cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

kvm-all.c (102103B)


      1/*
      2 * QEMU KVM support
      3 *
      4 * Copyright IBM, Corp. 2008
      5 *           Red Hat, Inc. 2008
      6 *
      7 * Authors:
      8 *  Anthony Liguori   <aliguori@us.ibm.com>
      9 *  Glauber Costa     <gcosta@redhat.com>
     10 *
     11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
     12 * See the COPYING file in the top-level directory.
     13 *
     14 */
     15
     16#include "qemu/osdep.h"
     17#include <sys/ioctl.h>
     18#include <poll.h>
     19
     20#include <linux/kvm.h>
     21
     22#include "qemu/atomic.h"
     23#include "qemu/option.h"
     24#include "qemu/config-file.h"
     25#include "qemu/error-report.h"
     26#include "qapi/error.h"
     27#include "hw/pci/msi.h"
     28#include "hw/pci/msix.h"
     29#include "hw/s390x/adapter.h"
     30#include "exec/gdbstub.h"
     31#include "sysemu/kvm_int.h"
     32#include "sysemu/runstate.h"
     33#include "sysemu/cpus.h"
     34#include "qemu/bswap.h"
     35#include "exec/memory.h"
     36#include "exec/ram_addr.h"
     37#include "qemu/event_notifier.h"
     38#include "qemu/main-loop.h"
     39#include "trace.h"
     40#include "hw/irq.h"
     41#include "qapi/visitor.h"
     42#include "qapi/qapi-types-common.h"
     43#include "qapi/qapi-visit-common.h"
     44#include "sysemu/reset.h"
     45#include "qemu/guest-random.h"
     46#include "sysemu/hw_accel.h"
     47#include "kvm-cpus.h"
     48
     49#include "hw/boards.h"
     50
     51/* This check must be after config-host.h is included */
     52#ifdef CONFIG_EVENTFD
     53#include <sys/eventfd.h>
     54#endif
     55
     56/* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
     57 * need to use the real host PAGE_SIZE, as that's what KVM will use.
     58 */
     59#ifdef PAGE_SIZE
     60#undef PAGE_SIZE
     61#endif
     62#define PAGE_SIZE qemu_real_host_page_size
     63
     64//#define DEBUG_KVM
     65
     66#ifdef DEBUG_KVM
     67#define DPRINTF(fmt, ...) \
     68    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
     69#else
     70#define DPRINTF(fmt, ...) \
     71    do { } while (0)
     72#endif
     73
     74#define KVM_MSI_HASHTAB_SIZE    256
     75
     76struct KVMParkedVcpu {
     77    unsigned long vcpu_id;
     78    int kvm_fd;
     79    QLIST_ENTRY(KVMParkedVcpu) node;
     80};
     81
     82enum KVMDirtyRingReaperState {
     83    KVM_DIRTY_RING_REAPER_NONE = 0,
     84    /* The reaper is sleeping */
     85    KVM_DIRTY_RING_REAPER_WAIT,
     86    /* The reaper is reaping for dirty pages */
     87    KVM_DIRTY_RING_REAPER_REAPING,
     88};
     89
     90/*
     91 * KVM reaper instance, responsible for collecting the KVM dirty bits
     92 * via the dirty ring.
     93 */
     94struct KVMDirtyRingReaper {
     95    /* The reaper thread */
     96    QemuThread reaper_thr;
     97    volatile uint64_t reaper_iteration; /* iteration number of reaper thr */
     98    volatile enum KVMDirtyRingReaperState reaper_state; /* reap thr state */
     99};
    100
    101struct KVMState
    102{
    103    AccelState parent_obj;
    104
    105    int nr_slots;
    106    int fd;
    107    int vmfd;
    108    int coalesced_mmio;
    109    int coalesced_pio;
    110    struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
    111    bool coalesced_flush_in_progress;
    112    int vcpu_events;
    113    int robust_singlestep;
    114    int debugregs;
    115#ifdef KVM_CAP_SET_GUEST_DEBUG
    116    QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
    117#endif
    118    int max_nested_state_len;
    119    int many_ioeventfds;
    120    int intx_set_mask;
    121    int kvm_shadow_mem;
    122    bool kernel_irqchip_allowed;
    123    bool kernel_irqchip_required;
    124    OnOffAuto kernel_irqchip_split;
    125    bool sync_mmu;
    126    uint64_t manual_dirty_log_protect;
    127    /* The man page (and posix) say ioctl numbers are signed int, but
    128     * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
    129     * unsigned, and treating them as signed here can break things */
    130    unsigned irq_set_ioctl;
    131    unsigned int sigmask_len;
    132    GHashTable *gsimap;
    133#ifdef KVM_CAP_IRQ_ROUTING
    134    struct kvm_irq_routing *irq_routes;
    135    int nr_allocated_irq_routes;
    136    unsigned long *used_gsi_bitmap;
    137    unsigned int gsi_count;
    138    QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
    139#endif
    140    KVMMemoryListener memory_listener;
    141    QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
    142
    143    /* For "info mtree -f" to tell if an MR is registered in KVM */
    144    int nr_as;
    145    struct KVMAs {
    146        KVMMemoryListener *ml;
    147        AddressSpace *as;
    148    } *as;
    149    uint64_t kvm_dirty_ring_bytes;  /* Size of the per-vcpu dirty ring */
    150    uint32_t kvm_dirty_ring_size;   /* Number of dirty GFNs per ring */
    151    struct KVMDirtyRingReaper reaper;
    152};
    153
    154KVMState *kvm_state;
    155bool kvm_kernel_irqchip;
    156bool kvm_split_irqchip;
    157bool kvm_async_interrupts_allowed;
    158bool kvm_halt_in_kernel_allowed;
    159bool kvm_eventfds_allowed;
    160bool kvm_irqfds_allowed;
    161bool kvm_resamplefds_allowed;
    162bool kvm_msi_via_irqfd_allowed;
    163bool kvm_gsi_routing_allowed;
    164bool kvm_gsi_direct_mapping;
    165bool kvm_allowed;
    166bool kvm_readonly_mem_allowed;
    167bool kvm_vm_attributes_allowed;
    168bool kvm_direct_msi_allowed;
    169bool kvm_ioeventfd_any_length_allowed;
    170bool kvm_msi_use_devid;
    171static bool kvm_immediate_exit;
    172static hwaddr kvm_max_slot_size = ~0;
    173
    174static const KVMCapabilityInfo kvm_required_capabilites[] = {
    175    KVM_CAP_INFO(USER_MEMORY),
    176    KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
    177    KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
    178    KVM_CAP_LAST_INFO
    179};
    180
    181static NotifierList kvm_irqchip_change_notifiers =
    182    NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
    183
    184struct KVMResampleFd {
    185    int gsi;
    186    EventNotifier *resample_event;
    187    QLIST_ENTRY(KVMResampleFd) node;
    188};
    189typedef struct KVMResampleFd KVMResampleFd;
    190
    191/*
    192 * Only used with split irqchip where we need to do the resample fd
    193 * kick for the kernel from userspace.
    194 */
    195static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
    196    QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
    197
    198static QemuMutex kml_slots_lock;
    199
    200#define kvm_slots_lock()    qemu_mutex_lock(&kml_slots_lock)
    201#define kvm_slots_unlock()  qemu_mutex_unlock(&kml_slots_lock)
    202
    203static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
    204
    205static inline void kvm_resample_fd_remove(int gsi)
    206{
    207    KVMResampleFd *rfd;
    208
    209    QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
    210        if (rfd->gsi == gsi) {
    211            QLIST_REMOVE(rfd, node);
    212            g_free(rfd);
    213            break;
    214        }
    215    }
    216}
    217
    218static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
    219{
    220    KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
    221
    222    rfd->gsi = gsi;
    223    rfd->resample_event = event;
    224
    225    QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
    226}
    227
    228void kvm_resample_fd_notify(int gsi)
    229{
    230    KVMResampleFd *rfd;
    231
    232    QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
    233        if (rfd->gsi == gsi) {
    234            event_notifier_set(rfd->resample_event);
    235            trace_kvm_resample_fd_notify(gsi);
    236            return;
    237        }
    238    }
    239}
    240
    241int kvm_get_max_memslots(void)
    242{
    243    KVMState *s = KVM_STATE(current_accel());
    244
    245    return s->nr_slots;
    246}
    247
    248/* Called with KVMMemoryListener.slots_lock held */
    249static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
    250{
    251    KVMState *s = kvm_state;
    252    int i;
    253
    254    for (i = 0; i < s->nr_slots; i++) {
    255        if (kml->slots[i].memory_size == 0) {
    256            return &kml->slots[i];
    257        }
    258    }
    259
    260    return NULL;
    261}
    262
    263bool kvm_has_free_slot(MachineState *ms)
    264{
    265    KVMState *s = KVM_STATE(ms->accelerator);
    266    bool result;
    267    KVMMemoryListener *kml = &s->memory_listener;
    268
    269    kvm_slots_lock();
    270    result = !!kvm_get_free_slot(kml);
    271    kvm_slots_unlock();
    272
    273    return result;
    274}
    275
    276/* Called with KVMMemoryListener.slots_lock held */
    277static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
    278{
    279    KVMSlot *slot = kvm_get_free_slot(kml);
    280
    281    if (slot) {
    282        return slot;
    283    }
    284
    285    fprintf(stderr, "%s: no free slot available\n", __func__);
    286    abort();
    287}
    288
    289static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
    290                                         hwaddr start_addr,
    291                                         hwaddr size)
    292{
    293    KVMState *s = kvm_state;
    294    int i;
    295
    296    for (i = 0; i < s->nr_slots; i++) {
    297        KVMSlot *mem = &kml->slots[i];
    298
    299        if (start_addr == mem->start_addr && size == mem->memory_size) {
    300            return mem;
    301        }
    302    }
    303
    304    return NULL;
    305}
    306
    307/*
    308 * Calculate and align the start address and the size of the section.
    309 * Return the size. If the size is 0, the aligned section is empty.
    310 */
    311static hwaddr kvm_align_section(MemoryRegionSection *section,
    312                                hwaddr *start)
    313{
    314    hwaddr size = int128_get64(section->size);
    315    hwaddr delta, aligned;
    316
    317    /* kvm works in page size chunks, but the function may be called
    318       with sub-page size and unaligned start address. Pad the start
    319       address to next and truncate size to previous page boundary. */
    320    aligned = ROUND_UP(section->offset_within_address_space,
    321                       qemu_real_host_page_size);
    322    delta = aligned - section->offset_within_address_space;
    323    *start = aligned;
    324    if (delta > size) {
    325        return 0;
    326    }
    327
    328    return (size - delta) & qemu_real_host_page_mask;
    329}
    330
    331int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
    332                                       hwaddr *phys_addr)
    333{
    334    KVMMemoryListener *kml = &s->memory_listener;
    335    int i, ret = 0;
    336
    337    kvm_slots_lock();
    338    for (i = 0; i < s->nr_slots; i++) {
    339        KVMSlot *mem = &kml->slots[i];
    340
    341        if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
    342            *phys_addr = mem->start_addr + (ram - mem->ram);
    343            ret = 1;
    344            break;
    345        }
    346    }
    347    kvm_slots_unlock();
    348
    349    return ret;
    350}
    351
    352static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
    353{
    354    KVMState *s = kvm_state;
    355    struct kvm_userspace_memory_region mem;
    356    int ret;
    357
    358    mem.slot = slot->slot | (kml->as_id << 16);
    359    mem.guest_phys_addr = slot->start_addr;
    360    mem.userspace_addr = (unsigned long)slot->ram;
    361    mem.flags = slot->flags;
    362
    363    if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
    364        /* Set the slot size to 0 before setting the slot to the desired
    365         * value. This is needed based on KVM commit 75d61fbc. */
    366        mem.memory_size = 0;
    367        ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
    368        if (ret < 0) {
    369            goto err;
    370        }
    371    }
    372    mem.memory_size = slot->memory_size;
    373    ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
    374    slot->old_flags = mem.flags;
    375err:
    376    trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
    377                              mem.memory_size, mem.userspace_addr, ret);
    378    if (ret < 0) {
    379        error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
    380                     " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
    381                     __func__, mem.slot, slot->start_addr,
    382                     (uint64_t)mem.memory_size, strerror(errno));
    383    }
    384    return ret;
    385}
    386
    387static int do_kvm_destroy_vcpu(CPUState *cpu)
    388{
    389    KVMState *s = kvm_state;
    390    long mmap_size;
    391    struct KVMParkedVcpu *vcpu = NULL;
    392    int ret = 0;
    393
    394    DPRINTF("kvm_destroy_vcpu\n");
    395
    396    ret = kvm_arch_destroy_vcpu(cpu);
    397    if (ret < 0) {
    398        goto err;
    399    }
    400
    401    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
    402    if (mmap_size < 0) {
    403        ret = mmap_size;
    404        DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
    405        goto err;
    406    }
    407
    408    ret = munmap(cpu->kvm_run, mmap_size);
    409    if (ret < 0) {
    410        goto err;
    411    }
    412
    413    if (cpu->kvm_dirty_gfns) {
    414        ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
    415        if (ret < 0) {
    416            goto err;
    417        }
    418    }
    419
    420    vcpu = g_malloc0(sizeof(*vcpu));
    421    vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
    422    vcpu->kvm_fd = cpu->kvm_fd;
    423    QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
    424err:
    425    return ret;
    426}
    427
    428void kvm_destroy_vcpu(CPUState *cpu)
    429{
    430    if (do_kvm_destroy_vcpu(cpu) < 0) {
    431        error_report("kvm_destroy_vcpu failed");
    432        exit(EXIT_FAILURE);
    433    }
    434}
    435
    436static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
    437{
    438    struct KVMParkedVcpu *cpu;
    439
    440    QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
    441        if (cpu->vcpu_id == vcpu_id) {
    442            int kvm_fd;
    443
    444            QLIST_REMOVE(cpu, node);
    445            kvm_fd = cpu->kvm_fd;
    446            g_free(cpu);
    447            return kvm_fd;
    448        }
    449    }
    450
    451    return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
    452}
    453
    454int kvm_init_vcpu(CPUState *cpu, Error **errp)
    455{
    456    KVMState *s = kvm_state;
    457    long mmap_size;
    458    int ret;
    459
    460    trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
    461
    462    ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
    463    if (ret < 0) {
    464        error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
    465                         kvm_arch_vcpu_id(cpu));
    466        goto err;
    467    }
    468
    469    cpu->kvm_fd = ret;
    470    cpu->kvm_state = s;
    471    cpu->vcpu_dirty = true;
    472
    473    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
    474    if (mmap_size < 0) {
    475        ret = mmap_size;
    476        error_setg_errno(errp, -mmap_size,
    477                         "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
    478        goto err;
    479    }
    480
    481    cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
    482                        cpu->kvm_fd, 0);
    483    if (cpu->kvm_run == MAP_FAILED) {
