summaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel
Commit message (Collapse)AuthorAgeFilesLines
* Revert unnecessary diffs and small tdp_mmu fixLouis Burda2022-12-111-7/+5
|
* Dont unmap vmsa from direct mapLouis Burda2022-12-101-5/+5
|
* stashLouis Burda2022-12-061-0/+2
|
* *debug: warn and retry failed rmpupdatesMichael Roth2022-07-131-0/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In some cases on B0 hardware exhibits something like the following behavior (where M < 512): Guest A | Guest B |-------------------------------|----------------------------------| | | rc = rmpupdate pfn=N*512,4K,priv | rmpupdate pfn=N*512+M,4K,priv | | rc = FAIL_OVERLAP | rc = SUCCESS The FAIL_OVERLAP might possible be the result of hardware temporarily treating Guest B's rmpupdate for pfn=N*512 as a 2M update, causing the subsequent update from Guest A for pfn=N*512+M to report FAIL_OVERLAP at that particular instance. Retrying the update for N*512+M immediately afterward seems to resolve the FAIL_OVERLAP issue reliably however. A similar failure has also been observed when transitioning pages back to shared during VM destroy. In this case repeating the rmpupdate does not always seem to resolve the failure immediately. Both situations are much more likely to occur if THP is disabled, or if it is enabled/disabled while guests are actively being started/stopped. Include some debug/error information to get a better idea of the behavior on different hardware, and add the rmpupdate retry as a workaround for Milan B0 testing. Signed-off-by: Michael Roth <michael.roth@amd.com>
* x86/fault: Add support to dump RMP entry on faultBrijesh Singh2022-07-131-0/+43
| | | | | | | | | When SEV-SNP is enabled globally, a write from the host goes through the RMP check. If the hardware encounters the check failure, then it raises the #PF (with RMP set). Dump the RMP entry at the faulting pfn to help the debug. Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
* x86/sev: Invalid pages from direct map when adding it to RMP tableBrijesh Singh2022-07-131-1/+60
| | | | | | | | | | | | | | | | The integrity guarantee of SEV-SNP is enforced through the RMP table. The RMP is used with standard x86 and IOMMU page tables to enforce memory restrictions and page access rights. The RMP check is enforced as soon as SEV-SNP is enabled globally in the system. When hardware encounters an RMP checks failure, it raises a page-fault exception. The rmp_make_private() and rmp_make_shared() helpers are used to add or remove the pages from the RMP table. Improve the rmp_make_private() to invalid state so that pages cannot be used in the direct-map after its added in the RMP table, and restore to its default valid permission after the pages are removed from the RMP table. Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
* x86/sev: Add helper functions for RMPUPDATE and PSMASH instructionBrijesh Singh2022-07-131-0/+72
| | | | | | | | | | | | The RMPUPDATE instruction writes a new RMP entry in the RMP Table. The hypervisor will use the instruction to add pages to the RMP table. See APM3 for details on the instruction operations. The PSMASH instruction expands a 2MB RMP entry into a corresponding set of contiguous 4KB-Page RMP entries. The hypervisor will use this instruction to adjust the RMP entry without invalidating the previous RMP entry. Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
* x86/sev: Add RMP entry lookup helpersBrijesh Singh2022-07-131-0/+43
| | | | | | | | The snp_lookup_page_in_rmptable() can be used by the host to read the RMP entry for a given page. The RMP entry format is documented in AMD PPR, see https://bugzilla.kernel.org/attachment.cgi?id=296015. Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
* x86/sev: set SYSCFG.MFMDBrijesh Singh2022-07-131-0/+24
| | | | | | | | | SEV-SNP FW >= 1.51 requires that SYSCFG.MFMD must be set. Subsequent CCP patches while require 1.51 as the minimum SEV-SNP firmware version. Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
* x86/sev: Add the host SEV-SNP initialization supportBrijesh Singh2022-07-131-0/+156
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | The memory integrity guarantees of SEV-SNP are enforced through a new structure called the Reverse Map Table (RMP). The RMP is a single data structure shared across the system that contains one entry for every 4K page of DRAM that may be used by SEV-SNP VMs. The goal of RMP is to track the owner of each page of memory. Pages of memory can be owned by the hypervisor, owned by a specific VM or owned by the AMD-SP. See APM2 section 15.36.3 for more detail on RMP. The RMP table is used to enforce access control to memory. The table itself is not directly writable by the software. New CPU instructions (RMPUPDATE, PVALIDATE, RMPADJUST) are used to manipulate the RMP entries. Based on the platform configuration, the BIOS reserves the memory used for the RMP table. The start and end address of the RMP table must be queried by reading the RMP_BASE and RMP_END MSRs. If the RMP_BASE and RMP_END are not set then disable the SEV-SNP feature. The SEV-SNP feature is enabled only after the RMP table is successfully initialized. RMP table entry format is non-architectural and it can vary by processor and is defined by the PPR. Restrict SNP support on the known CPU model and family for which the RMP table entry format is currently defined for. Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Signed-off-b: Ashish Kalra <ashish.kalra@amd.com>
* x86/cpufeatures: Add SEV-SNP CPU featureBrijesh Singh2022-07-131-1/+2
