block-copy.c (32098B)
1/* 2 * block_copy API 3 * 4 * Copyright (C) 2013 Proxmox Server Solutions 5 * Copyright (c) 2019 Virtuozzo International GmbH. 6 * 7 * Authors: 8 * Dietmar Maurer (dietmar@proxmox.com) 9 * Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 */ 14 15#include "qemu/osdep.h" 16 17#include "trace.h" 18#include "qapi/error.h" 19#include "block/block-copy.h" 20#include "sysemu/block-backend.h" 21#include "qemu/units.h" 22#include "qemu/coroutine.h" 23#include "block/aio_task.h" 24#include "qemu/error-report.h" 25 26#define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB) 27#define BLOCK_COPY_MAX_BUFFER (1 * MiB) 28#define BLOCK_COPY_MAX_MEM (128 * MiB) 29#define BLOCK_COPY_MAX_WORKERS 64 30#define BLOCK_COPY_SLICE_TIME 100000000ULL /* ns */ 31#define BLOCK_COPY_CLUSTER_SIZE_DEFAULT (1 << 16) 32 33typedef enum { 34 COPY_READ_WRITE_CLUSTER, 35 COPY_READ_WRITE, 36 COPY_WRITE_ZEROES, 37 COPY_RANGE_SMALL, 38 COPY_RANGE_FULL 39} BlockCopyMethod; 40 41static coroutine_fn int block_copy_task_entry(AioTask *task); 42 43typedef struct BlockCopyCallState { 44 /* Fields initialized in block_copy_async() and never changed. */ 45 BlockCopyState *s; 46 int64_t offset; 47 int64_t bytes; 48 int max_workers; 49 int64_t max_chunk; 50 bool ignore_ratelimit; 51 BlockCopyAsyncCallbackFunc cb; 52 void *cb_opaque; 53 /* Coroutine where async block-copy is running */ 54 Coroutine *co; 55 56 /* Fields whose state changes throughout the execution */ 57 bool finished; /* atomic */ 58 QemuCoSleep sleep; /* TODO: protect API with a lock */ 59 bool cancelled; /* atomic */ 60 /* To reference all call states from BlockCopyState */ 61 QLIST_ENTRY(BlockCopyCallState) list; 62 63 /* 64 * Fields that report information about return values and erros. 65 * Protected by lock in BlockCopyState. 66 */ 67 bool error_is_read; 68 /* 69 * @ret is set concurrently by tasks under mutex. Only set once by first 70 * failed task (and untouched if no task failed). 71 * After finishing (call_state->finished is true), it is not modified 72 * anymore and may be safely read without mutex. 73 */ 74 int ret; 75} BlockCopyCallState; 76 77typedef struct BlockCopyTask { 78 AioTask task; 79 80 /* 81 * Fields initialized in block_copy_task_create() 82 * and never changed. 83 */ 84 BlockCopyState *s; 85 BlockCopyCallState *call_state; 86 int64_t offset; 87 /* 88 * @method can also be set again in the while loop of 89 * block_copy_dirty_clusters(), but it is never accessed concurrently 90 * because the only other function that reads it is 91 * block_copy_task_entry() and it is invoked afterwards in the same 92 * iteration. 93 */ 94 BlockCopyMethod method; 95 96 /* 97 * Fields whose state changes throughout the execution 98 * Protected by lock in BlockCopyState. 99 */ 100 CoQueue wait_queue; /* coroutines blocked on this task */ 101 /* 102 * Only protect the case of parallel read while updating @bytes 103 * value in block_copy_task_shrink(). 104 */ 105 int64_t bytes; 106 QLIST_ENTRY(BlockCopyTask) list; 107} BlockCopyTask; 108 109static int64_t task_end(BlockCopyTask *task) 110{ 111 return task->offset + task->bytes; 112} 113 114typedef struct BlockCopyState { 115 /* 116 * BdrvChild objects are not owned or managed by block-copy. They are 117 * provided by block-copy user and user is responsible for appropriate 118 * permissions on these children. 