    484        ret = -errno;
    485        error_setg_errno(errp, ret,
    486                         "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
    487                         kvm_arch_vcpu_id(cpu));
    488        goto err;
    489    }
    490
    491    if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
    492        s->coalesced_mmio_ring =
    493            (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
    494    }
    495
    496    if (s->kvm_dirty_ring_size) {
    497        /* Use MAP_SHARED to share pages with the kernel */
    498        cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
    499                                   PROT_READ | PROT_WRITE, MAP_SHARED,
    500                                   cpu->kvm_fd,
    501                                   PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
    502        if (cpu->kvm_dirty_gfns == MAP_FAILED) {
    503            ret = -errno;
    504            DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
    505            goto err;
    506        }
    507    }
    508
    509    ret = kvm_arch_init_vcpu(cpu);
    510    if (ret < 0) {
    511        error_setg_errno(errp, -ret,
    512                         "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
    513                         kvm_arch_vcpu_id(cpu));
    514    }
    515err:
    516    return ret;
    517}
    518
    519/*
    520 * dirty pages logging control
    521 */
    522
    523static int kvm_mem_flags(MemoryRegion *mr)
    524{
    525    bool readonly = mr->readonly || memory_region_is_romd(mr);
    526    int flags = 0;
    527
    528    if (memory_region_get_dirty_log_mask(mr) != 0) {
    529        flags |= KVM_MEM_LOG_DIRTY_PAGES;
    530    }
    531    if (readonly && kvm_readonly_mem_allowed) {
    532        flags |= KVM_MEM_READONLY;
    533    }
    534    return flags;
    535}
    536
    537/* Called with KVMMemoryListener.slots_lock held */
    538static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
    539                                 MemoryRegion *mr)
    540{
    541    mem->flags = kvm_mem_flags(mr);
    542
    543    /* If nothing changed effectively, no need to issue ioctl */
    544    if (mem->flags == mem->old_flags) {
    545        return 0;
    546    }
    547
    548    kvm_slot_init_dirty_bitmap(mem);
    549    return kvm_set_user_memory_region(kml, mem, false);
    550}
    551
    552static int kvm_section_update_flags(KVMMemoryListener *kml,
    553                                    MemoryRegionSection *section)
    554{
    555    hwaddr start_addr, size, slot_size;
    556    KVMSlot *mem;
    557    int ret = 0;
    558
    559    size = kvm_align_section(section, &start_addr);
    560    if (!size) {
    561        return 0;
    562    }
    563
    564    kvm_slots_lock();
    565
    566    while (size && !ret) {
    567        slot_size = MIN(kvm_max_slot_size, size);
    568        mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
    569        if (!mem) {
    570            /* We don't have a slot if we want to trap every access. */
    571            goto out;
    572        }
    573
    574        ret = kvm_slot_update_flags(kml, mem, section->mr);
    575        start_addr += slot_size;
    576        size -= slot_size;
    577    }
    578
    579out:
    580    kvm_slots_unlock();
    581    return ret;
    582}
    583
    584static void kvm_log_start(MemoryListener *listener,
    585                          MemoryRegionSection *section,
    586                          int old, int new)
    587{
    588    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
    589    int r;
    590
    591    if (old != 0) {
    592        return;
    593    }
    594
    595    r = kvm_section_update_flags(kml, section);
    596    if (r < 0) {
    597        abort();
    598    }
    599}
    600
    601static void kvm_log_stop(MemoryListener *listener,
    602                          MemoryRegionSection *section,
    603                          int old, int new)
    604{
    605    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
    606    int r;
    607
    608    if (new != 0) {
    609        return;
    610    }
    611
    612    r = kvm_section_update_flags(kml, section);
    613    if (r < 0) {
    614        abort();
    615    }
    616}
    617
    618/* get kvm's dirty pages bitmap and update qemu's */
    619static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
    620{
    621    ram_addr_t start = slot->ram_start_offset;
    622    ram_addr_t pages = slot->memory_size / qemu_real_host_page_size;
    623
    624    cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
    625}
    626
    627static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
    628{
    629    memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
    630}
    631
    632#define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
    633
    634/* Allocate the dirty bitmap for a slot  */
    635static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
    636{
    637    if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
    638        return;
    639    }
    640
    641    /*
    642     * XXX bad kernel interface alert
    643     * For dirty bitmap, kernel allocates array of size aligned to
    644     * bits-per-long.  But for case when the kernel is 64bits and
    645     * the userspace is 32bits, userspace can't align to the same
    646     * bits-per-long, since sizeof(long) is different between kernel
    647     * and user space.  This way, userspace will provide buffer which
    648     * may be 4 bytes less than the kernel will use, resulting in
    649     * userspace memory corruption (which is not detectable by valgrind
    650     * too, in most cases).
    651     * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
    652     * a hope that sizeof(long) won't become >8 any time soon.
    653     *
    654     * Note: the granule of kvm dirty log is qemu_real_host_page_size.
    655     * And mem->memory_size is aligned to it (otherwise this mem can't
    656     * be registered to KVM).
    657     */
    658    hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size,
    659                                        /*HOST_LONG_BITS*/ 64) / 8;
    660    mem->dirty_bmap = g_malloc0(bitmap_size);
    661    mem->dirty_bmap_size = bitmap_size;
    662}
    663
    664/*
    665 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
    666 * succeeded, false otherwise
    667 */
    668static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
    669{
    670    struct kvm_dirty_log d = {};
    671    int ret;
    672
    673    d.dirty_bitmap = slot->dirty_bmap;
    674    d.slot = slot->slot | (slot->as_id << 16);
    675    ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
    676
    677    if (ret == -ENOENT) {
    678        /* kernel does not have dirty bitmap in this slot */
    679        ret = 0;
    680    }
    681    if (ret) {
    682        error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
    683                          __func__, ret);
    684    }
    685    return ret == 0;
    686}
    687
    688/* Should be with all slots_lock held for the address spaces. */
    689static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
    690                                     uint32_t slot_id, uint64_t offset)
    691{
    692    KVMMemoryListener *kml;
    693    KVMSlot *mem;
    694
    695    if (as_id >= s->nr_as) {
    696        return;
    697    }
    698
    699    kml = s->as[as_id].ml;
    700    mem = &kml->slots[slot_id];
    701
    702    if (!mem->memory_size || offset >=
    703        (mem->memory_size / qemu_real_host_page_size)) {
    704        return;
    705    }
    706
    707    set_bit(offset, mem->dirty_bmap);
    708}
    709
    710static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
    711{
    712    return gfn->flags == KVM_DIRTY_GFN_F_DIRTY;
    713}
    714
    715static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
    716{
    717    gfn->flags = KVM_DIRTY_GFN_F_RESET;
    718}
    719
    720/*
    721 * Should be with all slots_lock held for the address spaces.  It returns the
    722 * dirty page we've collected on this dirty ring.
    723 */
    724static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
    725{
    726    struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
    727    uint32_t ring_size = s->kvm_dirty_ring_size;
    728    uint32_t count = 0, fetch = cpu->kvm_fetch_index;
    729
    730    assert(dirty_gfns && ring_size);
    731    trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
    732
    733    while (true) {
    734        cur = &dirty_gfns[fetch % ring_size];
    735        if (!dirty_gfn_is_dirtied(cur)) {
    736            break;
    737        }
    738        kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
    739                                 cur->offset);
    740        dirty_gfn_set_collected(cur);
    741        trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
    742        fetch++;
    743        count++;
    744    }
    745    cpu->kvm_fetch_index = fetch;
    746
    747    return count;
    748}
    749
    750/* Must be with slots_lock held */
    751static uint64_t kvm_dirty_ring_reap_locked(KVMState *s)
    752{
    753    int ret;
    754    CPUState *cpu;
    755    uint64_t total = 0;
    756    int64_t stamp;
    757
    758    stamp = get_clock();
    759
    760    CPU_FOREACH(cpu) {
    761        total += kvm_dirty_ring_reap_one(s, cpu);
    762    }
    763
    764    if (total) {
    765        ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
    766        assert(ret == total);
    767    }
    768
    769    stamp = get_clock() - stamp;
    770
    771    if (total) {
    772        trace_kvm_dirty_ring_reap(total, stamp / 1000);
    773    }
    774
    775    return total;
    776}
    777
    778/*
    779 * Currently for simplicity, we must hold BQL before calling this.  We can
    780 * consider to drop the BQL if we're clear with all the race conditions.
    781 */
    782static uint64_t kvm_dirty_ring_reap(KVMState *s)
    783{
    784    uint64_t total;
    785
    786    /*
    787     * We need to lock all kvm slots for all address spaces here,
    788     * because:
    789     *
    790     * (1) We need to mark dirty for dirty bitmaps in multiple slots
    791     *     and for tons of pages, so it's better to take the lock here
    792     *     once rather than once per page.  And more importantly,
    793     *
    794     * (2) We must _NOT_ publish dirty bits to the other threads
    795     *     (e.g., the migration thread) via the kvm memory slot dirty
    796     *     bitmaps before correctly re-protect those dirtied pages.
    797     *     Otherwise we can have potential risk of data corruption if
    798     *     the page data is read in the other thread before we do
    799     *     reset below.
    800     */
    801    kvm_slots_lock();
    802    total = kvm_dirty_ring_reap_locked(s);
    803    kvm_slots_unlock();
    804
    805    return total;
    806}
    807
    808static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
    809{
    810    /* No need to do anything */
    811}
    812
    813/*
    814 * Kick all vcpus out in a synchronized way.  When returned, we
    815 * guarantee that every vcpu has been kicked and at least returned to
    816 * userspace once.
    817 */
    818static void kvm_cpu_synchronize_kick_all(void)
    819{
    820    CPUState *cpu;
    821
    822    CPU_FOREACH(cpu) {
    823        run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
    824    }
    825}
    826
    827/*
    828 * Flush all the existing dirty pages to the KVM slot buffers.  When
    829 * this call returns, we guarantee that all the touched dirty pages
    830 * before calling this function have been put into the per-kvmslot
    831 * dirty bitmap.
    832 *
    833 * This function must be called with BQL held.
    834 */
    835static void kvm_dirty_ring_flush(void)
    836{
    837    trace_kvm_dirty_ring_flush(0);
    838    /*
    839     * The function needs to be serialized.  Since this function
    840     * should always be with BQL held, serialization is guaranteed.
    841     * However, let's be sure of it.
    842     */
    843    assert(qemu_mutex_iothread_locked());
    844    /*
    845     * First make sure to flush the hardware buffers by kicking all
    846     * vcpus out in a synchronous way.
    847     */
    848    kvm_cpu_synchronize_kick_all();
    849    kvm_dirty_ring_reap(kvm_state);
    850    trace_kvm_dirty_ring_flush(1);
    851}
    852
    853/**
    854 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
    855 *
    856 * This function will first try to fetch dirty bitmap from the kernel,
    857 * and then updates qemu's dirty bitmap.
    858 *
    859 * NOTE: caller must be with kml->slots_lock held.
    860 *
    861 * @kml: the KVM memory listener object
    862 * @section: the memory section to sync the dirty bitmap with
    863 */
    864static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
    865                                           MemoryRegionSection *section)
    866{
    867    KVMState *s = kvm_state;
    868    KVMSlot *mem;
    869    hwaddr start_addr, size;
    870    hwaddr slot_size;
    871
    872    size = kvm_align_section(section, &start_addr);
    873    while (size) {
    874        slot_size = MIN(kvm_max_slot_size, size);
    875        mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
    876        if (!mem) {
    877            /* We don't have a slot if we want to trap every access. */
    878            return;
    879        }
    880        if (kvm_slot_get_dirty_log(s, mem)) {
    881            kvm_slot_sync_dirty_pages(mem);
    882        }
    883        start_addr += slot_size;
    884        size -= slot_size;
    885    }
    886}
    887
    888/* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
    889#define KVM_CLEAR_LOG_SHIFT  6
    890#define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
    891#define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
    892
    893static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
    894                                  uint64_t size)
    895{
    896    KVMState *s = kvm_state;
    897    uint64_t end, bmap_start, start_delta, bmap_npages;
    898    struct kvm_clear_dirty_log d;
    899    unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
    900    int ret;
    901
    902    /*
    903     * We need to extend either the start or the size or both to
    904     * satisfy the KVM interface requirement.  Firstly, do the start
    905     * page alignment on 64 host pages
    906     */
    907    bmap_start = start & KVM_CLEAR_LOG_MASK;
    908    start_delta = start - bmap_start;
    909    bmap_start /= psize;
    910
    911    /*
    912     * The kernel interface has restriction on the size too, that either:
    913     *
    914     * (1) the size is 64 host pages aligned (just like the start), or
    915     * (2) the size fills up until the end of the KVM memslot.
    916     */
    917    bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
    918        << KVM_CLEAR_LOG_SHIFT;
    919    end = mem->memory_size / psize;
    920    if (bmap_npages > end - bmap_start) {
    921        bmap_npages = end - bmap_start;
    922    }
    923    start_delta /= psize;
    924
    925    /*
    926     * Prepare the bitmap to clear dirty bits.  Here we must guarantee
    927     * that we won't clear any unknown dirty bits otherwise we might
    928     * accidentally clear some set bits which are not yet synced from
    929     * the kernel into QEMU's bitmap, then we'll lose track of the
    930     * guest modifications upon those pages (which can directly lead
    931     * to guest data loss or panic after migration).