| | | | | | | | | Add CPU feature detection for Secure Encrypted Virtualization with Secure Nested Paging. This feature adds a strong memory integrity protection to help prevent malicious hypervisor-based attacks like data replay, memory re-mapping, and more. Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
* Merge tag 'x86_urgent_for_v5.19_rc6' of ↵Linus Torvalds2022-07-102-2/+4
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Borislav Petkov: - Prepare for and clear .brk early in order to address XenPV guests failures where the hypervisor verifies page tables and uninitialized data in that range leads to bogus failures in those checks - Add any potential setup_data entries supplied at boot to the identity pagetable mappings to prevent kexec kernel boot failures. Usually, this is not a problem for the normal kernel as those mappings are part of the initially mapped 2M pages but if kexec gets to allocate the second kernel somewhere else, those setup_data entries need to be mapped there too. - Fix objtool not to discard text references from the __tracepoints section so that ENDBR validation still works - Correct the setup_data types limit as it is user-visible, before 5.19 releases * tag 'x86_urgent_for_v5.19_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/boot: Fix the setup data types max limit x86/ibt, objtool: Don't discard text references from tracepoint section x86/compressed/64: Add identity mappings for setup_data entries x86: Fix .brk attribute in linker script x86: Clear .brk area at early boot x86/xen: Use clear_bss() for Xen PV guests
| * x86: Fix .brk attribute in linker scriptJuergen Gross2022-07-011-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit in Fixes added the "NOLOAD" attribute to the .brk section as a "failsafe" measure. Unfortunately, this leads to the linker no longer covering the .brk section in a program header, resulting in the kernel loader not knowing that the memory for the .brk section must be reserved. This has led to crashes when loading the kernel as PV dom0 under Xen, but other scenarios could be hit by the same problem (e.g. in case an uncompressed kernel is used and the initrd is placed directly behind it). So drop the "NOLOAD" attribute. This has been verified to correctly cover the .brk section by a program header of the resulting ELF file. Fixes: e32683c6f7d2 ("x86/mm: Fix RESERVE_BRK() for older binutils") Signed-off-by: Juergen Gross <jgross@suse.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org> Link: https://lore.kernel.org/r/20220630071441.28576-4-jgross@suse.com
| * x86: Clear .brk area at early bootJuergen Gross2022-07-011-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The .brk section has the same properties as .bss: it is an alloc-only section and should be cleared before being used. Not doing so is especially a problem for Xen PV guests, as the hypervisor will validate page tables (check for writable page tables and hypervisor private bits) before accepting them to be used. Make sure .brk is initially zero by letting clear_bss() clear the brk area, too. Signed-off-by: Juergen Gross <jgross@suse.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/20220630071441.28576-3-jgross@suse.com
| * x86/xen: Use clear_bss() for Xen PV guestsJuergen Gross2022-07-011-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Instead of clearing the bss area in assembly code, use the clear_bss() function. This requires to pass the start_info address as parameter to xen_start_kernel() in order to avoid the xen_start_info being zeroed again. Signed-off-by: Juergen Gross <jgross@suse.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Jan Beulich <jbeulich@suse.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Link: https://lore.kernel.org/r/20220630071441.28576-2-jgross@suse.com
* | ACPI: CPPC: Don't require _OSC if X86_FEATURE_CPPC is supportedMario Limonciello2022-07-051-0/+10
|/ | | | | | | | | | | | | | | | | | | | | | commit 72f2ecb7ece7 ("ACPI: bus: Set CPPC _OSC bits for all and when CPPC_LIB is supported") added support for claiming to support CPPC in _OSC on non-Intel platforms. This unfortunately caused a regression on a vartiety of AMD platforms in the field because a number of AMD platforms don't set the `_OSC` bit 5 or 6 to indicate CPPC or CPPC v2 support. As these AMD platforms already claim CPPC support via a dedicated MSR from `X86_FEATURE_CPPC`, use this enable this feature rather than requiring the `_OSC` on platforms with a dedicated MSR. If there is additional breakage on the shared memory designs also missing this _OSC, additional follow up changes may be needed. Fixes: 72f2ecb7ece7 ("Set CPPC _OSC bits for all and when CPPC_LIB is supported") Reported-by: Perry Yuan <perry.yuan@amd.com> Signed-off-by: Mario Limonciello <mario.limonciello@amd.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
* Merge tag 'x86-urgent-2022-06-19' of ↵Linus Torvalds2022-06-192-7/+2
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Thomas Gleixner: - Make RESERVE_BRK() work again with older binutils. The recent 'simplification' broke that. - Make early #VE handling increment RIP when successful. - Make the #VE code consistent vs. the RIP adjustments and add comments. - Handle load_unaligned_zeropad() across page boundaries correctly in #VE when the second page is shared. * tag 'x86-urgent-2022-06-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/tdx: Handle load_unaligned_zeropad() page-cross to a shared page x86/tdx: Clarify RIP adjustments in #VE handler x86/tdx: Fix early #VE handling x86/mm: Fix RESERVE_BRK() for older binutils