119 */ 120 BdrvChild *source; 121 BdrvChild *target; 122 123 /* 124 * Fields initialized in block_copy_state_new() 125 * and never changed. 126 */ 127 int64_t cluster_size; 128 int64_t max_transfer; 129 uint64_t len; 130 BdrvRequestFlags write_flags; 131 132 /* 133 * Fields whose state changes throughout the execution 134 * Protected by lock. 135 */ 136 CoMutex lock; 137 int64_t in_flight_bytes; 138 BlockCopyMethod method; 139 QLIST_HEAD(, BlockCopyTask) tasks; /* All tasks from all block-copy calls */ 140 QLIST_HEAD(, BlockCopyCallState) calls; 141 /* 142 * skip_unallocated: 143 * 144 * Used by sync=top jobs, which first scan the source node for unallocated 145 * areas and clear them in the copy_bitmap. During this process, the bitmap 146 * is thus not fully initialized: It may still have bits set for areas that 147 * are unallocated and should actually not be copied. 148 * 149 * This is indicated by skip_unallocated. 150 * 151 * In this case, block_copy() will query the source’s allocation status, 152 * skip unallocated regions, clear them in the copy_bitmap, and invoke 153 * block_copy_reset_unallocated() every time it does. 154 */ 155 bool skip_unallocated; /* atomic */ 156 /* State fields that use a thread-safe API */ 157 BdrvDirtyBitmap *copy_bitmap; 158 ProgressMeter *progress; 159 SharedResource *mem; 160 RateLimit rate_limit; 161} BlockCopyState; 162 163/* Called with lock held */ 164static BlockCopyTask *find_conflicting_task(BlockCopyState *s, 165 int64_t offset, int64_t bytes) 166{ 167 BlockCopyTask *t; 168 169 QLIST_FOREACH(t, &s->tasks, list) { 170 if (offset + bytes > t->offset && offset < t->offset + t->bytes) { 171 return t; 172 } 173 } 174 175 return NULL; 176} 177 178/* 179 * If there are no intersecting tasks return false. Otherwise, wait for the 180 * first found intersecting tasks to finish and return true. 181 * 182 * Called with lock held. May temporary release the lock. 183 * Return value of 0 proves that lock was NOT released. 184 */ 185static bool coroutine_fn block_copy_wait_one(BlockCopyState *s, int64_t offset, 186 int64_t bytes) 187{ 188 BlockCopyTask *task = find_conflicting_task(s, offset, bytes); 189 190 if (!task) { 191 return false; 192 } 193 194 qemu_co_queue_wait(&task->wait_queue, &s->lock); 195 196 return true; 197} 198 199/* Called with lock held */ 200static int64_t block_copy_chunk_size(BlockCopyState *s) 201{ 202 switch (s->method) { 203 case COPY_READ_WRITE_CLUSTER: 204 return s->cluster_size; 205 case COPY_READ_WRITE: 206 case COPY_RANGE_SMALL: 207 return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER), 208 s->max_transfer); 209 case COPY_RANGE_FULL: 210 return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_COPY_RANGE), 211 s->max_transfer); 212 default: 213 /* Cannot have COPY_WRITE_ZEROES here. */ 214 abort(); 215 } 216} 217 218/* 219 * Search for the first dirty area in offset/bytes range and create task at 220 * the beginning of it. 221 */ 222static coroutine_fn BlockCopyTask * 223block_copy_task_create(BlockCopyState *s, BlockCopyCallState *call_state, 224 int64_t offset, int64_t bytes) 225{ 226 BlockCopyTask *task; 227 int64_t max_chunk; 228 229 QEMU_LOCK_GUARD(&s->lock); 230 max_chunk = MIN_NON_ZERO(block_copy_chunk_size(s), call_state->max_chunk); 231 if (!bdrv_dirty_bitmap_next_dirty_area(s->copy_bitmap, 232 offset, offset + bytes, 233 max_chunk, &offset, &bytes)) 234 { 235 return NULL; 236 } 237 238 assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); 