    932     *
    933     * Layout of the KVMSlot.dirty_bmap:
    934     *
    935     *                   |<-------- bmap_npages -----------..>|
    936     *                                                     [1]
    937     *                     start_delta         size
    938     *  |----------------|-------------|------------------|------------|
    939     *  ^                ^             ^                               ^
    940     *  |                |             |                               |
    941     * start          bmap_start     (start)                         end
    942     * of memslot                                             of memslot
    943     *
    944     * [1] bmap_npages can be aligned to either 64 pages or the end of slot
    945     */
    946
    947    assert(bmap_start % BITS_PER_LONG == 0);
    948    /* We should never do log_clear before log_sync */
    949    assert(mem->dirty_bmap);
    950    if (start_delta || bmap_npages - size / psize) {
    951        /* Slow path - we need to manipulate a temp bitmap */
    952        bmap_clear = bitmap_new(bmap_npages);
    953        bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
    954                                    bmap_start, start_delta + size / psize);
    955        /*
    956         * We need to fill the holes at start because that was not
    957         * specified by the caller and we extended the bitmap only for
    958         * 64 pages alignment
    959         */
    960        bitmap_clear(bmap_clear, 0, start_delta);
    961        d.dirty_bitmap = bmap_clear;
    962    } else {
    963        /*
    964         * Fast path - both start and size align well with BITS_PER_LONG
    965         * (or the end of memory slot)
    966         */
    967        d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
    968    }
    969
    970    d.first_page = bmap_start;
    971    /* It should never overflow.  If it happens, say something */
    972    assert(bmap_npages <= UINT32_MAX);
    973    d.num_pages = bmap_npages;
    974    d.slot = mem->slot | (as_id << 16);
    975
    976    ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
    977    if (ret < 0 && ret != -ENOENT) {
    978        error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
    979                     "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
    980                     __func__, d.slot, (uint64_t)d.first_page,
    981                     (uint32_t)d.num_pages, ret);
    982    } else {
    983        ret = 0;
    984        trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
    985    }
    986
    987    /*
    988     * After we have updated the remote dirty bitmap, we update the
    989     * cached bitmap as well for the memslot, then if another user
    990     * clears the same region we know we shouldn't clear it again on
    991     * the remote otherwise it's data loss as well.
    992     */
    993    bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
    994                 size / psize);
    995    /* This handles the NULL case well */
    996    g_free(bmap_clear);
    997    return ret;
    998}
    999
   1000
   1001/**
   1002 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
   1003 *
   1004 * NOTE: this will be a no-op if we haven't enabled manual dirty log
   1005 * protection in the host kernel because in that case this operation
   1006 * will be done within log_sync().
   1007 *
   1008 * @kml:     the kvm memory listener
   1009 * @section: the memory range to clear dirty bitmap
   1010 */
   1011static int kvm_physical_log_clear(KVMMemoryListener *kml,
   1012                                  MemoryRegionSection *section)
   1013{
   1014    KVMState *s = kvm_state;
   1015    uint64_t start, size, offset, count;
   1016    KVMSlot *mem;
   1017    int ret = 0, i;
   1018
   1019    if (!s->manual_dirty_log_protect) {
   1020        /* No need to do explicit clear */
   1021        return ret;
   1022    }
   1023
   1024    start = section->offset_within_address_space;
   1025    size = int128_get64(section->size);
   1026
   1027    if (!size) {
   1028        /* Nothing more we can do... */
   1029        return ret;
   1030    }
   1031
   1032    kvm_slots_lock();
   1033
   1034    for (i = 0; i < s->nr_slots; i++) {
   1035        mem = &kml->slots[i];
   1036        /* Discard slots that are empty or do not overlap the section */
   1037        if (!mem->memory_size ||
   1038            mem->start_addr > start + size - 1 ||
   1039            start > mem->start_addr + mem->memory_size - 1) {
   1040            continue;
   1041        }
   1042
   1043        if (start >= mem->start_addr) {
   1044            /* The slot starts before section or is aligned to it.  */
   1045            offset = start - mem->start_addr;
   1046            count = MIN(mem->memory_size - offset, size);
   1047        } else {
   1048            /* The slot starts after section.  */
   1049            offset = 0;
   1050            count = MIN(mem->memory_size, size - (mem->start_addr - start));
   1051        }
   1052        ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
   1053        if (ret < 0) {
   1054            break;
   1055        }
   1056    }
   1057
   1058    kvm_slots_unlock();
   1059
   1060    return ret;
   1061}
   1062
   1063static void kvm_coalesce_mmio_region(MemoryListener *listener,
   1064                                     MemoryRegionSection *secion,
   1065                                     hwaddr start, hwaddr size)
   1066{
   1067    KVMState *s = kvm_state;
   1068
   1069    if (s->coalesced_mmio) {
   1070        struct kvm_coalesced_mmio_zone zone;
   1071
   1072        zone.addr = start;
   1073        zone.size = size;
   1074        zone.pad = 0;
   1075
   1076        (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
   1077    }
   1078}
   1079
   1080static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
   1081                                       MemoryRegionSection *secion,
   1082                                       hwaddr start, hwaddr size)
   1083{
   1084    KVMState *s = kvm_state;
   1085
   1086    if (s->coalesced_mmio) {
   1087        struct kvm_coalesced_mmio_zone zone;
   1088
   1089        zone.addr = start;
   1090        zone.size = size;
   1091        zone.pad = 0;
   1092
   1093        (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
   1094    }
   1095}
   1096
   1097static void kvm_coalesce_pio_add(MemoryListener *listener,
   1098                                MemoryRegionSection *section,
   1099                                hwaddr start, hwaddr size)
   1100{
   1101    KVMState *s = kvm_state;
   1102
   1103    if (s->coalesced_pio) {
   1104        struct kvm_coalesced_mmio_zone zone;
   1105
   1106        zone.addr = start;
   1107        zone.size = size;
   1108        zone.pio = 1;
   1109
   1110        (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
   1111    }
   1112}
   1113
   1114static void kvm_coalesce_pio_del(MemoryListener *listener,
   1115                                MemoryRegionSection *section,
   1116                                hwaddr start, hwaddr size)
   1117{
   1118    KVMState *s = kvm_state;
   1119
   1120    if (s->coalesced_pio) {
   1121        struct kvm_coalesced_mmio_zone zone;
   1122
   1123        zone.addr = start;
   1124        zone.size = size;
   1125        zone.pio = 1;
   1126
   1127        (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
   1128     }
   1129}
   1130
   1131static MemoryListener kvm_coalesced_pio_listener = {
   1132    .name = "kvm-coalesced-pio",
   1133    .coalesced_io_add = kvm_coalesce_pio_add,
   1134    .coalesced_io_del = kvm_coalesce_pio_del,
   1135};
   1136
   1137int kvm_check_extension(KVMState *s, unsigned int extension)
   1138{
   1139    int ret;
   1140
   1141    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
   1142    if (ret < 0) {
   1143        ret = 0;
   1144    }
   1145
   1146    return ret;
   1147}
   1148
   1149int kvm_vm_check_extension(KVMState *s, unsigned int extension)
   1150{
   1151    int ret;
   1152
   1153    ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
   1154    if (ret < 0) {
   1155        /* VM wide version not implemented, use global one instead */
   1156        ret = kvm_check_extension(s, extension);
   1157    }
   1158
   1159    return ret;
   1160}
   1161
   1162typedef struct HWPoisonPage {
   1163    ram_addr_t ram_addr;
   1164    QLIST_ENTRY(HWPoisonPage) list;
   1165} HWPoisonPage;
   1166
   1167static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
   1168    QLIST_HEAD_INITIALIZER(hwpoison_page_list);
   1169
   1170static void kvm_unpoison_all(void *param)
   1171{
   1172    HWPoisonPage *page, *next_page;
   1173
   1174    QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
   1175        QLIST_REMOVE(page, list);
   1176        qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
   1177        g_free(page);
   1178    }
   1179}
   1180
   1181void kvm_hwpoison_page_add(ram_addr_t ram_addr)
   1182{
   1183    HWPoisonPage *page;
   1184
   1185    QLIST_FOREACH(page, &hwpoison_page_list, list) {
   1186        if (page->ram_addr == ram_addr) {
   1187            return;
   1188        }
   1189    }
   1190    page = g_new(HWPoisonPage, 1);
   1191    page->ram_addr = ram_addr;
   1192    QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
   1193}
   1194
   1195static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
   1196{
   1197#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
   1198    /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
   1199     * endianness, but the memory core hands them in target endianness.
   1200     * For example, PPC is always treated as big-endian even if running
   1201     * on KVM and on PPC64LE.  Correct here.
   1202     */
   1203    switch (size) {
   1204    case 2:
   1205        val = bswap16(val);
   1206        break;
   1207    case 4:
   1208        val = bswap32(val);
   1209        break;
   1210    }
   1211#endif
   1212    return val;
   1213}
   1214
   1215static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
   1216                                  bool assign, uint32_t size, bool datamatch)
   1217{
   1218    int ret;
   1219    struct kvm_ioeventfd iofd = {
   1220        .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
   1221        .addr = addr,
   1222        .len = size,
   1223        .flags = 0,
   1224        .fd = fd,
   1225    };
   1226
   1227    trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
   1228                                 datamatch);
   1229    if (!kvm_enabled()) {
   1230        return -ENOSYS;
   1231    }
   1232
   1233    if (datamatch) {
   1234        iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
   1235    }
   1236    if (!assign) {
   1237        iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
   1238    }
   1239
   1240    ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
   1241
   1242    if (ret < 0) {
   1243        return -errno;
   1244    }
   1245
   1246    return 0;
   1247}
   1248
   1249static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
   1250                                 bool assign, uint32_t size, bool datamatch)
   1251{
   1252    struct kvm_ioeventfd kick = {
   1253        .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
   1254        .addr = addr,
   1255        .flags = KVM_IOEVENTFD_FLAG_PIO,
   1256        .len = size,
   1257        .fd = fd,
   1258    };
   1259    int r;
   1260    trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
   1261    if (!kvm_enabled()) {
   1262        return -ENOSYS;
   1263    }
   1264    if (datamatch) {
   1265        kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
   1266    }
   1267    if (!assign) {
   1268        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
   1269    }
   1270    r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
   1271    if (r < 0) {
   1272        return r;
   1273    }
   1274    return 0;
   1275}
   1276
   1277
   1278static int kvm_check_many_ioeventfds(void)
   1279{
   1280    /* Userspace can use ioeventfd for io notification.  This requires a host
   1281     * that supports eventfd(2) and an I/O thread; since eventfd does not
   1282     * support SIGIO it cannot interrupt the vcpu.
   1283     *
   1284     * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
   1285     * can avoid creating too many ioeventfds.
   1286     */
   1287#if defined(CONFIG_EVENTFD)
   1288    int ioeventfds[7];
   1289    int i, ret = 0;
   1290    for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
   1291        ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
   1292        if (ioeventfds[i] < 0) {
   1293            break;
   1294        }
   1295        ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
   1296        if (ret < 0) {
   1297            close(ioeventfds[i]);
   1298            break;
   1299        }
   1300    }
   1301
   1302    /* Decide whether many devices are supported or not */
   1303    ret = i == ARRAY_SIZE(ioeventfds);
   1304
   1305    while (i-- > 0) {
   1306        kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
   1307        close(ioeventfds[i]);
   1308    }
   1309    return ret;
   1310#else
   1311    return 0;
   1312#endif
   1313}
   1314
   1315static const KVMCapabilityInfo *
   1316kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
   1317{
   1318    while (list->name) {
   1319        if (!kvm_check_extension(s, list->value)) {
   1320            return list;
   1321        }
   1322        list++;
   1323    }
   1324    return NULL;
   1325}
   1326
   1327void kvm_set_max_memslot_size(hwaddr max_slot_size)
   1328{
   1329    g_assert(
   1330        ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
   1331    );
   1332    kvm_max_slot_size = max_slot_size;
   1333}
   1334
   1335static void kvm_set_phys_mem(KVMMemoryListener *kml,
   1336                             MemoryRegionSection *section, bool add)
   1337{
   1338    KVMSlot *mem;
   1339    int err;
   1340    MemoryRegion *mr = section->mr;
   1341    bool writeable = !mr->readonly && !mr->rom_device;
   1342    hwaddr start_addr, size, slot_size, mr_offset;
   1343    ram_addr_t ram_start_offset;
   1344    void *ram;
   1345
   1346    if (!memory_region_is_ram(mr)) {
   1347        if (writeable || !kvm_readonly_mem_allowed) {
   1348            return;
   1349        } else if (!mr->romd_mode) {
   1350            /* If the memory device is not in romd_mode, then we actually want
   1351             * to remove the kvm memory slot so all accesses will trap. */
   1352            add = false;
   1353        }
   1354    }
   1355
   1356    size = kvm_align_section(section, &start_addr);
   1357    if (!size) {
   1358        return;
   1359    }
   1360
   1361    /* The offset of the kvmslot within the memory region */
   1362    mr_offset = section->offset_within_region + start_addr -
   1363        section->offset_within_address_space;
   1364
   1365    /* use aligned delta to align the ram address and offset */
   1366    ram = memory_region_get_ram_ptr(mr) + mr_offset;
   1367    ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
   1368
   1369    kvm_slots_lock();
   1370
   1371    if (!add) {
   1372        do {
   1373            slot_size = MIN(kvm_max_slot_size, size);
   1374            mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
   1375            if (!mem) {
   1376                goto out;
   1377            }
   1378            if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
   1379                /*
   1380                 * NOTE: We should be aware of the fact that here we're only
   1381                 * doing a best effort to sync dirty bits.  No matter whether
   1382                 * we're using dirty log or dirty ring, we ignored two facts:
   1383                 *
   1384                 * (1) dirty bits can reside in hardware buffers (PML)
   1385                 *
   1386                 * (2) after we collected dirty bits here, pages can be dirtied
   1387                 * again before we do the final KVM_SET_USER_MEMORY_REGION to
   1388                 * remove the slot.
   1389                 *
   1390                 * Not easy.  Let's cross the fingers until it's fixed.