| * x86/mm: Fix RESERVE_BRK() for older binutilsJosh Poimboeuf2022-06-132-7/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | With binutils 2.26, RESERVE_BRK() causes a build failure: /tmp/ccnGOKZ5.s: Assembler messages: /tmp/ccnGOKZ5.s:98: Error: missing ')' /tmp/ccnGOKZ5.s:98: Error: missing ')' /tmp/ccnGOKZ5.s:98: Error: missing ')' /tmp/ccnGOKZ5.s:98: Error: junk at end of line, first unrecognized character is `U' The problem is this line: RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE) Specifically, the INIT_PGT_BUF_SIZE macro which (via PAGE_SIZE's use _AC()) has a "1UL", which makes older versions of the assembler unhappy. Unfortunately the _AC() macro doesn't work for inline asm. Inline asm was only needed here to convince the toolchain to add the STT_NOBITS flag. However, if a C variable is placed in a section whose name is prefixed with ".bss", GCC and Clang automatically set STT_NOBITS. In fact, ".bss..page_aligned" already relies on this trick. So fix the build failure (and simplify the macro) by allocating the variable in C. Also, add NOLOAD to the ".brk" output section clause in the linker script. This is a failsafe in case the ".bss" prefix magic trick ever stops working somehow. If there's a section type mismatch, the GNU linker will force the ".brk" output section to be STT_NOBITS. The LLVM linker will fail with a "section type mismatch" error. Note this also changes the name of the variable from .brk.##name to __brk_##name. The variable names aren't actually used anywhere, so it's harmless. Fixes: a1e2c031ec39 ("x86/mm: Simplify RESERVE_BRK()") Reported-by: Joe Damato <jdamato@fastly.com> Reported-by: Byungchul Park <byungchul.park@lge.com> Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Joe Damato <jdamato@fastly.com> Link: https://lore.kernel.org/r/22d07a44c80d8e8e1e82b9a806ddc8c6bbb2606e.1654759036.git.jpoimboe@kernel.org
* | Merge tag 'objtool-urgent-2022-06-19' of ↵Linus Torvalds2022-06-192-7/+8
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull build tooling updates from Thomas Gleixner: - Remove obsolete CONFIG_X86_SMAP reference from objtool - Fix overlapping text section failures in faddr2line for real - Remove OBJECT_FILES_NON_STANDARD usage from x86 ftrace and replace it with finegrained annotations so objtool can validate that code correctly. * tag 'objtool-urgent-2022-06-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/ftrace: Remove OBJECT_FILES_NON_STANDARD usage faddr2line: Fix overlapping text section failures, the sequel objtool: Fix obsolete reference to CONFIG_X86_SMAP
| * | x86/ftrace: Remove OBJECT_FILES_NON_STANDARD usageJosh Poimboeuf2022-06-062-7/+8
| |/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The file-wide OBJECT_FILES_NON_STANDARD annotation is used with CONFIG_FRAME_POINTER to tell objtool to skip the entire file when frame pointers are enabled. However that annotation is now deprecated because it doesn't work with IBT, where objtool runs on vmlinux.o instead of individual translation units. Instead, use more fine-grained function-specific annotations: - The 'save_mcount_regs' macro does funny things with the frame pointer. Use STACK_FRAME_NON_STANDARD_FP to tell objtool to ignore the functions using it. - The return_to_handler() "function" isn't actually a callable function. Instead of being called, it's returned to. The real return address isn't on the stack, so unwinding is already doomed no matter which unwinder is used. So just remove the STT_FUNC annotation, telling objtool to ignore it. That also removes the implicit ANNOTATE_NOENDBR, which now needs to be made explicit. Fixes the following warning: vmlinux.o: warning: objtool: __fentry__+0x16: return with modified stack frame Fixes: ed53a0d97192 ("x86/alternative: Use .ibt_endbr_seal to seal indirect calls") Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> Link: https://lore.kernel.org/r/b7a7a42fe306aca37826043dac89e113a1acdbac.1654268610.git.jpoimboe@kernel.org
* | Merge tag 'pci-v5.19-fixes-2' of ↵Linus Torvalds2022-06-171-5/+9
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci Pull pci fix from Bjorn Helgaas: "Revert clipping of PCI host bridge windows to avoid E820 regions, which broke several machines by forcing unnecessary BAR reassignments (Hans de Goede)" * tag 'pci-v5.19-fixes-2' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci: x86/PCI: Revert "x86/PCI: Clip only host bridge windows for E820 regions"
| * | x86/PCI: Revert "x86/PCI: Clip only host bridge windows for E820 regions"Hans de Goede2022-06-171-5/+9
| |/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This reverts commit 4c5e242d3e93. Prior to 4c5e242d3e93 ("x86/PCI: Clip only host bridge windows for E820 regions"), E820 regions did not affect PCI host bridge windows. We only looked at E820 regions and avoided them when allocating new MMIO space. If firmware PCI bridge window and BAR assignments used E820 regions, we left them alone. After 4c5e242d3e93, we removed E820 regions from the PCI host bridge windows before looking at BARs, so firmware assignments in E820 regions looked like errors, and we moved things around to fit in the space left (if any) after removing the E820 regions. This unnecessary BAR reassignment broke several machines. Guilherme reported that Steam Deck fails to boot after 4c5e242d3e93. We clipped the window that contained most 32-bit BARs: BIOS-e820: [mem 0x00000000a0000000-0x00000000a00fffff] reserved acpi PNP0A08:00: clipped [mem 0x80000000-0xf7ffffff window] to [mem 0xa0100000-0xf7ffffff window] for e820 entry [mem 0xa0000000-0xa00fffff] which forced us to reassign all those BARs, for example, this NVMe