aboutsummaryrefslogtreecommitdiffstats
path: root/src/17/part2
blob: a824996cd923784450f19e182ba9d98afc02b702 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
--- Part Two ---

For some reason, your simulated results don't match what the experimental energy source engineers
expected. Apparently, the pocket dimension actually has four spatial dimensions, not
three.

The pocket dimension contains an infinite 4-dimensional grid. At every integer 4-dimensional
coordinate (x,y,z,w), there exists a single cube (really, a hypercube) which is still
either active or inactive.

Each cube only ever considers its neighbors: any of the 80 other cubes where any of
their coordinates differ by at most 1. For example, given the cube at x=1,y=2,z=3,w=4, its neighbors
include the cube at x=2,y=2,z=3,w=3, the cube at x=0,y=2,z=3,w=4, and so on.

The initial state of the pocket dimension still consists of a small flat region of cubes.
Furthermore, the same rules for cycle updating still apply: during each cycle, consider the
number of active neighbors of each cube.

For example, consider the same initial state as in the example above. Even though the pocket
dimension is 4-dimensional, this initial state represents a small 2-dimensional slice of it. (In
particular, this initial state defines a 3x3x1x1 region of the 4-dimensional space.)

Simulating a few cycles from this initial state produces the following configurations, where the
result of each cycle is shown layer-by-layer at each given z and w coordinate:

Before any cycles:

z=0, w=0
.#.
..#
###


After 1 cycle:

z=-1, w=-1
#..
..#
.#.

z=0, w=-1
#..
..#
.#.

z=1, w=-1
#..
..#
.#.

z=-1, w=0
#..
..#
.#.

z=0, w=0
#.#
.##
.#.

z=1, w=0
#..
..#
.#.

z=-1, w=1
#..
..#
.#.

z=0, w=1
#..
..#
.#.

z=1, w=1
#..
..#
.#.


After 2 cycles:

z=-2, w=-2
.....
.....
..#..
.....
.....

z=-1, w=-2
.....
.....
.....
.....
.....

z=0, w=-2
###..
##.##
#...#
.#..#
.###.

z=1, w=-2
.....
.....
.....
.....
.....

z=2, w=-2
.....
.....
..#..
.....
.....

z=-2, w=-1
.....
.....
.....
.....
.....

z=-1, w=-1
.....
.....
.....
.....
.....

z=0, w=-1
.....
.....
.....
.....
.....

z=1, w=-1
.....
.....
.....
.....
.....

z=2, w=-1
.....
.....
.....
.....
.....

z=-2, w=0
###..
##.##
#...#
.#..#
.###.

z=-1, w=0
.....
.....
.....
.....
.....

z=0, w=0
.....
.....
.....
.....
.....

z=1, w=0
.....
.....
.....
.....
.....

z=2, w=0
###..
##.##
#...#
.#..#
.###.

z=-2, w=1
.....
.....
.....
.....
.....

z=-1, w=1
.....
.....
.....
.....
.....

z=0, w=1
.....
.....
.....
.....
.....

z=1, w=1
.....
.....
.....
.....
.....

z=2, w=1
.....
.....
.....
.....
.....

z=-2, w=2
.....
.....
..#..
.....
.....

z=-1, w=2
.....
.....
.....
.....
.....

z=0, w=2
###..
##.##
#...#
.#..#
.###.

z=1, w=2
.....
.....
.....
.....
.....

z=2, w=2
.....
.....
..#..
.....
.....

After the full six-cycle boot process completes, 848 cubes are left in the
active state.

Starting with your given initial configuration, simulate six cycles in a 4-dimensional space.
How many cubes are left in the active state after the sixth cycle?