   1391                 */
   1392                if (kvm_state->kvm_dirty_ring_size) {
   1393                    kvm_dirty_ring_reap_locked(kvm_state);
   1394                } else {
   1395                    kvm_slot_get_dirty_log(kvm_state, mem);
   1396                }
   1397                kvm_slot_sync_dirty_pages(mem);
   1398            }
   1399
   1400            /* unregister the slot */
   1401            g_free(mem->dirty_bmap);
   1402            mem->dirty_bmap = NULL;
   1403            mem->memory_size = 0;
   1404            mem->flags = 0;
   1405            err = kvm_set_user_memory_region(kml, mem, false);
   1406            if (err) {
   1407                fprintf(stderr, "%s: error unregistering slot: %s\n",
   1408                        __func__, strerror(-err));
   1409                abort();
   1410            }
   1411            start_addr += slot_size;
   1412            size -= slot_size;
   1413        } while (size);
   1414        goto out;
   1415    }
   1416
   1417    /* register the new slot */
   1418    do {
   1419        slot_size = MIN(kvm_max_slot_size, size);
   1420        mem = kvm_alloc_slot(kml);
   1421        mem->as_id = kml->as_id;
   1422        mem->memory_size = slot_size;
   1423        mem->start_addr = start_addr;
   1424        mem->ram_start_offset = ram_start_offset;
   1425        mem->ram = ram;
   1426        mem->flags = kvm_mem_flags(mr);
   1427        kvm_slot_init_dirty_bitmap(mem);
   1428        err = kvm_set_user_memory_region(kml, mem, true);
   1429        if (err) {
   1430            fprintf(stderr, "%s: error registering slot: %s\n", __func__,
   1431                    strerror(-err));
   1432            abort();
   1433        }
   1434        start_addr += slot_size;
   1435        ram_start_offset += slot_size;
   1436        ram += slot_size;
   1437        size -= slot_size;
   1438    } while (size);
   1439
   1440out:
   1441    kvm_slots_unlock();
   1442}
   1443
   1444static void *kvm_dirty_ring_reaper_thread(void *data)
   1445{
   1446    KVMState *s = data;
   1447    struct KVMDirtyRingReaper *r = &s->reaper;
   1448
   1449    rcu_register_thread();
   1450
   1451    trace_kvm_dirty_ring_reaper("init");
   1452
   1453    while (true) {
   1454        r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
   1455        trace_kvm_dirty_ring_reaper("wait");
   1456        /*
   1457         * TODO: provide a smarter timeout rather than a constant?
   1458         */
   1459        sleep(1);
   1460
   1461        trace_kvm_dirty_ring_reaper("wakeup");
   1462        r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
   1463
   1464        qemu_mutex_lock_iothread();
   1465        kvm_dirty_ring_reap(s);
   1466        qemu_mutex_unlock_iothread();
   1467
   1468        r->reaper_iteration++;
   1469    }
   1470
   1471    trace_kvm_dirty_ring_reaper("exit");
   1472
   1473    rcu_unregister_thread();
   1474
   1475    return NULL;
   1476}
   1477
   1478static int kvm_dirty_ring_reaper_init(KVMState *s)
   1479{
   1480    struct KVMDirtyRingReaper *r = &s->reaper;
   1481
   1482    qemu_thread_create(&r->reaper_thr, "kvm-reaper",
   1483                       kvm_dirty_ring_reaper_thread,
   1484                       s, QEMU_THREAD_JOINABLE);
   1485
   1486    return 0;
   1487}
   1488
   1489static void kvm_region_add(MemoryListener *listener,
   1490                           MemoryRegionSection *section)
   1491{
   1492    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
   1493
   1494    memory_region_ref(section->mr);
   1495    kvm_set_phys_mem(kml, section, true);
   1496}
   1497
   1498static void kvm_region_del(MemoryListener *listener,
   1499                           MemoryRegionSection *section)
   1500{
   1501    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
   1502
   1503    kvm_set_phys_mem(kml, section, false);
   1504    memory_region_unref(section->mr);
   1505}
   1506
   1507static void kvm_log_sync(MemoryListener *listener,
   1508                         MemoryRegionSection *section)
   1509{
   1510    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
   1511
   1512    kvm_slots_lock();
   1513    kvm_physical_sync_dirty_bitmap(kml, section);
   1514    kvm_slots_unlock();
   1515}
   1516
   1517static void kvm_log_sync_global(MemoryListener *l)
   1518{
   1519    KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
   1520    KVMState *s = kvm_state;
   1521    KVMSlot *mem;
   1522    int i;
   1523
   1524    /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
   1525    kvm_dirty_ring_flush();
   1526
   1527    /*
   1528     * TODO: make this faster when nr_slots is big while there are
   1529     * only a few used slots (small VMs).
   1530     */
   1531    kvm_slots_lock();
   1532    for (i = 0; i < s->nr_slots; i++) {
   1533        mem = &kml->slots[i];
   1534        if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
   1535            kvm_slot_sync_dirty_pages(mem);
   1536            /*
   1537             * This is not needed by KVM_GET_DIRTY_LOG because the
   1538             * ioctl will unconditionally overwrite the whole region.
   1539             * However kvm dirty ring has no such side effect.
   1540             */
   1541            kvm_slot_reset_dirty_pages(mem);
   1542        }
   1543    }
   1544    kvm_slots_unlock();
   1545}
   1546
   1547static void kvm_log_clear(MemoryListener *listener,
   1548                          MemoryRegionSection *section)
   1549{
   1550    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
   1551    int r;
   1552
   1553    r = kvm_physical_log_clear(kml, section);
   1554    if (r < 0) {
   1555        error_report_once("%s: kvm log clear failed: mr=%s "
   1556                          "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
   1557                          section->mr->name, section->offset_within_region,
   1558                          int128_get64(section->size));
   1559        abort();
   1560    }
   1561}
   1562
   1563static void kvm_mem_ioeventfd_add(MemoryListener *listener,
   1564                                  MemoryRegionSection *section,
   1565                                  bool match_data, uint64_t data,
   1566                                  EventNotifier *e)
   1567{
   1568    int fd = event_notifier_get_fd(e);
   1569    int r;
   1570
   1571    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
   1572                               data, true, int128_get64(section->size),
   1573                               match_data);
   1574    if (r < 0) {
   1575        fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
   1576                __func__, strerror(-r), -r);
   1577        abort();
   1578    }
   1579}
   1580
   1581static void kvm_mem_ioeventfd_del(MemoryListener *listener,
   1582                                  MemoryRegionSection *section,
   1583                                  bool match_data, uint64_t data,
   1584                                  EventNotifier *e)
   1585{
   1586    int fd = event_notifier_get_fd(e);
   1587    int r;
   1588
   1589    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
   1590                               data, false, int128_get64(section->size),
   1591                               match_data);
   1592    if (r < 0) {
   1593        fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
   1594                __func__, strerror(-r), -r);
   1595        abort();
   1596    }
   1597}
   1598
   1599static void kvm_io_ioeventfd_add(MemoryListener *listener,
   1600                                 MemoryRegionSection *section,
   1601                                 bool match_data, uint64_t data,
   1602                                 EventNotifier *e)
   1603{
   1604    int fd = event_notifier_get_fd(e);
   1605    int r;
   1606
   1607    r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
   1608                              data, true, int128_get64(section->size),
   1609                              match_data);
   1610    if (r < 0) {
   1611        fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
   1612                __func__, strerror(-r), -r);
   1613        abort();
   1614    }
   1615}
   1616
   1617static void kvm_io_ioeventfd_del(MemoryListener *listener,
   1618                                 MemoryRegionSection *section,
   1619                                 bool match_data, uint64_t data,
   1620                                 EventNotifier *e)
   1621
   1622{
   1623    int fd = event_notifier_get_fd(e);
   1624    int r;
   1625
   1626    r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
   1627                              data, false, int128_get64(section->size),
   1628                              match_data);
   1629    if (r < 0) {
   1630        fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
   1631                __func__, strerror(-r), -r);
   1632        abort();
   1633    }
   1634}
   1635
   1636void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
   1637                                  AddressSpace *as, int as_id, const char *name)
   1638{
   1639    int i;
   1640
   1641    kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
   1642    kml->as_id = as_id;
   1643
   1644    for (i = 0; i < s->nr_slots; i++) {
   1645        kml->slots[i].slot = i;
   1646    }
   1647
   1648    kml->listener.region_add = kvm_region_add;
   1649    kml->listener.region_del = kvm_region_del;
   1650    kml->listener.log_start = kvm_log_start;
   1651    kml->listener.log_stop = kvm_log_stop;
   1652    kml->listener.priority = 10;
   1653    kml->listener.name = name;
   1654
   1655    if (s->kvm_dirty_ring_size) {
   1656        kml->listener.log_sync_global = kvm_log_sync_global;
   1657    } else {
   1658        kml->listener.log_sync = kvm_log_sync;
   1659        kml->listener.log_clear = kvm_log_clear;
   1660    }
   1661
   1662    memory_listener_register(&kml->listener, as);
   1663
   1664    for (i = 0; i < s->nr_as; ++i) {
   1665        if (!s->as[i].as) {
   1666            s->as[i].as = as;
   1667            s->as[i].ml = kml;
   1668            break;
   1669        }
   1670    }
   1671}
   1672
   1673static MemoryListener kvm_io_listener = {
   1674    .name = "kvm-io",
   1675    .eventfd_add = kvm_io_ioeventfd_add,
   1676    .eventfd_del = kvm_io_ioeventfd_del,
   1677    .priority = 10,
   1678};
   1679
   1680int kvm_set_irq(KVMState *s, int irq, int level)
   1681{
   1682    struct kvm_irq_level event;
   1683    int ret;
   1684
   1685    assert(kvm_async_interrupts_enabled());
   1686
   1687    event.level = level;
   1688    event.irq = irq;
   1689    ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
   1690    if (ret < 0) {
   1691        perror("kvm_set_irq");
   1692        abort();
   1693    }
   1694
   1695    return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
   1696}
   1697
   1698#ifdef KVM_CAP_IRQ_ROUTING
   1699typedef struct KVMMSIRoute {
   1700    struct kvm_irq_routing_entry kroute;
   1701    QTAILQ_ENTRY(KVMMSIRoute) entry;
   1702} KVMMSIRoute;
   1703
   1704static void set_gsi(KVMState *s, unsigned int gsi)
   1705{
   1706    set_bit(gsi, s->used_gsi_bitmap);
   1707}
   1708
   1709static void clear_gsi(KVMState *s, unsigned int gsi)
   1710{
   1711    clear_bit(gsi, s->used_gsi_bitmap);
   1712}
   1713
   1714void kvm_init_irq_routing(KVMState *s)
   1715{
   1716    int gsi_count, i;
   1717
   1718    gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
   1719    if (gsi_count > 0) {
   1720        /* Round up so we can search ints using ffs */
   1721        s->used_gsi_bitmap = bitmap_new(gsi_count);
   1722        s->gsi_count = gsi_count;
   1723    }
   1724
   1725    s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
   1726    s->nr_allocated_irq_routes = 0;
   1727
   1728    if (!kvm_direct_msi_allowed) {
   1729        for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
   1730            QTAILQ_INIT(&s->msi_hashtab[i]);
   1731        }
   1732    }
   1733
   1734    kvm_arch_init_irq_routing(s);
   1735}
   1736
   1737void kvm_irqchip_commit_routes(KVMState *s)
   1738{
   1739    int ret;
   1740
   1741    if (kvm_gsi_direct_mapping()) {
   1742        return;
   1743    }
   1744
   1745    if (!kvm_gsi_routing_enabled()) {
   1746        return;
   1747    }
   1748
   1749    s->irq_routes->flags = 0;
   1750    trace_kvm_irqchip_commit_routes();
   1751    ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
   1752    assert(ret == 0);
   1753}
   1754
   1755static void kvm_add_routing_entry(KVMState *s,
   1756                                  struct kvm_irq_routing_entry *entry)
   1757{
   1758    struct kvm_irq_routing_entry *new;
   1759    int n, size;
   1760
   1761    if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
   1762        n = s->nr_allocated_irq_routes * 2;
   1763        if (n < 64) {
   1764            n = 64;
   1765        }
   1766        size = sizeof(struct kvm_irq_routing);
   1767        size += n * sizeof(*new);
   1768        s->irq_routes = g_realloc(s->irq_routes, size);
   1769        s->nr_allocated_irq_routes = n;
   1770    }
   1771    n = s->irq_routes->nr++;
   1772    new = &s->irq_routes->entries[n];
   1773
   1774    *new = *entry;
   1775
   1776    set_gsi(s, entry->gsi);
   1777}
   1778
   1779static int kvm_update_routing_entry(KVMState *s,
   1780                                    struct kvm_irq_routing_entry *new_entry)
   1781{
   1782    struct kvm_irq_routing_entry *entry;
   1783    int n;
   1784
   1785    for (n = 0; n < s->irq_routes->nr; n++) {
   1786        entry = &s->irq_routes->entries[n];
   1787        if (entry->gsi != new_entry->gsi) {
   1788            continue;
   1789        }
   1790
   1791        if(!memcmp(entry, new_entry, sizeof *entry)) {
   1792            return 0;
   1793        }
   1794
   1795        *entry = *new_entry;
   1796
   1797        return 0;
   1798    }
   1799
   1800    return -ESRCH;
   1801}
   1802
   1803void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
   1804{
   1805    struct kvm_irq_routing_entry e = {};
   1806
   1807    assert(pin < s->gsi_count);
   1808
   1809    e.gsi = irq;
   1810    e.type = KVM_IRQ_ROUTING_IRQCHIP;
   1811    e.flags = 0;
   1812    e.u.irqchip.irqchip = irqchip;
   1813    e.u.irqchip.pin = pin;
   1814    kvm_add_routing_entry(s, &e);
   1815}
   1816
   1817void kvm_irqchip_release_virq(KVMState *s, int virq)
   1818{
   1819    struct kvm_irq_routing_entry *e;
   1820    int i;
   1821
   1822    if (kvm_gsi_direct_mapping()) {
   1823        return;
   1824    }
   1825
   1826    for (i = 0; i < s->irq_routes->nr; i++) {
   1827        e = &s->irq_routes->entries[i];
   1828        if (e->gsi == virq) {
   1829            s->irq_routes->nr--;
   1830            *e = s->irq_routes->entries[s->irq_routes->nr];
   1831        }
   1832    }
   1833    clear_gsi(s, virq);
   1834    kvm_arch_release_virq_post(virq);
   1835    trace_kvm_irqchip_release_virq(virq);
   1836}
   1837
   1838void kvm_irqchip_add_change_notifier(Notifier *n)
   1839{
   1840    notifier_list_add(&kvm_irqchip_change_notifiers, n);
   1841}
   1842
   1843void kvm_irqchip_remove_change_notifier(Notifier *n)
   1844{
   1845    notifier_remove(n);
   1846}
   1847
   1848void kvm_irqchip_change_notify(void)
   1849{
   1850    notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
   1851}
   1852
   1853static unsigned int kvm_hash_msi(uint32_t data)
   1854{
   1855    /* This is optimized for IA32 MSI layout. However, no other arch shall
   1856     * repeat the mistake of not providing a direct MSI injection API. */
   1857    return data & 0xff;
   1858}
   1859
   1860static void kvm_flush_dynamic_msi_routes(KVMState *s)
   1861{
   1862    KVMMSIRoute *route, *next;
   1863    unsigned int hash;
   1864
   1865    for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
   1866        QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
   1867            kvm_irqchip_release_virq(s, route->kroute.gsi);
   1868            QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
   1869            g_free(route);
   1870        }
   1871    }
   1872}
   1873
   1874static int kvm_irqchip_get_virq(KVMState *s)
   1875{
   1876    int next_virq;
   1877
   1878    /*
   1879     * PIC and IOAPIC share the first 16 GSI numbers, thus the available
   1880     * GSI numbers are more than the number of IRQ route. Allocating a GSI
   1881     * number can succeed even though a new route entry cannot be added.