BAR: pci 0000:00:01.2: PCI bridge to [bus 01] pci 0000:00:01.2: bridge window [mem 0x80600000-0x806fffff] pci 0000:01:00.0: BAR 0: [mem 0x80600000-0x80603fff 64bit] pci 0000:00:01.2: can't claim window [mem 0x80600000-0x806fffff]: no compatible bridge window pci 0000:01:00.0: can't claim BAR 0 [mem 0x80600000-0x80603fff 64bit]: no compatible bridge window pci 0000:00:01.2: bridge window: assigned [mem 0xa0100000-0xa01fffff] pci 0000:01:00.0: BAR 0: assigned [mem 0xa0100000-0xa0103fff 64bit] All the reassignments were successful, so the devices should have been functional at the new addresses, but some were not. Andy reported a similar failure on an Intel MID platform. Benjamin reported a similar failure on a VMWare Fusion VM. Note: this is not a clean revert; this revert keeps the later change to make the clipping dependent on a new pci_use_e820 bool, moving the checking of this bool to arch_remove_reservations(). [bhelgaas: commit log, add more reporters and testers] BugLink: https://bugzilla.kernel.org/show_bug.cgi?id=216109 Reported-by: Guilherme G. Piccoli <gpiccoli@igalia.com> Reported-by: Andy Shevchenko <andy.shevchenko@gmail.com> Reported-by: Benjamin Coddington <bcodding@redhat.com> Reported-by: Jongman Heo <jongman.heo@gmail.com> Fixes: 4c5e242d3e93 ("x86/PCI: Clip only host bridge windows for E820 regions") Link: https://lore.kernel.org/r/20220612144325.85366-1-hdegoede@redhat.com Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> Tested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Tested-by: Benjamin Coddington <bcodding@redhat.com> Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
* | Merge tag 'x86-bugs-2022-06-01' of ↵Linus Torvalds2022-06-142-39/+248
|\ \ | |/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 MMIO stale data fixes from Thomas Gleixner: "Yet another hw vulnerability with a software mitigation: Processor MMIO Stale Data. They are a class of MMIO-related weaknesses which can expose stale data by propagating it into core fill buffers. Data which can then be leaked using the usual speculative execution methods. Mitigations include this set along with microcode updates and are similar to MDS and TAA vulnerabilities: VERW now clears those buffers too" * tag 'x86-bugs-2022-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/speculation/mmio: Print SMT warning KVM: x86/speculation: Disable Fill buffer clear within guests x86/speculation/mmio: Reuse SRBDS mitigation for SBDS x86/speculation/srbds: Update SRBDS mitigation selection x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data x86/speculation/mmio: Enable CPU Fill buffer clearing on idle x86/bugs: Group MDS, TAA & Processor MMIO Stale Data mitigations x86/speculation/mmio: Add mitigation for Processor MMIO Stale Data x86/speculation: Add a common function for MD_CLEAR mitigation update x86/speculation/mmio: Enumerate Processor MMIO Stale Data bug Documentation: Add documentation for Processor MMIO Stale Data
| * x86/speculation/mmio: Print SMT warningJosh Poimboeuf2022-06-011-0/+11
| | | | | | | | | | | | | | | | Similar to MDS and TAA, print a warning if SMT is enabled for the MMIO Stale Data vulnerability. Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
| * x86/speculation/mmio: Reuse SRBDS mitigation for SBDSPawan Gupta2022-05-211-7/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The Shared Buffers Data Sampling (SBDS) variant of Processor MMIO Stale Data vulnerabilities may expose RDRAND, RDSEED and SGX EGETKEY data. Mitigation for this is added by a microcode update. As some of the implications of SBDS are similar to SRBDS, SRBDS mitigation infrastructure can be leveraged by SBDS. Set X86_BUG_SRBDS and use SRBDS mitigation. Mitigation is enabled by default; use srbds=off to opt-out. Mitigation status can be checked from below file: /sys/devices/system/cpu/vulnerabilities/srbds Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de>
| * x86/speculation/srbds: Update SRBDS mitigation selectionPawan Gupta2022-05-211-3/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, Linux disables SRBDS mitigation on CPUs not affected by MDS and have the TSX feature disabled. On such CPUs, secrets cannot be extracted from CPU fill buffers using MDS or TAA. Without SRBDS mitigation, Processor MMIO Stale Data vulnerabilities can be used to extract RDRAND, RDSEED, and EGETKEY data. Do not disable SRBDS mitigation by default when CPU is also affected by Processor MMIO Stale Data vulnerabilities. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de>
| * x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale DataPawan Gupta2022-05-211-0/+22
| | | | | | | | | | | | | | | | | | Add the sysfs reporting file for Processor MMIO Stale Data vulnerability. It exposes the vulnerability and mitigation state similar to the existing files for the other hardware vulnerabilities. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de>
| * x86/speculation/mmio: Enable CPU Fill buffer clearing on idlePawan Gupta2022-05-211-2/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | When the CPU is affected by Processor MMIO Stale Data vulnerabilities, Fill Buffer Stale Data Propagator (FBSDP) can propagate stale data out of Fill buffer to uncore buffer when CPU goes idle. Stale data can then be exploited with other variants using MMIO operations. Mitigate it by clearing the Fill buffer before entering idle state. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Co-developed-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Borislav Petkov <bp@suse.de>