239 bytes = QEMU_ALIGN_UP(bytes, s->cluster_size); 240 241 /* region is dirty, so no existent tasks possible in it */ 242 assert(!find_conflicting_task(s, offset, bytes)); 243 244 bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes); 245 s->in_flight_bytes += bytes; 246 247 task = g_new(BlockCopyTask, 1); 248 *task = (BlockCopyTask) { 249 .task.func = block_copy_task_entry, 250 .s = s, 251 .call_state = call_state, 252 .offset = offset, 253 .bytes = bytes, 254 .method = s->method, 255 }; 256 qemu_co_queue_init(&task->wait_queue); 257 QLIST_INSERT_HEAD(&s->tasks, task, list); 258 259 return task; 260} 261 262/* 263 * block_copy_task_shrink 264 * 265 * Drop the tail of the task to be handled later. Set dirty bits back and 266 * wake up all tasks waiting for us (may be some of them are not intersecting 267 * with shrunk task) 268 */ 269static void coroutine_fn block_copy_task_shrink(BlockCopyTask *task, 270 int64_t new_bytes) 271{ 272 QEMU_LOCK_GUARD(&task->s->lock); 273 if (new_bytes == task->bytes) { 274 return; 275 } 276 277 assert(new_bytes > 0 && new_bytes < task->bytes); 278 279 task->s->in_flight_bytes -= task->bytes - new_bytes; 280 bdrv_set_dirty_bitmap(task->s->copy_bitmap, 281 task->offset + new_bytes, task->bytes - new_bytes); 282 283 task->bytes = new_bytes; 284 qemu_co_queue_restart_all(&task->wait_queue); 285} 286 287static void coroutine_fn block_copy_task_end(BlockCopyTask *task, int ret) 288{ 289 QEMU_LOCK_GUARD(&task->s->lock); 290 task->s->in_flight_bytes -= task->bytes; 291 if (ret < 0) { 292 bdrv_set_dirty_bitmap(task->s->copy_bitmap, task->offset, task->bytes); 293 } 294 QLIST_REMOVE(task, list); 295 if (task->s->progress) { 296 progress_set_remaining(task->s->progress, 297 bdrv_get_dirty_count(task->s->copy_bitmap) + 298 task->s->in_flight_bytes); 299 } 300 qemu_co_queue_restart_all(&task->wait_queue); 301} 302 303void block_copy_state_free(BlockCopyState *s) 304{ 305 if (!s) { 306 return; 307 } 308 309 ratelimit_destroy(&s->rate_limit); 310 bdrv_release_dirty_bitmap(s->copy_bitmap); 311 shres_destroy(s->mem); 312 g_free(s); 313} 314 315static uint32_t block_copy_max_transfer(BdrvChild *source, BdrvChild *target) 316{ 317 return MIN_NON_ZERO(INT_MAX, 318 MIN_NON_ZERO(source->bs->bl.max_transfer, 319 target->bs->bl.max_transfer)); 320} 321 322void block_copy_set_copy_opts(BlockCopyState *s, bool use_copy_range, 323 bool compress) 324{ 325 /* Keep BDRV_REQ_SERIALISING set (or not set) in block_copy_state_new() */ 326 s->write_flags = (s->write_flags & BDRV_REQ_SERIALISING) | 327 (compress ? BDRV_REQ_WRITE_COMPRESSED : 0); 328 329 if (s->max_transfer < s->cluster_size) { 330 /* 331 * copy_range does not respect max_transfer. We don't want to bother 332 * with requests smaller than block-copy cluster size, so fallback to 333 * buffered copying (read and write respect max_transfer on their 334 * behalf). 335 */ 336 s->method = COPY_READ_WRITE_CLUSTER; 337 } else if (compress) { 338 /* Compression supports only cluster-size writes and no copy-range. */ 339 s->method = COPY_READ_WRITE_CLUSTER; 340 } else { 341 /* 342 * If copy range enabled, start with COPY_RANGE_SMALL, until first 343 * successful copy_range (look at block_copy_do_copy). 