   1882     * When this happens, flush dynamic MSI entries to free IRQ route entries.
   1883     */
   1884    if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
   1885        kvm_flush_dynamic_msi_routes(s);
   1886    }
   1887
   1888    /* Return the lowest unused GSI in the bitmap */
   1889    next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
   1890    if (next_virq >= s->gsi_count) {
   1891        return -ENOSPC;
   1892    } else {
   1893        return next_virq;
   1894    }
   1895}
   1896
   1897static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
   1898{
   1899    unsigned int hash = kvm_hash_msi(msg.data);
   1900    KVMMSIRoute *route;
   1901
   1902    QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
   1903        if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
   1904            route->kroute.u.msi.address_hi == (msg.address >> 32) &&
   1905            route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
   1906            return route;
   1907        }
   1908    }
   1909    return NULL;
   1910}
   1911
   1912int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
   1913{
   1914    struct kvm_msi msi;
   1915    KVMMSIRoute *route;
   1916
   1917    if (kvm_direct_msi_allowed) {
   1918        msi.address_lo = (uint32_t)msg.address;
   1919        msi.address_hi = msg.address >> 32;
   1920        msi.data = le32_to_cpu(msg.data);
   1921        msi.flags = 0;
   1922        memset(msi.pad, 0, sizeof(msi.pad));
   1923
   1924        return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
   1925    }
   1926
   1927    route = kvm_lookup_msi_route(s, msg);
   1928    if (!route) {
   1929        int virq;
   1930
   1931        virq = kvm_irqchip_get_virq(s);
   1932        if (virq < 0) {
   1933            return virq;
   1934        }
   1935
   1936        route = g_malloc0(sizeof(KVMMSIRoute));
   1937        route->kroute.gsi = virq;
   1938        route->kroute.type = KVM_IRQ_ROUTING_MSI;
   1939        route->kroute.flags = 0;
   1940        route->kroute.u.msi.address_lo = (uint32_t)msg.address;
   1941        route->kroute.u.msi.address_hi = msg.address >> 32;
   1942        route->kroute.u.msi.data = le32_to_cpu(msg.data);
   1943
   1944        kvm_add_routing_entry(s, &route->kroute);
   1945        kvm_irqchip_commit_routes(s);
   1946
   1947        QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
   1948                           entry);
   1949    }
   1950
   1951    assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
   1952
   1953    return kvm_set_irq(s, route->kroute.gsi, 1);
   1954}
   1955
   1956int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
   1957{
   1958    struct kvm_irq_routing_entry kroute = {};
   1959    int virq;
   1960    MSIMessage msg = {0, 0};
   1961
   1962    if (pci_available && dev) {
   1963        msg = pci_get_msi_message(dev, vector);
   1964    }
   1965
   1966    if (kvm_gsi_direct_mapping()) {
   1967        return kvm_arch_msi_data_to_gsi(msg.data);
   1968    }
   1969
   1970    if (!kvm_gsi_routing_enabled()) {
   1971        return -ENOSYS;
   1972    }
   1973
   1974    virq = kvm_irqchip_get_virq(s);
   1975    if (virq < 0) {
   1976        return virq;
   1977    }
   1978
   1979    kroute.gsi = virq;
   1980    kroute.type = KVM_IRQ_ROUTING_MSI;
   1981    kroute.flags = 0;
   1982    kroute.u.msi.address_lo = (uint32_t)msg.address;
   1983    kroute.u.msi.address_hi = msg.address >> 32;
   1984    kroute.u.msi.data = le32_to_cpu(msg.data);
   1985    if (pci_available && kvm_msi_devid_required()) {
   1986        kroute.flags = KVM_MSI_VALID_DEVID;
   1987        kroute.u.msi.devid = pci_requester_id(dev);
   1988    }
   1989    if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
   1990        kvm_irqchip_release_virq(s, virq);
   1991        return -EINVAL;
   1992    }
   1993
   1994    trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
   1995                                    vector, virq);
   1996
   1997    kvm_add_routing_entry(s, &kroute);
   1998    kvm_arch_add_msi_route_post(&kroute, vector, dev);
   1999    kvm_irqchip_commit_routes(s);
   2000
   2001    return virq;
   2002}
   2003
   2004int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
   2005                                 PCIDevice *dev)
   2006{
   2007    struct kvm_irq_routing_entry kroute = {};
   2008
   2009    if (kvm_gsi_direct_mapping()) {
   2010        return 0;
   2011    }
   2012
   2013    if (!kvm_irqchip_in_kernel()) {
   2014        return -ENOSYS;
   2015    }
   2016
   2017    kroute.gsi = virq;
   2018    kroute.type = KVM_IRQ_ROUTING_MSI;
   2019    kroute.flags = 0;
   2020    kroute.u.msi.address_lo = (uint32_t)msg.address;
   2021    kroute.u.msi.address_hi = msg.address >> 32;
   2022    kroute.u.msi.data = le32_to_cpu(msg.data);
   2023    if (pci_available && kvm_msi_devid_required()) {
   2024        kroute.flags = KVM_MSI_VALID_DEVID;
   2025        kroute.u.msi.devid = pci_requester_id(dev);
   2026    }
   2027    if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
   2028        return -EINVAL;
   2029    }
   2030
   2031    trace_kvm_irqchip_update_msi_route(virq);
   2032
   2033    return kvm_update_routing_entry(s, &kroute);
   2034}
   2035
   2036static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
   2037                                    EventNotifier *resample, int virq,
   2038                                    bool assign)
   2039{
   2040    int fd = event_notifier_get_fd(event);
   2041    int rfd = resample ? event_notifier_get_fd(resample) : -1;
   2042
   2043    struct kvm_irqfd irqfd = {
   2044        .fd = fd,
   2045        .gsi = virq,
   2046        .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
   2047    };
   2048
   2049    if (rfd != -1) {
   2050        assert(assign);
   2051        if (kvm_irqchip_is_split()) {
   2052            /*
   2053             * When the slow irqchip (e.g. IOAPIC) is in the
   2054             * userspace, KVM kernel resamplefd will not work because
   2055             * the EOI of the interrupt will be delivered to userspace
   2056             * instead, so the KVM kernel resamplefd kick will be
   2057             * skipped.  The userspace here mimics what the kernel
   2058             * provides with resamplefd, remember the resamplefd and
   2059             * kick it when we receive EOI of this IRQ.
   2060             *
   2061             * This is hackery because IOAPIC is mostly bypassed
   2062             * (except EOI broadcasts) when irqfd is used.  However
   2063             * this can bring much performance back for split irqchip
   2064             * with INTx IRQs (for VFIO, this gives 93% perf of the
   2065             * full fast path, which is 46% perf boost comparing to
   2066             * the INTx slow path).
   2067             */
   2068            kvm_resample_fd_insert(virq, resample);
   2069        } else {
   2070            irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
   2071            irqfd.resamplefd = rfd;
   2072        }
   2073    } else if (!assign) {
   2074        if (kvm_irqchip_is_split()) {
   2075            kvm_resample_fd_remove(virq);
   2076        }
   2077    }
   2078
   2079    if (!kvm_irqfds_enabled()) {
   2080        return -ENOSYS;
   2081    }
   2082
   2083    return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
   2084}
   2085
   2086int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
   2087{
   2088    struct kvm_irq_routing_entry kroute = {};
   2089    int virq;
   2090
   2091    if (!kvm_gsi_routing_enabled()) {
   2092        return -ENOSYS;
   2093    }
   2094
   2095    virq = kvm_irqchip_get_virq(s);
   2096    if (virq < 0) {
   2097        return virq;
   2098    }
   2099
   2100    kroute.gsi = virq;
   2101    kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
   2102    kroute.flags = 0;
   2103    kroute.u.adapter.summary_addr = adapter->summary_addr;
   2104    kroute.u.adapter.ind_addr = adapter->ind_addr;
   2105    kroute.u.adapter.summary_offset = adapter->summary_offset;
   2106    kroute.u.adapter.ind_offset = adapter->ind_offset;
   2107    kroute.u.adapter.adapter_id = adapter->adapter_id;
   2108
   2109    kvm_add_routing_entry(s, &kroute);
   2110
   2111    return virq;
   2112}
   2113
   2114int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
   2115{
   2116    struct kvm_irq_routing_entry kroute = {};
   2117    int virq;
   2118
   2119    if (!kvm_gsi_routing_enabled()) {
   2120        return -ENOSYS;
   2121    }
   2122    if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
   2123        return -ENOSYS;
   2124    }
   2125    virq = kvm_irqchip_get_virq(s);
   2126    if (virq < 0) {
   2127        return virq;
   2128    }
   2129
   2130    kroute.gsi = virq;
   2131    kroute.type = KVM_IRQ_ROUTING_HV_SINT;
   2132    kroute.flags = 0;
   2133    kroute.u.hv_sint.vcpu = vcpu;
   2134    kroute.u.hv_sint.sint = sint;
   2135
   2136    kvm_add_routing_entry(s, &kroute);
   2137    kvm_irqchip_commit_routes(s);
   2138
   2139    return virq;
   2140}
   2141
   2142#else /* !KVM_CAP_IRQ_ROUTING */
   2143
   2144void kvm_init_irq_routing(KVMState *s)
   2145{
   2146}
   2147
   2148void kvm_irqchip_release_virq(KVMState *s, int virq)
   2149{
   2150}
   2151
   2152int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
   2153{
   2154    abort();
   2155}
   2156
   2157int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
   2158{
   2159    return -ENOSYS;
   2160}
   2161
   2162int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
   2163{
   2164    return -ENOSYS;
   2165}
   2166
   2167int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
   2168{
   2169    return -ENOSYS;
   2170}
   2171
   2172static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
   2173                                    EventNotifier *resample, int virq,
   2174                                    bool assign)
   2175{
   2176    abort();
   2177}
   2178
   2179int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
   2180{
   2181    return -ENOSYS;
   2182}
   2183#endif /* !KVM_CAP_IRQ_ROUTING */
   2184
   2185int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
   2186                                       EventNotifier *rn, int virq)
   2187{
   2188    return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
   2189}
   2190
   2191int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
   2192                                          int virq)
   2193{
   2194    return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
   2195}
   2196
   2197int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
   2198                                   EventNotifier *rn, qemu_irq irq)
   2199{
   2200    gpointer key, gsi;
   2201    gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
   2202
   2203    if (!found) {
   2204        return -ENXIO;
   2205    }
   2206    return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
   2207}
   2208
   2209int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
   2210                                      qemu_irq irq)
   2211{
   2212    gpointer key, gsi;
   2213    gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
   2214
   2215    if (!found) {
   2216        return -ENXIO;
   2217    }
   2218    return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
   2219}
   2220
   2221void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
   2222{
   2223    g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
   2224}
   2225
   2226static void kvm_irqchip_create(KVMState *s)
   2227{
   2228    int ret;
   2229
   2230    assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
   2231    if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
   2232        ;
   2233    } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
   2234        ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
   2235        if (ret < 0) {
   2236            fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
   2237            exit(1);
   2238        }
   2239    } else {
   2240        return;
   2241    }
   2242
   2243    /* First probe and see if there's a arch-specific hook to create the
   2244     * in-kernel irqchip for us */
   2245    ret = kvm_arch_irqchip_create(s);
   2246    if (ret == 0) {
   2247        if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
   2248            perror("Split IRQ chip mode not supported.");
   2249            exit(1);
   2250        } else {
   2251            ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
   2252        }
   2253    }
   2254    if (ret < 0) {
   2255        fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
   2256        exit(1);
   2257    }
   2258
   2259    kvm_kernel_irqchip = true;
   2260    /* If we have an in-kernel IRQ chip then we must have asynchronous
   2261     * interrupt delivery (though the reverse is not necessarily true)
   2262     */
   2263    kvm_async_interrupts_allowed = true;
   2264    kvm_halt_in_kernel_allowed = true;
   2265
   2266    kvm_init_irq_routing(s);
   2267
   2268    s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
   2269}
   2270
   2271/* Find number of supported CPUs using the recommended
   2272 * procedure from the kernel API documentation to cope with
   2273 * older kernels that may be missing capabilities.
