1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
--- Part Two ---
Now that you know how to find low-risk paths in the cave, you can try to find your way out.
The entire cave is actually [1m[97mfive times larger in both dimensions[0m than you thought; the area you
originally scanned is just one tile in a 5x5 tile area that forms the full map. Your original map
tile repeats to the right and downward; each time the tile repeats to the right or downward, all of
its risk levels [1m[97mare 1 higher[0m than the tile immediately up or left of it. However, risk levels above
9 wrap back around to 1. So, if your original map had some position with a risk level of 8, then
that same position on each of the 25 total tiles would be as follows:
8 9 1 2 3
9 1 2 3 4
1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
Each single digit above corresponds to the example position with a value of 8 on the top-left tile.
Because the full map is actually five times larger in both dimensions, that position appears a total
of 25 times, once in each duplicated tile, with the values shown above.
Here is the full five-times-as-large version of the first example above, with the original map in
the top left corner highlighted:
[1m[97m1163751742[0m2274862853338597396444961841755517295286
[1m[97m1381373672[0m2492484783351359589446246169155735727126
[1m[97m2136511328[0m3247622439435873354154698446526571955763
[1m[97m3694931569[0m4715142671582625378269373648937148475914
[1m[97m7463417111[0m8574528222968563933317967414442817852555
[1m[97m1319128137[0m2421239248353234135946434524615754563572
[1m[97m1359912421[0m2461123532357223464346833457545794456865
[1m[97m3125421639[0m4236532741534764385264587549637569865174
[1m[97m1293138521[0m2314249632342535174345364628545647573965
[1m[97m2311944581[0m3422155692453326671356443778246755488935
22748628533385973964449618417555172952866628316397
24924847833513595894462461691557357271266846838237
32476224394358733541546984465265719557637682166874
47151426715826253782693736489371484759148259586125
85745282229685639333179674144428178525553928963666
24212392483532341359464345246157545635726865674683
24611235323572234643468334575457944568656815567976
42365327415347643852645875496375698651748671976285
23142496323425351743453646285456475739656758684176
34221556924533266713564437782467554889357866599146
33859739644496184175551729528666283163977739427418
35135958944624616915573572712668468382377957949348
43587335415469844652657195576376821668748793277985
58262537826937364893714847591482595861259361697236
96856393331796741444281785255539289636664139174777
35323413594643452461575456357268656746837976785794
35722346434683345754579445686568155679767926678187
53476438526458754963756986517486719762859782187396
34253517434536462854564757396567586841767869795287
45332667135644377824675548893578665991468977611257
44961841755517295286662831639777394274188841538529
46246169155735727126684683823779579493488168151459
54698446526571955763768216687487932779859814388196
69373648937148475914825958612593616972361472718347
17967414442817852555392896366641391747775241285888
46434524615754563572686567468379767857948187896815
46833457545794456865681556797679266781878137789298
64587549637569865174867197628597821873961893298417
45364628545647573965675868417678697952878971816398
56443778246755488935786659914689776112579188722368
55172952866628316397773942741888415385299952649631
57357271266846838237795794934881681514599279262561
65719557637682166874879327798598143881961925499217
71484759148259586125936169723614727183472583829458
28178525553928963666413917477752412858886352396999
57545635726865674683797678579481878968159298917926
57944568656815567976792667818781377892989248891319
75698651748671976285978218739618932984172914319528
56475739656758684176786979528789718163989182927419
67554889357866599146897761125791887223681299833479
Equipped with the full map, you can now find a path from the top left corner to the bottom right
corner with the lowest total risk:
[1m[97m1[0m1637517422274862853338597396444961841755517295286
[1m[97m1[0m3813736722492484783351359589446246169155735727126
[1m[97m2[0m1365113283247622439435873354154698446526571955763
[1m[97m3[0m6949315694715142671582625378269373648937148475914
[1m[97m7[0m4634171118574528222968563933317967414442817852555
[1m[97m1[0m3191281372421239248353234135946434524615754563572
[1m[97m1[0m3599124212461123532357223464346833457545794456865
[1m[97m3[0m1254216394236532741534764385264587549637569865174
[1m[97m1[0m2931385212314249632342535174345364628545647573965
[1m[97m2[0m3119445813422155692453326671356443778246755488935
[1m[97m2[0m2748628533385973964449618417555172952866628316397
[1m[97m2[0m4924847833513595894462461691557357271266846838237
[1m[97m324[0m76224394358733541546984465265719557637682166874
47[1m[97m15[0m1426715826253782693736489371484759148259586125
857[1m[97m4[0m5282229685639333179674144428178525553928963666
242[1m[97m1[0m2392483532341359464345246157545635726865674683
246[1m[97m1123532[0m3572234643468334575457944568656815567976
423653274[1m[97m1[0m5347643852645875496375698651748671976285
231424963[1m[97m2342[0m5351743453646285456475739656758684176
342215569245[1m[97m332[0m66713564437782467554889357866599146
33859739644496[1m[97m1[0m84175551729528666283163977739427418
35135958944624[1m[97m61[0m6915573572712668468382377957949348
435873354154698[1m[97m44[0m652657195576376821668748793277985
5826253782693736[1m[97m4[0m893714847591482595861259361697236
9685639333179674[1m[97m1[0m444281785255539289636664139174777
3532341359464345[1m[97m2461[0m575456357268656746837976785794
3572234643468334575[1m[97m4[0m579445686568155679767926678187
5347643852645875496[1m[97m3[0m756986517486719762859782187396
3425351743453646285[1m[97m4564[0m757396567586841767869795287
4533266713564437782467[1m[97m554[0m8893578665991468977611257
449618417555172952866628[1m[97m3163[0m9777394274188841538529
462461691557357271266846838[1m[97m2[0m3779579493488168151459
546984465265719557637682166[1m[97m8[0m7487932779859814388196
693736489371484759148259586[1m[97m125[0m93616972361472718347
17967414442817852555392896366[1m[97m6413[0m91747775241285888
46434524615754563572686567468379[1m[97m7[0m67857948187896815
46833457545794456865681556797679[1m[97m26[0m6781878137789298
645875496375698651748671976285978[1m[97m21[0m873961893298417
4536462854564757396567586841767869[1m[97m7[0m952878971816398
5644377824675548893578665991468977[1m[97m6112[0m579188722368
5517295286662831639777394274188841538[1m[97m5[0m299952649631
5735727126684683823779579493488168151[1m[97m4[0m599279262561
6571955763768216687487932779859814388[1m[97m1[0m961925499217
7148475914825958612593616972361472718[1m[97m34725[0m83829458
28178525553928963666413917477752412858886[1m[97m3[0m52396999
57545635726865674683797678579481878968159[1m[97m2[0m98917926
57944568656815567976792667818781377892989[1m[97m24[0m8891319
756986517486719762859782187396189329841729[1m[97m1431[0m9528
564757396567586841767869795287897181639891829[1m[97m2[0m7419
675548893578665991468977611257918872236812998[1m[97m33479[0m
The total risk of this path is [1m[97m315[0m (the starting position is still never entered, so its risk is not
counted).
Using the full map, [1m[97mwhat is the lowest total risk of any path from the top left to the bottom
right?[0m
|