344 */ 345 s->method = use_copy_range ? COPY_RANGE_SMALL : COPY_READ_WRITE; 346 } 347} 348 349static int64_t block_copy_calculate_cluster_size(BlockDriverState *target, 350 Error **errp) 351{ 352 int ret; 353 BlockDriverInfo bdi; 354 bool target_does_cow = bdrv_backing_chain_next(target); 355 356 /* 357 * If there is no backing file on the target, we cannot rely on COW if our 358 * backup cluster size is smaller than the target cluster size. Even for 359 * targets with a backing file, try to avoid COW if possible. 360 */ 361 ret = bdrv_get_info(target, &bdi); 362 if (ret == -ENOTSUP && !target_does_cow) { 363 /* Cluster size is not defined */ 364 warn_report("The target block device doesn't provide " 365 "information about the block size and it doesn't have a " 366 "backing file. The default block size of %u bytes is " 367 "used. If the actual block size of the target exceeds " 368 "this default, the backup may be unusable", 369 BLOCK_COPY_CLUSTER_SIZE_DEFAULT); 370 return BLOCK_COPY_CLUSTER_SIZE_DEFAULT; 371 } else if (ret < 0 && !target_does_cow) { 372 error_setg_errno(errp, -ret, 373 "Couldn't determine the cluster size of the target image, " 374 "which has no backing file"); 375 error_append_hint(errp, 376 "Aborting, since this may create an unusable destination image\n"); 377 return ret; 378 } else if (ret < 0 && target_does_cow) { 379 /* Not fatal; just trudge on ahead. */ 380 return BLOCK_COPY_CLUSTER_SIZE_DEFAULT; 381 } 382 383 return MAX(BLOCK_COPY_CLUSTER_SIZE_DEFAULT, bdi.cluster_size); 384} 385 386BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target, 387 Error **errp) 388{ 389 BlockCopyState *s; 390 int64_t cluster_size; 391 BdrvDirtyBitmap *copy_bitmap; 392 bool is_fleecing; 393 394 cluster_size = block_copy_calculate_cluster_size(target->bs, errp); 395 if (cluster_size < 0) { 396 return NULL; 397 } 398 399 copy_bitmap = bdrv_create_dirty_bitmap(source->bs, cluster_size, NULL, 400 errp); 401 if (!copy_bitmap) { 402 return NULL; 403 } 404 bdrv_disable_dirty_bitmap(copy_bitmap); 405 406 /* 407 * If source is in backing chain of target assume that target is going to be 408 * used for "image fleecing", i.e. it should represent a kind of snapshot of 409 * source at backup-start point in time. And target is going to be read by 410 * somebody (for example, used as NBD export) during backup job. 411 * 412 * In this case, we need to add BDRV_REQ_SERIALISING write flag to avoid 413 * intersection of backup writes and third party reads from target, 414 * otherwise reading from target we may occasionally read already updated by 415 * guest data. 416 * 417 * For more information see commit f8d59dfb40bb and test 418 * tests/qemu-iotests/222 419 */ 420 is_fleecing = bdrv_chain_contains(target->bs, source->bs); 421 422 s = g_new(BlockCopyState, 1); 423 *s = (BlockCopyState) { 424 .source = source, 425 .target = target, 426 .copy_bitmap = copy_bitmap, 427 .cluster_size = cluster_size, 428 .len = bdrv_dirty_bitmap_size(copy_bitmap), 429 .write_flags = (is_fleecing ? BDRV_REQ_SERIALISING : 0), 430 .mem = shres_create(BLOCK_COPY_MAX_MEM), 431 .max_transfer = QEMU_ALIGN_DOWN( 432 block_copy_max_transfer(source, target), 433 cluster_size), 434 }; 435 436 block_copy_set_copy_opts(s, false, false); 437 438 ratelimit_init(&s->rate_limit); 439 qemu_co_mutex_init(&s->lock); 440 QLIST_INIT(&s->tasks); 441 QLIST_INIT(&s->calls); 442 443 return s; 444} 445 446/* Only set before running the job, no need for locking. */ 447void block_copy_set_progress_meter(BlockCopyState *s, ProgressMeter *pm) 448{ 449 s->progress = pm; 450} 451 452/* 453 * Takes ownership of @task 454 * 455 * If