   2274 */
   2275static int kvm_recommended_vcpus(KVMState *s)
   2276{
   2277    int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
   2278    return (ret) ? ret : 4;
   2279}
   2280
   2281static int kvm_max_vcpus(KVMState *s)
   2282{
   2283    int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
   2284    return (ret) ? ret : kvm_recommended_vcpus(s);
   2285}
   2286
   2287static int kvm_max_vcpu_id(KVMState *s)
   2288{
   2289    int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
   2290    return (ret) ? ret : kvm_max_vcpus(s);
   2291}
   2292
   2293bool kvm_vcpu_id_is_valid(int vcpu_id)
   2294{
   2295    KVMState *s = KVM_STATE(current_accel());
   2296    return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
   2297}
   2298
   2299static int kvm_init(MachineState *ms)
   2300{
   2301    MachineClass *mc = MACHINE_GET_CLASS(ms);
   2302    static const char upgrade_note[] =
   2303        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
   2304        "(see http://sourceforge.net/projects/kvm).\n";
   2305    struct {
   2306        const char *name;
   2307        int num;
   2308    } num_cpus[] = {
   2309        { "SMP",          ms->smp.cpus },
   2310        { "hotpluggable", ms->smp.max_cpus },
   2311        { NULL, }
   2312    }, *nc = num_cpus;
   2313    int soft_vcpus_limit, hard_vcpus_limit;
   2314    KVMState *s;
   2315    const KVMCapabilityInfo *missing_cap;
   2316    int ret;
   2317    int type = 0;
   2318    uint64_t dirty_log_manual_caps;
   2319
   2320    qemu_mutex_init(&kml_slots_lock);
   2321
   2322    s = KVM_STATE(ms->accelerator);
   2323
   2324    /*
   2325     * On systems where the kernel can support different base page
   2326     * sizes, host page size may be different from TARGET_PAGE_SIZE,
   2327     * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
   2328     * page size for the system though.
   2329     */
   2330    assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
   2331
   2332    s->sigmask_len = 8;
   2333
   2334#ifdef KVM_CAP_SET_GUEST_DEBUG
   2335    QTAILQ_INIT(&s->kvm_sw_breakpoints);
   2336#endif
   2337    QLIST_INIT(&s->kvm_parked_vcpus);
   2338    s->fd = qemu_open_old("/dev/kvm", O_RDWR);
   2339    if (s->fd == -1) {
   2340        fprintf(stderr, "Could not access KVM kernel module: %m\n");
   2341        ret = -errno;
   2342        goto err;
   2343    }
   2344
   2345    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
   2346    if (ret < KVM_API_VERSION) {
   2347        if (ret >= 0) {
   2348            ret = -EINVAL;
   2349        }
   2350        fprintf(stderr, "kvm version too old\n");
   2351        goto err;
   2352    }
   2353
   2354    if (ret > KVM_API_VERSION) {
   2355        ret = -EINVAL;
   2356        fprintf(stderr, "kvm version not supported\n");
   2357        goto err;
   2358    }
   2359
   2360    kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
   2361    s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
   2362
   2363    /* If unspecified, use the default value */
   2364    if (!s->nr_slots) {
   2365        s->nr_slots = 32;
   2366    }
   2367
   2368    s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
   2369    if (s->nr_as <= 1) {
   2370        s->nr_as = 1;
   2371    }
   2372    s->as = g_new0(struct KVMAs, s->nr_as);
   2373
   2374    if (object_property_find(OBJECT(current_machine), "kvm-type")) {
   2375        g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
   2376                                                            "kvm-type",
   2377                                                            &error_abort);
   2378        type = mc->kvm_type(ms, kvm_type);
   2379    } else if (mc->kvm_type) {
   2380        type = mc->kvm_type(ms, NULL);
   2381    }
   2382
   2383    do {
   2384        ret = kvm_ioctl(s, KVM_CREATE_VM, type);
   2385    } while (ret == -EINTR);
   2386
   2387    if (ret < 0) {
   2388        fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
   2389                strerror(-ret));
   2390
   2391#ifdef TARGET_S390X
   2392        if (ret == -EINVAL) {
   2393            fprintf(stderr,
   2394                    "Host kernel setup problem detected. Please verify:\n");
   2395            fprintf(stderr, "- for kernels supporting the switch_amode or"
   2396                    " user_mode parameters, whether\n");
   2397            fprintf(stderr,
   2398                    "  user space is running in primary address space\n");
   2399            fprintf(stderr,
   2400                    "- for kernels supporting the vm.allocate_pgste sysctl, "
   2401                    "whether it is enabled\n");
   2402        }
   2403#elif defined(TARGET_PPC)
   2404        if (ret == -EINVAL) {
   2405            fprintf(stderr,
   2406                    "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
   2407                    (type == 2) ? "pr" : "hv");
   2408        }
   2409#endif
   2410        goto err;
   2411    }
   2412
   2413    s->vmfd = ret;
   2414
   2415    /* check the vcpu limits */
   2416    soft_vcpus_limit = kvm_recommended_vcpus(s);
   2417    hard_vcpus_limit = kvm_max_vcpus(s);
   2418
   2419    while (nc->name) {
   2420        if (nc->num > soft_vcpus_limit) {
   2421            warn_report("Number of %s cpus requested (%d) exceeds "
   2422                        "the recommended cpus supported by KVM (%d)",
   2423                        nc->name, nc->num, soft_vcpus_limit);
   2424
   2425            if (nc->num > hard_vcpus_limit) {
   2426                fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
   2427                        "the maximum cpus supported by KVM (%d)\n",
   2428                        nc->name, nc->num, hard_vcpus_limit);
   2429                exit(1);
   2430            }
   2431        }
   2432        nc++;
   2433    }
   2434
   2435    missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
   2436    if (!missing_cap) {
   2437        missing_cap =
   2438            kvm_check_extension_list(s, kvm_arch_required_capabilities);
   2439    }
   2440    if (missing_cap) {
   2441        ret = -EINVAL;
   2442        fprintf(stderr, "kvm does not support %s\n%s",
   2443                missing_cap->name, upgrade_note);
   2444        goto err;
   2445    }
   2446
   2447    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
   2448    s->coalesced_pio = s->coalesced_mmio &&
   2449                       kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
   2450
   2451    /*
   2452     * Enable KVM dirty ring if supported, otherwise fall back to
   2453     * dirty logging mode
   2454     */
   2455    if (s->kvm_dirty_ring_size > 0) {
   2456        uint64_t ring_bytes;
   2457
   2458        ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn);
   2459
   2460        /* Read the max supported pages */
   2461        ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING);
   2462        if (ret > 0) {
   2463            if (ring_bytes > ret) {
   2464                error_report("KVM dirty ring size %" PRIu32 " too big "
   2465                             "(maximum is %ld).  Please use a smaller value.",
   2466                             s->kvm_dirty_ring_size,
   2467                             (long)ret / sizeof(struct kvm_dirty_gfn));
   2468                ret = -EINVAL;
   2469                goto err;
   2470            }
   2471
   2472            ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes);
   2473            if (ret) {
   2474                error_report("Enabling of KVM dirty ring failed: %s. "
   2475                             "Suggested minimum value is 1024.", strerror(-ret));
   2476                goto err;
   2477            }
   2478
   2479            s->kvm_dirty_ring_bytes = ring_bytes;
   2480         } else {
   2481             warn_report("KVM dirty ring not available, using bitmap method");
   2482             s->kvm_dirty_ring_size = 0;
   2483        }
   2484    }
   2485
   2486    /*
   2487     * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
   2488     * enabled.  More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
   2489     * page is wr-protected initially, which is against how kvm dirty ring is
   2490     * usage - kvm dirty ring requires all pages are wr-protected at the very
   2491     * beginning.  Enabling this feature for dirty ring causes data corruption.
   2492     *
   2493     * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
   2494     * we may expect a higher stall time when starting the migration.  In the
   2495     * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
   2496     * instead of clearing dirty bit, it can be a way to explicitly wr-protect
   2497     * guest pages.
   2498     */
   2499    if (!s->kvm_dirty_ring_size) {
   2500        dirty_log_manual_caps =
   2501            kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
   2502        dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
   2503                                  KVM_DIRTY_LOG_INITIALLY_SET);
   2504        s->manual_dirty_log_protect = dirty_log_manual_caps;
   2505        if (dirty_log_manual_caps) {
   2506            ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
   2507                                    dirty_log_manual_caps);
   2508            if (ret) {
   2509                warn_report("Trying to enable capability %"PRIu64" of "
   2510                            "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
   2511                            "Falling back to the legacy mode. ",
   2512                            dirty_log_manual_caps);
   2513                s->manual_dirty_log_protect = 0;
   2514            }
   2515        }
   2516    }
   2517
   2518#ifdef KVM_CAP_VCPU_EVENTS
   2519    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
   2520#endif
   2521
   2522    s->robust_singlestep =
   2523        kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
   2524
   2525#ifdef KVM_CAP_DEBUGREGS
   2526    s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
   2527#endif
   2528
   2529    s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
   2530
   2531#ifdef KVM_CAP_IRQ_ROUTING
   2532    kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
   2533#endif
   2534
   2535    s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
   2536
   2537    s->irq_set_ioctl = KVM_IRQ_LINE;
   2538    if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
   2539        s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
   2540    }
   2541
   2542    kvm_readonly_mem_allowed =
   2543        (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
   2544
   2545    kvm_eventfds_allowed =
   2546        (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
   2547
   2548    kvm_irqfds_allowed =
   2549        (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
   2550
   2551    kvm_resamplefds_allowed =
   2552        (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
   2553
   2554    kvm_vm_attributes_allowed =
   2555        (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
   2556
   2557    kvm_ioeventfd_any_length_allowed =
   2558        (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
   2559
   2560    kvm_state = s;
   2561
   2562    ret = kvm_arch_init(ms, s);
   2563    if (ret < 0) {
   2564        goto err;
   2565    }
   2566
   2567    if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
   2568        s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
   2569    }
   2570
   2571    qemu_register_reset(kvm_unpoison_all, NULL);
   2572
   2573    if (s->kernel_irqchip_allowed) {
   2574        kvm_irqchip_create(s);
   2575    }
   2576
   2577    if (kvm_eventfds_allowed) {
   2578        s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
   2579        s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
   2580    }
   2581    s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
   2582    s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
   2583
   2584    kvm_memory_listener_register(s, &s->memory_listener,
   2585                                 &address_space_memory, 0, "kvm-memory");
   2586    if (kvm_eventfds_allowed) {
   2587        memory_listener_register(&kvm_io_listener,
   2588                                 &address_space_io);
   2589    }
   2590    memory_listener_register(&kvm_coalesced_pio_listener,
   2591                             &address_space_io);
   2592
   2593    s->many_ioeventfds = kvm_check_many_ioeventfds();
   2594
   2595    s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
   2596    if (!s->sync_mmu) {
   2597        ret = ram_block_discard_disable(true);
   2598        assert(!ret);
   2599    }
   2600
   2601    if (s->kvm_dirty_ring_size) {
   2602        ret = kvm_dirty_ring_reaper_init(s);
   2603        if (ret) {
   2604            goto err;
   2605        }
   2606    }
   2607
   2608    return 0;
   2609
   2610err:
   2611    assert(ret < 0);
   2612    if (s->vmfd >= 0) {
   2613        close(s->vmfd);
   2614    }
   2615    if (s->fd != -1) {
   2616        close(s->fd);
   2617    }
   2618    g_free(s->memory_listener.slots);
   2619
   2620    return ret;
   2621}
   2622
   2623void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
   2624{
   2625    s->sigmask_len = sigmask_len;
   2626}
   2627
   2628static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
   2629                          int size, uint32_t count)
   2630{
   2631    int i;
   2632    uint8_t *ptr = data;
   2633
   2634    for (i = 0; i < count; i++) {
   2635        address_space_rw(&address_space_io, port, attrs,
   2636                         ptr, size,
   2637                         direction == KVM_EXIT_IO_OUT);
   2638        ptr += size;
   2639    }
   2640}
   2641
   2642static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
   2643{
   2644    fprintf(stderr, "KVM internal error. Suberror: %d\n",
   2645            run->internal.suberror);
   2646
   2647    if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
   2648        int i;
   2649
   2650        for (i = 0; i < run->internal.ndata; ++i) {
   2651            fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
   2652                    i, (uint64_t)run->internal.data[i]);
   2653        }
   2654    }
   2655    if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
   2656        fprintf(stderr, "emulation failure\n");
   2657        if (!kvm_arch_stop_on_emulation_error(cpu)) {
   2658            cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
   2659            return EXCP_INTERRUPT;
   2660        }
   2661    }
   2662    /* FIXME: Should trigger a qmp message to let management know
   2663     * something went wrong.
   2664     */
   2665    return -1;
   2666}
   2667
   2668void kvm_flush_coalesced_mmio_buffer(void)
   2669{
   2670    KVMState *s = kvm_state;
   2671
   2672    if (s->coalesced_flush_in_progress) {
   2673        return;
   2674    }
   2675
   2676    s->coalesced_flush_in_progress = true;
   2677
   2678    if (s->coalesced_mmio_ring) {
   2679        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
   2680        while (ring->first != ring->last) {
   2681            struct kvm_coalesced_mmio *ent;
   2682
   2683            ent = &ring->coalesced_mmio[ring->first];
   2684
   2685            if (ent->pio == 1) {
   2686                address_space_write(&address_space_io, ent->phys_addr,
   2687                                    MEMTXATTRS_UNSPECIFIED, ent->data,
   2688                                    ent->len);
   2689            } else {
   2690                cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
   2691            }
   2692            smp_wmb();
   2693            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
   2694        }
   2695    }
   2696
   2697    s->coalesced_flush_in_progress = false;
   2698}
   2699
   2700bool kvm_cpu_check_are_resettable(void)
   2701{
   2702    return kvm_arch_cpu_check_are_resettable();
   2703}
   2704
   2705static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
   2706{
   2707    if (!cpu->vcpu_dirty) {
   2708        kvm_arch_get_registers(cpu);
   2709        cpu->vcpu_dirty = true;
   2710    }
   2711}
   2712
   2713void kvm_cpu_synchronize_state(CPUState *cpu)
   2714{
   2715    if (!cpu->vcpu_dirty) {
   2716        run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
   2717    }
   2718}
   2719
   2720static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
   2721{
   2722    kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
   2723    cpu->vcpu_dirty = false;
   2724}
   2725
   2726void kvm_cpu_synchronize_post_reset(CPUState *cpu)
   2727{
   2728    run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
   2729}
   2730
   2731static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
   2732{
   2733    kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
   2734    cpu->vcpu_dirty = false;
   2735}
   2736
   2737void kvm_cpu_synchronize_post_init(CPUState *cpu)
   2738{
   2739    run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
   2740}
   2741
   2742static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
   2743{
   2744    cpu->vcpu_dirty = true;
   2745}
   2746
   2747void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
   2748{
   2749    run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
   2750}
   2751
   2752#ifdef KVM_HAVE_MCE_INJECTION
   2753static __thread void *pending_sigbus_addr;
   2754static __thread int pending_sigbus_code;
   2755static __thread bool have_sigbus_pending;
   2756#endif
   2757
   2758static void kvm_cpu_kick(CPUState *cpu)
   2759{
   2760    qatomic_set(&cpu->kvm_run->immediate_exit, 1);
   2761}
   2762
   2763static void kvm_cpu_kick_self(void)
   2764{
   2765    if (kvm_immediate_exit) {
   2766        kvm_cpu_kick(current_cpu);
   2767    } else {
   2768        qemu_cpu_kick_self();
   2769    }
   2770}
   2771
   2772static void kvm_eat_signals(CPUState *cpu)
   2773{
   2774    struct timespec ts = { 0, 0 };
   2775    siginfo_t siginfo;
   2776    sigset_t waitset;
   2777    sigset_t chkset;
   2778    int r;
   2779
   2780    if (kvm_immediate_exit) {
   2781        qatomic_set(&cpu->kvm_run->immediate_exit, 0);
   2782        /* Write kvm_run->immediate_exit before the cpu->exit_request
   2783         * write in kvm_cpu_exec.