| * x86/bugs: Group MDS, TAA & Processor MMIO Stale Data mitigationsPawan Gupta2022-05-211-10/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | MDS, TAA and Processor MMIO Stale Data mitigations rely on clearing CPU buffers. Moreover, status of these mitigations affects each other. During boot, it is important to maintain the order in which these mitigations are selected. This is especially true for md_clear_update_mitigation() that needs to be called after MDS, TAA and Processor MMIO Stale Data mitigation selection is done. Introduce md_clear_select_mitigation(), and select all these mitigations from there. This reflects relationships between these mitigations and ensures proper ordering. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de>
| * x86/speculation/mmio: Add mitigation for Processor MMIO Stale DataPawan Gupta2022-05-211-4/+107
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Processor MMIO Stale Data is a class of vulnerabilities that may expose data after an MMIO operation. For details please refer to Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst. These vulnerabilities are broadly categorized as: Device Register Partial Write (DRPW): Some endpoint MMIO registers incorrectly handle writes that are smaller than the register size. Instead of aborting the write or only copying the correct subset of bytes (for example, 2 bytes for a 2-byte write), more bytes than specified by the write transaction may be written to the register. On some processors, this may expose stale data from the fill buffers of the core that created the write transaction. Shared Buffers Data Sampling (SBDS): After propagators may have moved data around the uncore and copied stale data into client core fill buffers, processors affected by MFBDS can leak data from the fill buffer. Shared Buffers Data Read (SBDR): It is similar to Shared Buffer Data Sampling (SBDS) except that the data is directly read into the architectural software-visible state. An attacker can use these vulnerabilities to extract data from CPU fill buffers using MDS and TAA methods. Mitigate it by clearing the CPU fill buffers using the VERW instruction before returning to a user or a guest. On CPUs not affected by MDS and TAA, user application cannot sample data from CPU fill buffers using MDS or TAA. A guest with MMIO access can still use DRPW or SBDR to extract data architecturally. Mitigate it with VERW instruction to clear fill buffers before VMENTER for MMIO capable guests. Add a kernel parameter mmio_stale_data={off|full|full,nosmt} to control the mitigation. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de>
| * x86/speculation: Add a common function for MD_CLEAR mitigation updatePawan Gupta2022-05-211-26/+33
| | | | | | | | | | | | | | | | | | | | | | | | Processor MMIO Stale Data mitigation uses similar mitigation as MDS and TAA. In preparation for adding its mitigation, add a common function to update all mitigations that depend on MD_CLEAR. [ bp: Add a newline in md_clear_update_mitigation() to separate statements better. ] Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de>
| * x86/speculation/mmio: Enumerate Processor MMIO Stale Data bugPawan Gupta2022-05-211-2/+41
| | | | | | | | | | | | | | | | | | | | | | | | Processor MMIO Stale Data is a class of vulnerabilities that may expose data after an MMIO operation. For more details please refer to Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst Add the Processor MMIO Stale Data bug enumeration. A microcode update adds new bits to the MSR IA32_ARCH_CAPABILITIES, define them. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de>
* | Merge tag 'mm-hotfixes-stable-2022-06-05' of ↵Linus Torvalds2022-06-051-3/+9
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull mm hotfixes from Andrew Morton: "Fixups for various recently-added and longer-term issues and a few minor tweaks: - fixes for material merged during this merge window - cc:stable fixes for more longstanding issues - minor mailmap and MAINTAINERS updates" * tag 'mm-hotfixes-stable-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: mm/oom_kill.c: fix vm_oom_kill_table[] ifdeffery x86/kexec: fix memory leak of elf header buffer mm/memremap: fix missing call to untrack_pfn() in pagemap_range() mm: page_isolation: use compound_nr() correctly in isolate_single_pageblock() mm: hugetlb_vmemmap: fix CONFIG_HUGETLB_PAGE_FREE_VMEMMAP_DEFAULT_ON MAINTAINERS: add maintainer information for z3fold mailmap: update Josh Poimboeuf's email
| * | x86/kexec: fix memory leak of elf header bufferBaoquan He2022-06-011-3/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is reported by kmemleak detector: unreferenced object 0xffffc900002a9000 (size 4096): comm "kexec", pid 14950, jiffies 4295110793 (age 373.951s) hex dump (first 32 bytes): 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 .ELF............ 04 00 3e 00 01 00 00 00 00 00 00 00 00 00 00 00 ..>............. backtrace: [<0000000016a8ef9f>] __vmalloc_node_range+0x101/0x170 [<000000002b66b6c0>] __vmalloc_node+0xb4/0x160 [<00000000ad40107d>] crash_prepare_elf64_headers+0x8e/0xcd0 [<0000000019afff23>] crash_load_segments+0x260/0x470 [<0000000019ebe95c>] bzImage64_load+0x814/0xad0 [<0000000093e16b05>] arch_kexec_kernel_image_load+0x1be/0x2a0 [<000000009ef2fc88>] kimage_file_alloc_init+0x2ec/0x5a0 [<0000000038f5a97a>] __do_sys_kexec_file_load+0x28d/0x530 [<0000000087c19992>] do_syscall_64+0x3b/0x90 [<0000000066e063a4>] entry_SYSCALL_64_after_hwframe+0x44/0xae In crash_prepare_elf64_headers(), a buffer is allocated via vmalloc() to store elf headers. While it's not freed back to system correctly when kdump kernel is reloaded or unloaded. Then memory leak is caused. Fix it by introducing x86 specific function arch_kimage_file_post_load_cleanup(), and freeing the buffer there. And also remove the incorrect elf header buffer freeing code. Before calling arch specific kexec_file loading function, the image instance has been initialized. So 'image->elf_headers' must be NULL. It doesn't make sense to free the elf header buffer in the place. Three different people have reported three bugs about the memory leak on x86_64 inside Redhat. Link: https://lkml.kernel.org/r/20220223113225.63106-2-bhe@redhat.com Signed-off-by: Baoquan He <bhe@redhat.com> Acked-by: Dave Young <dyoung@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | | Merge tag 'x86-urgent-2022-06-05' of ↵Linus Torvalds2022-06-053-6/+115