pool is NULL directly run the task, otherwise schedule it into the pool. 456 * 457 * Returns: task.func return code if pool is NULL 458 * otherwise -ECANCELED if pool status is bad 459 * otherwise 0 (successfully scheduled) 460 */ 461static coroutine_fn int block_copy_task_run(AioTaskPool *pool, 462 BlockCopyTask *task) 463{ 464 if (!pool) { 465 int ret = task->task.func(&task->task); 466 467 g_free(task); 468 return ret; 469 } 470 471 aio_task_pool_wait_slot(pool); 472 if (aio_task_pool_status(pool) < 0) { 473 co_put_to_shres(task->s->mem, task->bytes); 474 block_copy_task_end(task, -ECANCELED); 475 g_free(task); 476 return -ECANCELED; 477 } 478 479 aio_task_pool_start_task(pool, &task->task); 480 481 return 0; 482} 483 484/* 485 * block_copy_do_copy 486 * 487 * Do copy of cluster-aligned chunk. Requested region is allowed to exceed 488 * s->len only to cover last cluster when s->len is not aligned to clusters. 489 * 490 * No sync here: nor bitmap neighter intersecting requests handling, only copy. 491 * 492 * @method is an in-out argument, so that copy_range can be either extended to 493 * a full-size buffer or disabled if the copy_range attempt fails. The output 494 * value of @method should be used for subsequent tasks. 495 * Returns 0 on success. 496 */ 497static int coroutine_fn block_copy_do_copy(BlockCopyState *s, 498 int64_t offset, int64_t bytes, 499 BlockCopyMethod *method, 500 bool *error_is_read) 501{ 502 int ret; 503 int64_t nbytes = MIN(offset + bytes, s->len) - offset; 504 void *bounce_buffer = NULL; 505 506 assert(offset >= 0 && bytes > 0 && INT64_MAX - offset >= bytes); 507 assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); 508 assert(QEMU_IS_ALIGNED(bytes, s->cluster_size)); 509 assert(offset < s->len); 510 assert(offset + bytes <= s->len || 511 offset + bytes == QEMU_ALIGN_UP(s->len, s->cluster_size)); 512 assert(nbytes < INT_MAX); 513 514 switch (*method) { 515 case COPY_WRITE_ZEROES: 516 ret = bdrv_co_pwrite_zeroes(s->target, offset, nbytes, s->write_flags & 517 ~BDRV_REQ_WRITE_COMPRESSED); 518 if (ret < 0) { 519 trace_block_copy_write_zeroes_fail(s, offset, ret); 520 *error_is_read = false; 521 } 522 return ret; 523 524 case COPY_RANGE_SMALL: 525 case COPY_RANGE_FULL: 526 ret = bdrv_co_copy_range(s->source, offset, s->target, offset, nbytes, 527 0, s->write_flags); 528 if (ret >= 0) { 529 /* Successful copy-range, increase chunk size. */ 530 *method = COPY_RANGE_FULL; 531 return 0; 532 } 533 534 trace_block_copy_copy_range_fail(s, offset, ret); 535 *method = COPY_READ_WRITE; 536 /* Fall through to read+write with allocated buffer */ 537 538 case COPY_READ_WRITE_CLUSTER: 539 case COPY_READ_WRITE: 540 /* 541 * In case of failed copy_range request above, we may proceed with 542 * buffered request larger than BLOCK_COPY_MAX_BUFFER. 543 * Still, further requests will be properly limited, so don't care too 544 * much. Moreover the most likely case (copy_range is unsupported for 545 * the configuration, so the very first copy_range request fails) 546 * is handled by setting large copy_size only after first successful 547 * copy_range. 