   2784         */
   2785        smp_wmb();
   2786        return;
   2787    }
   2788
   2789    sigemptyset(&waitset);
   2790    sigaddset(&waitset, SIG_IPI);
   2791
   2792    do {
   2793        r = sigtimedwait(&waitset, &siginfo, &ts);
   2794        if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
   2795            perror("sigtimedwait");
   2796            exit(1);
   2797        }
   2798
   2799        r = sigpending(&chkset);
   2800        if (r == -1) {
   2801            perror("sigpending");
   2802            exit(1);
   2803        }
   2804    } while (sigismember(&chkset, SIG_IPI));
   2805}
   2806
   2807int kvm_cpu_exec(CPUState *cpu)
   2808{
   2809    struct kvm_run *run = cpu->kvm_run;
   2810    int ret, run_ret;
   2811
   2812    DPRINTF("kvm_cpu_exec()\n");
   2813
   2814    if (kvm_arch_process_async_events(cpu)) {
   2815        qatomic_set(&cpu->exit_request, 0);
   2816        return EXCP_HLT;
   2817    }
   2818
   2819    qemu_mutex_unlock_iothread();
   2820    cpu_exec_start(cpu);
   2821
   2822    do {
   2823        MemTxAttrs attrs;
   2824
   2825        if (cpu->vcpu_dirty) {
   2826            kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
   2827            cpu->vcpu_dirty = false;
   2828        }
   2829
   2830        kvm_arch_pre_run(cpu, run);
   2831        if (qatomic_read(&cpu->exit_request)) {
   2832            DPRINTF("interrupt exit requested\n");
   2833            /*
   2834             * KVM requires us to reenter the kernel after IO exits to complete
   2835             * instruction emulation. This self-signal will ensure that we
   2836             * leave ASAP again.
   2837             */
   2838            kvm_cpu_kick_self();
   2839        }
   2840
   2841        /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
   2842         * Matching barrier in kvm_eat_signals.
   2843         */
   2844        smp_rmb();
   2845
   2846        run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
   2847
   2848        attrs = kvm_arch_post_run(cpu, run);
   2849
   2850#ifdef KVM_HAVE_MCE_INJECTION
   2851        if (unlikely(have_sigbus_pending)) {
   2852            qemu_mutex_lock_iothread();
   2853            kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
   2854                                    pending_sigbus_addr);
   2855            have_sigbus_pending = false;
   2856            qemu_mutex_unlock_iothread();
   2857        }
   2858#endif
   2859
   2860        if (run_ret < 0) {
   2861            if (run_ret == -EINTR || run_ret == -EAGAIN) {
   2862                DPRINTF("io window exit\n");
   2863                kvm_eat_signals(cpu);
   2864                ret = EXCP_INTERRUPT;
   2865                break;
   2866            }
   2867            fprintf(stderr, "error: kvm run failed %s\n",
   2868                    strerror(-run_ret));
   2869#ifdef TARGET_PPC
   2870            if (run_ret == -EBUSY) {
   2871                fprintf(stderr,
   2872                        "This is probably because your SMT is enabled.\n"
   2873                        "VCPU can only run on primary threads with all "
   2874                        "secondary threads offline.\n");
   2875            }
   2876#endif
   2877            ret = -1;
   2878            break;
   2879        }
   2880
   2881        trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
   2882        switch (run->exit_reason) {
   2883        case KVM_EXIT_IO:
   2884            DPRINTF("handle_io\n");
   2885            /* Called outside BQL */
   2886            kvm_handle_io(run->io.port, attrs,
   2887                          (uint8_t *)run + run->io.data_offset,
   2888                          run->io.direction,
   2889                          run->io.size,
   2890                          run->io.count);
   2891            ret = 0;
   2892            break;
   2893        case KVM_EXIT_MMIO:
   2894            DPRINTF("handle_mmio\n");
   2895            /* Called outside BQL */
   2896            address_space_rw(&address_space_memory,
   2897                             run->mmio.phys_addr, attrs,
   2898                             run->mmio.data,
   2899                             run->mmio.len,
   2900                             run->mmio.is_write);
   2901            ret = 0;
   2902            break;
   2903        case KVM_EXIT_IRQ_WINDOW_OPEN:
   2904            DPRINTF("irq_window_open\n");
   2905            ret = EXCP_INTERRUPT;
   2906            break;
   2907        case KVM_EXIT_SHUTDOWN:
   2908            DPRINTF("shutdown\n");
   2909            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
   2910            ret = EXCP_INTERRUPT;
   2911            break;
   2912        case KVM_EXIT_UNKNOWN:
   2913            fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
   2914                    (uint64_t)run->hw.hardware_exit_reason);
   2915            ret = -1;
   2916            break;
   2917        case KVM_EXIT_INTERNAL_ERROR:
   2918            ret = kvm_handle_internal_error(cpu, run);
   2919            break;
   2920        case KVM_EXIT_DIRTY_RING_FULL:
   2921            /*
   2922             * We shouldn't continue if the dirty ring of this vcpu is
   2923             * still full.  Got kicked by KVM_RESET_DIRTY_RINGS.
   2924             */
   2925            trace_kvm_dirty_ring_full(cpu->cpu_index);
   2926            qemu_mutex_lock_iothread();
   2927            kvm_dirty_ring_reap(kvm_state);
   2928            qemu_mutex_unlock_iothread();
   2929            ret = 0;
   2930            break;
   2931        case KVM_EXIT_SYSTEM_EVENT:
   2932            switch (run->system_event.type) {
   2933            case KVM_SYSTEM_EVENT_SHUTDOWN:
   2934                qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
   2935                ret = EXCP_INTERRUPT;
   2936                break;
   2937            case KVM_SYSTEM_EVENT_RESET:
   2938                qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
   2939                ret = EXCP_INTERRUPT;
   2940                break;
   2941            case KVM_SYSTEM_EVENT_CRASH:
   2942                kvm_cpu_synchronize_state(cpu);
   2943                qemu_mutex_lock_iothread();
   2944                qemu_system_guest_panicked(cpu_get_crash_info(cpu));
   2945                qemu_mutex_unlock_iothread();
   2946                ret = 0;
   2947                break;
   2948            default:
   2949                DPRINTF("kvm_arch_handle_exit\n");
   2950                ret = kvm_arch_handle_exit(cpu, run);
   2951                break;
   2952            }
   2953            break;
   2954        default:
   2955            DPRINTF("kvm_arch_handle_exit\n");
   2956            ret = kvm_arch_handle_exit(cpu, run);
   2957            break;
   2958        }
   2959    } while (ret == 0);
   2960
   2961    cpu_exec_end(cpu);
   2962    qemu_mutex_lock_iothread();
   2963
   2964    if (ret < 0) {
   2965        cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
   2966        vm_stop(RUN_STATE_INTERNAL_ERROR);
   2967    }
   2968
   2969    qatomic_set(&cpu->exit_request, 0);
   2970    return ret;
   2971}
   2972
   2973int kvm_ioctl(KVMState *s, int type, ...)
   2974{
   2975    int ret;
   2976    void *arg;
   2977    va_list ap;
   2978
   2979    va_start(ap, type);
   2980    arg = va_arg(ap, void *);
   2981    va_end(ap);
   2982
   2983    trace_kvm_ioctl(type, arg);
   2984    ret = ioctl(s->fd, type, arg);
   2985    if (ret == -1) {
   2986        ret = -errno;
   2987    }
   2988    return ret;
   2989}
   2990
   2991int kvm_vm_ioctl(KVMState *s, int type, ...)
   2992{
   2993    int ret;
   2994    void *arg;
   2995    va_list ap;
   2996
   2997    va_start(ap, type);
   2998    arg = va_arg(ap, void *);
   2999    va_end(ap);
   3000
   3001    trace_kvm_vm_ioctl(type, arg);
   3002    ret = ioctl(s->vmfd, type, arg);
   3003    if (ret == -1) {
   3004        ret = -errno;
   3005    }
   3006    return ret;
   3007}
   3008
   3009int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
   3010{
   3011    int ret;
   3012    void *arg;
   3013    va_list ap;
   3014
   3015    va_start(ap, type);
   3016    arg = va_arg(ap, void *);
   3017    va_end(ap);
   3018
   3019    trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
   3020    ret = ioctl(cpu->kvm_fd, type, arg);
   3021    if (ret == -1) {
   3022        ret = -errno;
   3023    }
   3024    return ret;
   3025}
   3026
   3027int kvm_device_ioctl(int fd, int type, ...)
   3028{
   3029    int ret;
   3030    void *arg;
   3031    va_list ap;
   3032
   3033    va_start(ap, type);
   3034    arg = va_arg(ap, void *);
   3035    va_end(ap);
   3036
   3037    trace_kvm_device_ioctl(fd, type, arg);
   3038    ret = ioctl(fd, type, arg);
   3039    if (ret == -1) {
   3040        ret = -errno;
   3041    }
   3042    return ret;
   3043}
   3044
   3045int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
   3046{
   3047    int ret;
   3048    struct kvm_device_attr attribute = {
   3049        .group = group,
   3050        .attr = attr,
   3051    };
   3052
   3053    if (!kvm_vm_attributes_allowed) {
   3054        return 0;
   3055    }
   3056
   3057    ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
   3058    /* kvm returns 0 on success for HAS_DEVICE_ATTR */
   3059    return ret ? 0 : 1;
   3060}
   3061
   3062int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
   3063{
   3064    struct kvm_device_attr attribute = {
   3065        .group = group,
   3066        .attr = attr,
   3067        .flags = 0,
   3068    };
   3069
   3070    return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
   3071}
   3072
   3073int kvm_device_access(int fd, int group, uint64_t attr,
   3074                      void *val, bool write, Error **errp)
   3075{
   3076    struct kvm_device_attr kvmattr;
   3077    int err;
   3078
   3079    kvmattr.flags = 0;
   3080    kvmattr.group = group;
   3081    kvmattr.attr = attr;
   3082    kvmattr.addr = (uintptr_t)val;
   3083
   3084    err = kvm_device_ioctl(fd,
   3085                           write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
   3086                           &kvmattr);
   3087    if (err < 0) {
   3088        error_setg_errno(errp, -err,
   3089                         "KVM_%s_DEVICE_ATTR failed: Group %d "
   3090                         "attr 0x%016" PRIx64,
   3091                         write ? "SET" : "GET", group, attr);
   3092    }
   3093    return err;
   3094}
   3095
   3096bool kvm_has_sync_mmu(void)
   3097{
   3098    return kvm_state->sync_mmu;
   3099}
   3100
   3101int kvm_has_vcpu_events(void)
   3102{
   3103    return kvm_state->vcpu_events;
   3104}
   3105
   3106int kvm_has_robust_singlestep(void)
   3107{
   3108    return kvm_state->robust_singlestep;
   3109}
   3110
   3111int kvm_has_debugregs(void)
   3112{
   3113    return kvm_state->debugregs;
   3114}
   3115
   3116int kvm_max_nested_state_length(void)
   3117{
   3118    return kvm_state->max_nested_state_len;
   3119}
   3120
   3121int kvm_has_many_ioeventfds(void)
   3122{
   3123    if (!kvm_enabled()) {
   3124        return 0;
   3125    }
   3126    return kvm_state->many_ioeventfds;
   3127}
   3128
   3129int kvm_has_gsi_routing(void)
   3130{
   3131#ifdef KVM_CAP_IRQ_ROUTING
   3132    return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
   3133#else
   3134    return false;
   3135#endif
   3136}
   3137
   3138int kvm_has_intx_set_mask(void)
   3139{
   3140    return kvm_state->intx_set_mask;
   3141}
   3142
   3143bool kvm_arm_supports_user_irq(void)
   3144{
   3145    return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
   3146}
   3147
   3148#ifdef KVM_CAP_SET_GUEST_DEBUG
   3149struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
   3150                                                 target_ulong pc)
   3151{
   3152    struct kvm_sw_breakpoint *bp;
   3153
   3154    QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
   3155        if (bp->pc == pc) {
   3156            return bp;
   3157        }
   3158    }
   3159    return NULL;
   3160}
   3161
   3162int kvm_sw_breakpoints_active(CPUState *cpu)
   3163{
   3164    return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
   3165}
   3166
   3167struct kvm_set_guest_debug_data {
   3168    struct kvm_guest_debug dbg;
   3169    int err;
   3170};
   3171
   3172static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
   3173{
   3174    struct kvm_set_guest_debug_data *dbg_data =
   3175        (struct kvm_set_guest_debug_data *) data.host_ptr;
   3176
   3177    dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
   3178                                   &dbg_data->dbg);
   3179}
   3180
   3181int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
   3182{
   3183    struct kvm_set_guest_debug_data data;
   3184
   3185    data.dbg.control = reinject_trap;
   3186
   3187    if (cpu->singlestep_enabled) {
   3188        data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
   3189    }
   3190    kvm_arch_update_guest_debug(cpu, &data.dbg);
   3191
   3192    run_on_cpu(cpu, kvm_invoke_set_guest_debug,
   3193               RUN_ON_CPU_HOST_PTR(&data));
   3194    return data.err;
   3195}
   3196
   3197int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
   3198                          target_ulong len, int type)
   3199{
   3200    struct kvm_sw_breakpoint *bp;
   3201    int err;
   3202
   3203    if (type == GDB_BREAKPOINT_SW) {
   3204        bp = kvm_find_sw_breakpoint(cpu, addr);
   3205        if (bp) {
   3206            bp->use_count++;
   3207            return 0;
   3208        }
   3209
   3210        bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
   3211        bp->pc = addr;
   3212        bp->use_count = 1;
   3213        err = kvm_arch_insert_sw_breakpoint(cpu, bp);
   3214        if (err) {
   3215            g_free(bp);
   3216            return err;
   3217        }
   3218
   3219        QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
   3220    } else {