|\ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 SGX fix from Thomas Gleixner: "A single fix for x86/SGX to prevent that memory which is allocated for an SGX enclave is accounted to the wrong memory control group" * tag 'x86-urgent-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/sgx: Set active memcg prior to shmem allocation
| * | | x86/sgx: Set active memcg prior to shmem allocationKristen Carlson Accardi2022-06-023-6/+115
| |/ / | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When the system runs out of enclave memory, SGX can reclaim EPC pages by swapping to normal RAM. These backing pages are allocated via a per-enclave shared memory area. Since SGX allows unlimited over commit on EPC memory, the reclaimer thread can allocate a large number of backing RAM pages in response to EPC memory pressure. When the shared memory backing RAM allocation occurs during the reclaimer thread context, the shared memory is charged to the root memory control group, and the shmem usage of the enclave is not properly accounted for, making cgroups ineffective at limiting the amount of RAM an enclave can consume. For example, when using a cgroup to launch a set of test enclaves, the kernel does not properly account for 50% - 75% of shmem page allocations on average. In the worst case, when nearly all allocations occur during the reclaimer thread, the kernel accounts less than a percent of the amount of shmem used by the enclave's cgroup to the correct cgroup. SGX stores a list of mm_structs that are associated with an enclave. Pick one of them during reclaim and charge that mm's memcg with the shmem allocation. The one that gets picked is arbitrary, but this list almost always only has one mm. The cases where there is more than one mm with different memcg's are not worth considering. Create a new function - sgx_encl_alloc_backing(). This function is used whenever a new backing storage page needs to be allocated. Previously the same function was used for page allocation as well as retrieving a previously allocated page. Prior to backing page allocation, if there is a mm_struct associated with the enclave that is requesting the allocation, it is set as the active memory control group. [ dhansen: - fix merge conflict with ELDU fixes - check against actual ksgxd_tsk, not ->mm ] Cc: stable@vger.kernel.org Signed-off-by: Kristen Carlson Accardi <kristen@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <roman.gushchin@linux.dev> Link: https://lkml.kernel.org/r/20220520174248.4918-1-kristen@linux.intel.com
* | | Merge tag 'x86-microcode-2022-06-05' of ↵Linus Torvalds2022-06-052-104/+13
|\ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 microcode updates from Thomas Gleixner: - Disable late microcode loading by default. Unless the HW people get their act together and provide a required minimum version in the microcode header for making a halfways informed decision its just lottery and broken. - Warn and taint the kernel when microcode is loaded late - Remove the old unused microcode loader interface - Remove a redundant perf callback from the microcode loader * tag 'x86-microcode-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/microcode: Remove unnecessary perf callback x86/microcode: Taint and warn on late loading x86/microcode: Default-disable late loading x86/microcode: Rip out the OLD_INTERFACE
| * | | x86/microcode: Remove unnecessary perf callbackBorislav Petkov2022-05-311-3/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | c93dc84cbe32 ("perf/x86: Add a microcode revision check for SNB-PEBS") checks whether the microcode revision has fixed PEBS issues. This can happen either: 1. At PEBS init time, where the early microcode has been loaded already 2. During late loading, in the microcode_check() callback. So remove the unnecessary call in the microcode loader init routine. Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20220525161232.14924-5-bp@alien8.de
| * | | x86/microcode: Taint and warn on late loadingBorislav Petkov2022-05-311-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Warn before it is attempted and taint the kernel. Late loading microcode can lead to malfunction of the kernel when the microcode update changes behaviour. There is no way for the kernel to determine whether its safe or not. Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20220525161232.14924-4-bp@alien8.de
| * | | x86/microcode: Default-disable late loadingBorislav Petkov2022-05-312-1/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It is dangerous and it should not be used anyway - there's a nice early loading already. Requested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20220525161232.14924-3-bp@alien8.de
| * | | x86/microcode: Rip out the OLD_INTERFACEBorislav Petkov2022-05-311-100/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Everything should be using the early initrd loading by now. Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20220525161232.14924-2-bp@alien8.de
