors

    actors = sorted(actors, key=lambda x: (x[1], x[0]), reverse=True)
    i = len(actors)-1

    while i >= 0:
        a = actors[i]
        inrange = getInrange(a) # get enemies in range
        if len(inrange) == 0:
            move(a)
            inrange = getInrange(a)

        if len(inrange) != 0:
            inrange = [actors[ai] + [ai] for ai in inrange]

            # lowest health in reading order
            cai = sorted(inrange, key = lambda x : (x[2], x[1], x[0]))[0][-1]

            # attack player
            actors[cai][2] -= a[5] # attack
            if actors[cai][2] <= 0:
                actors.pop(cai) # dead
                aoc.debug("death -",cai)
                if min_alive() == 0 and i != 0: # incomplete round
                    return False
                if cai < i: i -= 1

        if aoc.debug_lvl and False:
            aoc.debug()
            aoc.debug("small step -",a[4])
            drawMap()
            status_report()
        i -= 1

    if aoc.debug_lvl:
        aoc.debug()
        aoc.debug("tick:", tick)
        drawMap()
        status_report()
    else:
        aoc.debug(tick)

    return True

def min_alive():
    alive = [0,0]
    for a in actors:
        alive[1 * (a[3] == 0)] += 1
    return min(alive)

def sum_hp():
    return sum(a[2] for a in actors)

def status_report():
    global actors

    sactors = sorted(actors, key = lambda x:x[4])
    for a in sactors:
        aoc.debug("HP:", a[2])
    aoc.debug()

def elves_alive():
    return len([a for a in actors if a[3] == 0])

def start_battle(eap):
    global actors

    set_game()
    for a in actors:
        if a[3] == 0:
            a[5] = eap

    elfcount = elves_alive()

    ticks = 0
    while min_alive() > 0:
        if next_tick(ticks):
            ticks += 1
    status_report()

    return ((sum_hp() * ticks), (elfcount - elves_alive()))

def solve1(args):
    res = start_battle(3)
    return res[0]

def solve2(args):
    eap = 4
    res = start_battle(eap)
    while res[1] != 0:
        eap += 1
        res = start_battle(eap)
    return res[0]

aoc.run(solve1, solve2, sols=[229798, 52972])