   3221        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
   3222        if (err) {
   3223            return err;
   3224        }
   3225    }
   3226
   3227    CPU_FOREACH(cpu) {
   3228        err = kvm_update_guest_debug(cpu, 0);
   3229        if (err) {
   3230            return err;
   3231        }
   3232    }
   3233    return 0;
   3234}
   3235
   3236int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
   3237                          target_ulong len, int type)
   3238{
   3239    struct kvm_sw_breakpoint *bp;
   3240    int err;
   3241
   3242    if (type == GDB_BREAKPOINT_SW) {
   3243        bp = kvm_find_sw_breakpoint(cpu, addr);
   3244        if (!bp) {
   3245            return -ENOENT;
   3246        }
   3247
   3248        if (bp->use_count > 1) {
   3249            bp->use_count--;
   3250            return 0;
   3251        }
   3252
   3253        err = kvm_arch_remove_sw_breakpoint(cpu, bp);
   3254        if (err) {
   3255            return err;
   3256        }
   3257
   3258        QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
   3259        g_free(bp);
   3260    } else {
   3261        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
   3262        if (err) {
   3263            return err;
   3264        }
   3265    }
   3266
   3267    CPU_FOREACH(cpu) {
   3268        err = kvm_update_guest_debug(cpu, 0);
   3269        if (err) {
   3270            return err;
   3271        }
   3272    }
   3273    return 0;
   3274}
   3275
   3276void kvm_remove_all_breakpoints(CPUState *cpu)
   3277{
   3278    struct kvm_sw_breakpoint *bp, *next;
   3279    KVMState *s = cpu->kvm_state;
   3280    CPUState *tmpcpu;
   3281
   3282    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
   3283        if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
   3284            /* Try harder to find a CPU that currently sees the breakpoint. */
   3285            CPU_FOREACH(tmpcpu) {
   3286                if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
   3287                    break;
   3288                }
   3289            }
   3290        }
   3291        QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
   3292        g_free(bp);
   3293    }
   3294    kvm_arch_remove_all_hw_breakpoints();
   3295
   3296    CPU_FOREACH(cpu) {
   3297        kvm_update_guest_debug(cpu, 0);
   3298    }
   3299}
   3300
   3301#else /* !KVM_CAP_SET_GUEST_DEBUG */
   3302
   3303int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
   3304{
   3305    return -EINVAL;
   3306}
   3307
   3308int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
   3309                          target_ulong len, int type)
   3310{
   3311    return -EINVAL;
   3312}
   3313
   3314int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
   3315                          target_ulong len, int type)
   3316{
   3317    return -EINVAL;
   3318}
   3319
   3320void kvm_remove_all_breakpoints(CPUState *cpu)
   3321{
   3322}
   3323#endif /* !KVM_CAP_SET_GUEST_DEBUG */
   3324
   3325static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
   3326{
   3327    KVMState *s = kvm_state;
   3328    struct kvm_signal_mask *sigmask;
   3329    int r;
   3330
   3331    sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
   3332
   3333    sigmask->len = s->sigmask_len;
   3334    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
   3335    r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
   3336    g_free(sigmask);
   3337
   3338    return r;
   3339}
   3340
   3341static void kvm_ipi_signal(int sig)
   3342{
   3343    if (current_cpu) {
   3344        assert(kvm_immediate_exit);
   3345        kvm_cpu_kick(current_cpu);
   3346    }
   3347}
   3348
   3349void kvm_init_cpu_signals(CPUState *cpu)
   3350{
   3351    int r;
   3352    sigset_t set;
   3353    struct sigaction sigact;
   3354
   3355    memset(&sigact, 0, sizeof(sigact));
   3356    sigact.sa_handler = kvm_ipi_signal;
   3357    sigaction(SIG_IPI, &sigact, NULL);
   3358
   3359    pthread_sigmask(SIG_BLOCK, NULL, &set);
   3360#if defined KVM_HAVE_MCE_INJECTION
   3361    sigdelset(&set, SIGBUS);
   3362    pthread_sigmask(SIG_SETMASK, &set, NULL);
   3363#endif
   3364    sigdelset(&set, SIG_IPI);
   3365    if (kvm_immediate_exit) {
   3366        r = pthread_sigmask(SIG_SETMASK, &set, NULL);
   3367    } else {
   3368        r = kvm_set_signal_mask(cpu, &set);
   3369    }
   3370    if (r) {
   3371        fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
   3372        exit(1);
   3373    }
   3374}
   3375
   3376/* Called asynchronously in VCPU thread.  */
   3377int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
   3378{
   3379#ifdef KVM_HAVE_MCE_INJECTION
   3380    if (have_sigbus_pending) {
   3381        return 1;
   3382    }
   3383    have_sigbus_pending = true;
   3384    pending_sigbus_addr = addr;
   3385    pending_sigbus_code = code;
   3386    qatomic_set(&cpu->exit_request, 1);
   3387    return 0;
   3388#else
   3389    return 1;
   3390#endif
   3391}
   3392
   3393/* Called synchronously (via signalfd) in main thread.  */
   3394int kvm_on_sigbus(int code, void *addr)
   3395{
   3396#ifdef KVM_HAVE_MCE_INJECTION
   3397    /* Action required MCE kills the process if SIGBUS is blocked.  Because
   3398     * that's what happens in the I/O thread, where we handle MCE via signalfd,
   3399     * we can only get action optional here.
   3400     */
   3401    assert(code != BUS_MCEERR_AR);
   3402    kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
   3403    return 0;
   3404#else
   3405    return 1;
   3406#endif
   3407}
   3408
   3409int kvm_create_device(KVMState *s, uint64_t type, bool test)
   3410{
   3411    int ret;
   3412    struct kvm_create_device create_dev;
   3413
   3414    create_dev.type = type;
   3415    create_dev.fd = -1;
   3416    create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
   3417
   3418    if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
   3419        return -ENOTSUP;
   3420    }
   3421
   3422    ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
   3423    if (ret) {
   3424        return ret;
   3425    }
   3426
   3427    return test ? 0 : create_dev.fd;
   3428}
   3429
   3430bool kvm_device_supported(int vmfd, uint64_t type)
   3431{
   3432    struct kvm_create_device create_dev = {
   3433        .type = type,
   3434        .fd = -1,
   3435        .flags = KVM_CREATE_DEVICE_TEST,
   3436    };
   3437
   3438    if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
   3439        return false;
   3440    }
   3441
   3442    return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
   3443}
   3444
   3445int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
   3446{
   3447    struct kvm_one_reg reg;
   3448    int r;
   3449
   3450    reg.id = id;
   3451    reg.addr = (uintptr_t) source;
   3452    r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
   3453    if (r) {
   3454        trace_kvm_failed_reg_set(id, strerror(-r));
   3455    }
   3456    return r;
   3457}
   3458
   3459int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
   3460{
   3461    struct kvm_one_reg reg;
   3462    int r;
   3463
   3464    reg.id = id;
   3465    reg.addr = (uintptr_t) target;
   3466    r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
   3467    if (r) {
   3468        trace_kvm_failed_reg_get(id, strerror(-r));
   3469    }
   3470    return r;
   3471}
   3472
   3473static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
   3474                                 hwaddr start_addr, hwaddr size)
   3475{
   3476    KVMState *kvm = KVM_STATE(ms->accelerator);
   3477    int i;
   3478
   3479    for (i = 0; i < kvm->nr_as; ++i) {
   3480        if (kvm->as[i].as == as && kvm->as[i].ml) {
   3481            size = MIN(kvm_max_slot_size, size);
   3482            return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
   3483                                                    start_addr, size);
   3484        }
   3485    }
   3486
   3487    return false;
   3488}
   3489
   3490static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
   3491                                   const char *name, void *opaque,
   3492                                   Error **errp)
   3493{
   3494    KVMState *s = KVM_STATE(obj);
   3495    int64_t value = s->kvm_shadow_mem;
   3496
   3497    visit_type_int(v, name, &value, errp);
   3498}
   3499
   3500static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
   3501                                   const char *name, void *opaque,
   3502                                   Error **errp)
   3503{
   3504    KVMState *s = KVM_STATE(obj);
   3505    int64_t value;
   3506
   3507    if (s->fd != -1) {
   3508        error_setg(errp, "Cannot set properties after the accelerator has been initialized");
   3509        return;
   3510    }
   3511
   3512    if (!visit_type_int(v, name, &value, errp)) {
   3513        return;
   3514    }
   3515
   3516    s->kvm_shadow_mem = value;
   3517}
   3518
   3519static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
   3520                                   const char *name, void *opaque,
   3521                                   Error **errp)
   3522{
   3523    KVMState *s = KVM_STATE(obj);
   3524    OnOffSplit mode;
   3525
   3526    if (s->fd != -1) {
   3527        error_setg(errp, "Cannot set properties after the accelerator has been initialized");
   3528        return;
   3529    }
   3530
   3531    if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
   3532        return;
   3533    }
   3534    switch (mode) {
   3535    case ON_OFF_SPLIT_ON:
   3536        s->kernel_irqchip_allowed = true;
   3537        s->kernel_irqchip_required = true;
   3538        s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
   3539        break;
   3540    case ON_OFF_SPLIT_OFF:
   3541        s->kernel_irqchip_allowed = false;
   3542        s->kernel_irqchip_required = false;
   3543        s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
   3544        break;
   3545    case ON_OFF_SPLIT_SPLIT:
   3546        s->kernel_irqchip_allowed = true;
   3547        s->kernel_irqchip_required = true;
   3548        s->kernel_irqchip_split = ON_OFF_AUTO_ON;
   3549        break;
   3550    default:
   3551        /* The value was checked in visit_type_OnOffSplit() above. If
   3552         * we get here, then something is wrong in QEMU.
   3553         */
   3554        abort();
   3555    }
   3556}
   3557
   3558bool kvm_kernel_irqchip_allowed(void)
   3559{
   3560    return kvm_state->kernel_irqchip_allowed;
   3561}
   3562
   3563bool kvm_kernel_irqchip_required(void)
   3564{
   3565    return kvm_state->kernel_irqchip_required;
   3566}
   3567
   3568bool kvm_kernel_irqchip_split(void)
   3569{
   3570    return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
   3571}
   3572
   3573static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
   3574                                    const char *name, void *opaque,
   3575                                    Error **errp)
   3576{
   3577    KVMState *s = KVM_STATE(obj);
   3578    uint32_t value = s->kvm_dirty_ring_size;
   3579
   3580    visit_type_uint32(v, name, &value, errp);
   3581}
   3582
   3583static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
   3584                                    const char *name, void *opaque,
   3585                                    Error **errp)
   3586{
   3587    KVMState *s = KVM_STATE(obj);
   3588    Error *error = NULL;
   3589    uint32_t value;
   3590
   3591    if (s->fd != -1) {
   3592        error_setg(errp, "Cannot set properties after the accelerator has been initialized");
   3593        return;
   3594    }
   3595
   3596    visit_type_uint32(v, name, &value, &error);
   3597    if (error) {
   3598        error_propagate(errp, error);
   3599        return;
   3600    }
   3601    if (value & (value - 1)) {
   3602        error_setg(errp, "dirty-ring-size must be a power of two.");
   3603        return;
   3604    }
   3605
   3606    s->kvm_dirty_ring_size = value;
   3607}
   3608
   3609static void kvm_accel_instance_init(Object *obj)
   3610{
   3611    KVMState *s = KVM_STATE(obj);
   3612
   3613    s->fd = -1;
   3614    s->vmfd = -1;
   3615    s->kvm_shadow_mem = -1;
   3616    s->kernel_irqchip_allowed = true;
   3617    s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
   3618    /* KVM dirty ring is by default off */
   3619    s->kvm_dirty_ring_size = 0;
   3620}
   3621
   3622static void kvm_accel_class_init(ObjectClass *oc, void *data)
   3623{
   3624    AccelClass *ac = ACCEL_CLASS(oc);
   3625    ac->name = "KVM";
   3626    ac->init_machine = kvm_init;
   3627    ac->has_memory = kvm_accel_has_memory;
   3628    ac->allowed = &kvm_allowed;
   3629
   3630    object_class_property_add(oc, "kernel-irqchip", "on|off|split",
   3631        NULL, kvm_set_kernel_irqchip,
   3632        NULL, NULL);
   3633    object_class_property_set_description(oc, "kernel-irqchip",
   3634        "Configure KVM in-kernel irqchip");
   3635
   3636    object_class_property_add(oc, "kvm-shadow-mem", "int",
   3637        kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
   3638        NULL, NULL);
   3639    object_class_property_set_description(oc, "kvm-shadow-mem",
   3640        "KVM shadow MMU size");
   3641
   3642    object_class_property_add(oc, "dirty-ring-size", "uint32",
   3643        kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
   3644        NULL, NULL);
   3645    object_class_property_set_description(oc, "dirty-ring-size",
   3646        "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
   3647}
   3648
   3649static const TypeInfo kvm_accel_type = {
   3650    .name = TYPE_KVM_ACCEL,
   3651    .parent = TYPE_ACCEL,
   3652    .instance_init = kvm_accel_instance_init,
   3653    .class_init = kvm_accel_class_init,
   3654    .instance_size = sizeof(KVMState),
   3655};
   3656
   3657static void kvm_type_init(void)
   3658{
   3659    type_register_static(&kvm_accel_type);
   3660}
   3661
   3662type_init(kvm_type_init);