* | | | Merge tag 'x86-boot-2022-06-05' of ↵Linus Torvalds2022-06-051-3/+3
|\ \ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 boot update from Thomas Gleixner: "Use strlcpy() instead of strscpy() in arch_setup()" * tag 'x86-boot-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/setup: Use strscpy() to replace deprecated strlcpy()
| * | | | x86/setup: Use strscpy() to replace deprecated strlcpy()XueBing Chen2022-05-251-3/+3
| |/ / / | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | strlcpy() is marked deprecated and should not be used, because it doesn't limit the source length. The preferred interface for when strlcpy()'s return value is not checked (truncation) is strscpy(). [ mingo: Tweaked the changelog ] Signed-off-by: XueBing Chen <chenxuebing@jari.cn> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/730f0fef.a33.180fa69880f.Coremail.chenxuebing@jari.cn
* | | | Merge tag 'ptrace_stop-cleanup-for-v5.19' of ↵Linus Torvalds2022-06-031-2/+1
|\ \ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace Pull ptrace_stop cleanups from Eric Biederman: "While looking at the ptrace problems with PREEMPT_RT and the problems Peter Zijlstra was encountering with ptrace in his freezer rewrite I identified some cleanups to ptrace_stop that make sense on their own and move make resolving the other problems much simpler. The biggest issue is the habit of the ptrace code to change task->__state from the tracer to suppress TASK_WAKEKILL from waking up the tracee. No other code in the kernel does that and it is straight forward to update signal_wake_up and friends to make that unnecessary. Peter's task freezer sets frozen tasks to a new state TASK_FROZEN and then it stores them by calling "wake_up_state(t, TASK_FROZEN)" relying on the fact that all stopped states except the special stop states can tolerate spurious wake up and recover their state. The state of stopped and traced tasked is changed to be stored in task->jobctl as well as in task->__state. This makes it possible for the freezer to recover tasks in these special states, as well as serving as a general cleanup. With a little more work in that direction I believe TASK_STOPPED can learn to tolerate spurious wake ups and become an ordinary stop state. The TASK_TRACED state has to remain a special state as the registers for a process are only reliably available when the process is stopped in the scheduler. Fundamentally ptrace needs acess to the saved register values of a task. There are bunch of semi-random ptrace related cleanups that were found while looking at these issues. One cleanup that deserves to be called out is from commit 57b6de08b5f6 ("ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs"). This makes a change that is technically user space visible, in the handling of what happens to a tracee when a tracer dies unexpectedly. According to our testing and our understanding of userspace nothing cares that spurious SIGTRAPs can be generated in that case" * tag 'ptrace_stop-cleanup-for-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: sched,signal,ptrace: Rework TASK_TRACED, TASK_STOPPED state ptrace: Always take siglock in ptrace_resume ptrace: Don't change __state ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs ptrace: Document that wait_task_inactive can't fail ptrace: Reimplement PTRACE_KILL by always sending SIGKILL signal: Use lockdep_assert_held instead of assert_spin_locked ptrace: Remove arch_ptrace_attach ptrace/xtensa: Replace PT_SINGLESTEP with TIF_SINGLESTEP ptrace/um: Replace PT_DTRACE with TIF_SINGLESTEP signal: Replace __group_send_sig_info with send_signal_locked signal: Rename send_signal send_signal_locked
| * | | | ptrace: Reimplement PTRACE_KILL by always sending SIGKILLEric W. Biederman2022-05-111-2/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The current implementation of PTRACE_KILL is buggy and has been for many years as it assumes it's target has stopped in ptrace_stop. At a quick skim it looks like this assumption has existed since ptrace support was added in linux v1.0. While PTRACE_KILL has been deprecated we can not remove it as a quick search with google code search reveals many existing programs calling it. When the ptracee is not stopped at ptrace_stop some fields would be set that are ignored except in ptrace_stop. Making the userspace visible behavior of PTRACE_KILL a noop in those case. As the usual rules are not obeyed it is not clear what the consequences are of calling PTRACE_KILL on a running process. Presumably userspace does not do this as it achieves nothing. Replace the implementation of PTRACE_KILL with a simple send_sig_info(SIGKILL) followed by a return 0. This changes the observable user space behavior only in that PTRACE_KILL on a process not stopped in ptrace_stop will also kill it. As that has always been the intent of the code this seems like a reasonable change. Cc: stable@vger.kernel.org Reported-by: Al Viro <viro@zeniv.linux.org.uk> Suggested-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Kees Cook <keescook@chromium.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20220505182645.497868-7-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
* | | | | Merge tag 'kthread-cleanups-for-v5.19' of ↵Linus Torvalds2022-06-032-10/+12