548 */ 549 550 bounce_buffer = qemu_blockalign(s->source->bs, nbytes); 551 552 ret = bdrv_co_pread(s->source, offset, nbytes, bounce_buffer, 0); 553 if (ret < 0) { 554 trace_block_copy_read_fail(s, offset, ret); 555 *error_is_read = true; 556 goto out; 557 } 558 559 ret = bdrv_co_pwrite(s->target, offset, nbytes, bounce_buffer, 560 s->write_flags); 561 if (ret < 0) { 562 trace_block_copy_write_fail(s, offset, ret); 563 *error_is_read = false; 564 goto out; 565 } 566 567 out: 568 qemu_vfree(bounce_buffer); 569 break; 570 571 default: 572 abort(); 573 } 574 575 return ret; 576} 577 578static coroutine_fn int block_copy_task_entry(AioTask *task) 579{ 580 BlockCopyTask *t = container_of(task, BlockCopyTask, task); 581 BlockCopyState *s = t->s; 582 bool error_is_read = false; 583 BlockCopyMethod method = t->method; 584 int ret; 585 586 ret = block_copy_do_copy(s, t->offset, t->bytes, &method, &error_is_read); 587 588 WITH_QEMU_LOCK_GUARD(&s->lock) { 589 if (s->method == t->method) { 590 s->method = method; 591 } 592 593 if (ret < 0) { 594 if (!t->call_state->ret) { 595 t->call_state->ret = ret; 596 t->call_state->error_is_read = error_is_read; 597 } 598 } else if (s->progress) { 599 progress_work_done(s->progress, t->bytes); 600 } 601 } 602 co_put_to_shres(s->mem, t->bytes); 603 block_copy_task_end(t, ret); 604 605 return ret; 606} 607 608static int block_copy_block_status(BlockCopyState *s, int64_t offset, 609 int64_t bytes, int64_t *pnum) 610{ 611 int64_t num; 612 BlockDriverState *base; 613 int ret; 614 615 if (qatomic_read(&s->skip_unallocated)) { 616 base = bdrv_backing_chain_next(s->source->bs); 617 } else { 618 base = NULL; 619 } 620 621 ret = bdrv_block_status_above(s->source->bs, base, offset, bytes, &num, 622 NULL, NULL); 623 if (ret < 0 || num < s->cluster_size) { 624 /* 625 * On error or if failed to obtain large enough chunk just fallback to 626 * copy one cluster. 627 */ 628 num = s->cluster_size; 629 ret = BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_DATA; 630 } else if (offset + num == s->len) { 631 num = QEMU_ALIGN_UP(num, s->cluster_size); 632 } else { 633 num = QEMU_ALIGN_DOWN(num, s->cluster_size); 634 } 635 636 *pnum = num; 637 return ret; 638} 639 640/* 641 * Check if the cluster starting at offset is allocated or not. 642 * return via pnum the number of contiguous clusters sharing this allocation. 643 */ 644static int block_copy_is_cluster_allocated(BlockCopyState *s, int64_t offset, 645 int64_t *pnum) 646{ 647 BlockDriverState *bs = s->source->bs; 648 int64_t count, total_count = 0; 649 int64_t bytes = s->len - offset; 650 int ret; 651 652 assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); 653 654 while (true) { 655 ret = bdrv_is_allocated(bs, offset, bytes, &count); 656 if (ret < 0) { 657 return ret; 658 } 659 660 total_count += count; 661 662 if (ret || count == 0) { 663 /* 664 * ret: partial segment(s) are considered allocated. 665 * otherwise: unallocated tail is treated as an entire segment. 666 */ 667 *pnum = DIV_ROUND_UP(total_count, s->cluster_size); 668 return ret; 669 } 670 671 /* Unallocated segment(s) with uncertain following segment(s) */ 672 if (total_count >= s->cluster_size) { 673 *pnum = total_count / s->cluster_size; 674 return 0; 675 } 676 677 offset += count; 678 bytes -= count; 679 } 680} 681 682/* 683 * Reset bits in copy_bitmap starting at offset if they represent unallocated 684 * data in the image. May reset subsequent contiguous bits. 685 * @return 0 when the cluster at @offset was unallocated, 686 * 1 otherwise, and -ret on error. 