|\ \ \ \ \ | |_|_|/ / |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace Pull kthread updates from Eric Biederman: "This updates init and user mode helper tasks to be ordinary user mode tasks. Commit 40966e316f86 ("kthread: Ensure struct kthread is present for all kthreads") caused init and the user mode helper threads that call kernel_execve to have struct kthread allocated for them. This struct kthread going away during execve in turned made a use after free of struct kthread possible. Here, commit 343f4c49f243 ("kthread: Don't allocate kthread_struct for init and umh") is enough to fix the use after free and is simple enough to be backportable. The rest of the changes pass struct kernel_clone_args to clean things up and cause the code to make sense. In making init and the user mode helpers tasks purely user mode tasks I ran into two complications. The function task_tick_numa was detecting tasks without an mm by testing for the presence of PF_KTHREAD. The initramfs code in populate_initrd_image was using flush_delayed_fput to ensuere the closing of all it's file descriptors was complete, and flush_delayed_fput does not work in a userspace thread. I have looked and looked and more complications and in my code review I have not found any, and neither has anyone else with the code sitting in linux-next" * tag 'kthread-cleanups-for-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: sched: Update task_tick_numa to ignore tasks without an mm fork: Stop allowing kthreads to call execve fork: Explicitly set PF_KTHREAD init: Deal with the init process being a user mode process fork: Generalize PF_IO_WORKER handling fork: Explicity test for idle tasks in copy_thread fork: Pass struct kernel_clone_args into copy_thread kthread: Don't allocate kthread_struct for init and umh
| * | | | fork: Generalize PF_IO_WORKER handlingEric W. Biederman2022-05-072-9/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add fn and fn_arg members into struct kernel_clone_args and test for them in copy_thread (instead of testing for PF_KTHREAD | PF_IO_WORKER). This allows any task that wants to be a user space task that only runs in kernel mode to use this functionality. The code on x86 is an exception and still retains a PF_KTHREAD test because x86 unlikely everything else handles kthreads slightly differently than user space tasks that start with a function. The functions that created tasks that start with a function have been updated to set ".fn" and ".fn_arg" instead of ".stack" and ".stack_size". These functions are fork_idle(), create_io_thread(), kernel_thread(), and user_mode_thread(). Link: https://lkml.kernel.org/r/20220506141512.516114-4-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
| * | | | fork: Pass struct kernel_clone_args into copy_threadEric W. Biederman2022-05-071-2/+5
| |/ / / | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | With io_uring we have started supporting tasks that are for most purposes user space tasks that exclusively run code in kernel mode. The kernel task that exec's init and tasks that exec user mode helpers are also user mode tasks that just run kernel code until they call kernel execve. Pass kernel_clone_args into copy_thread so these oddball tasks can be supported more cleanly and easily. v2: Fix spelling of kenrel_clone_args on h8300 Link: https://lkml.kernel.org/r/20220506141512.516114-2-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
* | | | Merge tag 'pm-5.19-rc1-2' of ↵Linus Torvalds2022-05-301-2/+2
|\ \ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull more power management updates from Rafael Wysocki: "These update the ARM cpufreq drivers and fix up the CPPC cpufreq driver after recent changes, update the OPP code and PM documentation and add power sequences support to the system reboot and power off code. Specifics: - Add Tegra234 cpufreq support (Sumit Gupta) - Clean up and enhance the Mediatek cpufreq driver (Wan Jiabing, Rex-BC Chen, and Jia-Wei Chang) - Fix up the CPPC cpufreq driver after recent changes (Zheng Bin, Pierre Gondois) - Minor update to dt-binding for Qcom's opp-v2-kryo-cpu (Yassine Oudjana) - Use list iterator only inside the list_for_each_entry loop (Xiaomeng Tong, and Jakob Koschel) - New APIs related to finding OPP based on interconnect bandwidth (Krzysztof Kozlowski) - Fix the missing of_node_put() in _bandwidth_supported() (Dan Carpenter) - Cleanups (Krzysztof Kozlowski, and Viresh Kumar) - Add Out of Band mode description to the intel-speed-select utility documentation (Srinivas Pandruvada) - Add power sequences support to the system reboot and power off code and make related platform-specific changes for multiple platforms (Dmitry Osipenko, Geert Uytterhoeven)" * tag 'pm-5.19-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (60 commits) cpufreq: CPPC: Fix unused-function warning cpufreq: CPPC: Fix build error without CONFIG_ACPI_CPPC_CPUFREQ_FIE Documentation: admin-guide: PM: Add Out of Band mode kernel/reboot: Change registration order of legacy power-off handler m68k: virt: Switch to new sys-off handler API kernel/reboot: Add devm_register_restart_handler() kernel/reboot: Add devm_register_power_off_handler() soc/tegra: pmc: Use sys-off handler API to power off Nexus 7 properly reboot: Remove pm_power_off_prepare() regulator: pfuze100: Use devm_register_sys_off_handler() ACPI: power: Switch to sys-off handler API memory: emif: Use kernel_can_power_off() mips: Use do_kernel_power_off() ia64: Use do_kernel_power_off() x86: Use do_kernel_power_off() sh: Use do_kernel_power_off() m68k: Switch to new sys-off handler API powerpc: Use do_kernel_power_off() xen/x86: Use do_kernel_power_off() parisc: Use do_kernel_power_off() ...
| * \ \ \ Merge back reboot/poweroff notifiers rework for 5.19-rc1.Rafael J. Wysocki2022-05-251-2/+2
| |\ \ \ \