687 */ 688int64_t block_copy_reset_unallocated(BlockCopyState *s, 689 int64_t offset, int64_t *count) 690{ 691 int ret; 692 int64_t clusters, bytes; 693 694 ret = block_copy_is_cluster_allocated(s, offset, &clusters); 695 if (ret < 0) { 696 return ret; 697 } 698 699 bytes = clusters * s->cluster_size; 700 701 if (!ret) { 702 qemu_co_mutex_lock(&s->lock); 703 bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes); 704 if (s->progress) { 705 progress_set_remaining(s->progress, 706 bdrv_get_dirty_count(s->copy_bitmap) + 707 s->in_flight_bytes); 708 } 709 qemu_co_mutex_unlock(&s->lock); 710 } 711 712 *count = bytes; 713 return ret; 714} 715 716/* 717 * block_copy_dirty_clusters 718 * 719 * Copy dirty clusters in @offset/@bytes range. 720 * Returns 1 if dirty clusters found and successfully copied, 0 if no dirty 721 * clusters found and -errno on failure. 722 */ 723static int coroutine_fn 724block_copy_dirty_clusters(BlockCopyCallState *call_state) 725{ 726 BlockCopyState *s = call_state->s; 727 int64_t offset = call_state->offset; 728 int64_t bytes = call_state->bytes; 729 730 int ret = 0; 731 bool found_dirty = false; 732 int64_t end = offset + bytes; 733 AioTaskPool *aio = NULL; 734 735 /* 736 * block_copy() user is responsible for keeping source and target in same 737 * aio context 738 */ 739 assert(bdrv_get_aio_context(s->source->bs) == 740 bdrv_get_aio_context(s->target->bs)); 741 742 assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); 743 assert(QEMU_IS_ALIGNED(bytes, s->cluster_size)); 744 745 while (bytes && aio_task_pool_status(aio) == 0 && 746 !qatomic_read(&call_state->cancelled)) { 747 BlockCopyTask *task; 748 int64_t status_bytes; 749 750 task = block_copy_task_create(s, call_state, offset, bytes); 751 if (!task) { 752 /* No more dirty bits in the bitmap */ 753 trace_block_copy_skip_range(s, offset, bytes); 754 break; 755 } 756 if (task->offset > offset) { 757 trace_block_copy_skip_range(s, offset, task->offset - offset); 758 } 759 760 found_dirty = true; 761 762 ret = block_copy_block_status(s, task->offset, task->bytes, 763 &status_bytes); 764 assert(ret >= 0); /* never fail */ 765 if (status_bytes < task->bytes) { 766 block_copy_task_shrink(task, status_bytes); 767 } 768 if (qatomic_read(&s->skip_unallocated) && 769 !(ret & BDRV_BLOCK_ALLOCATED)) { 770 block_copy_task_end(task, 0); 771 trace_block_copy_skip_range(s, task->offset, task->bytes); 772 offset = task_end(task); 773 bytes = end - offset; 774 g_free(task); 775 continue; 776 } 777 if (ret & BDRV_BLOCK_ZERO) { 778 task->method = COPY_WRITE_ZEROES; 779 } 780 781 if (!call_state->ignore_ratelimit) { 782 uint64_t ns = ratelimit_calculate_delay(&s->rate_limit, 0); 783 if (ns > 0) { 784 block_copy_task_end(task, -EAGAIN); 785 g_free(task); 786 qemu_co_sleep_ns_wakeable(&call_state->sleep, 787 QEMU_CLOCK_REALTIME, ns); 788 continue; 789 } 790 } 791 792 ratelimit_calculate_delay(&s->rate_limit, task->bytes); 793 794 trace_block_copy_process(s, task->offset); 795 796 co_get_from_shres(s->mem, task->bytes); 797 798 offset = task_end(task); 799 bytes = end - offset; 800 801 if (!aio && bytes) { 802 aio = aio_task_pool_new(call_state->max_workers); 803 } 804 805 ret = block_copy_task_run(aio, task); 806 if (ret < 0) { 807 goto out; 808 } 809 } 810 811out: 812 if (aio) { 813 aio_task_pool_wait_all(aio); 814 815 /* 816 * We are not really interested in -ECANCELED returned from 817 * block_copy_task_run. If it fails, it means some task already failed 818 * for real reason, let's return first failure. 819 * Still, assert that we don't rewrite failure by success. 820 * 821 * Note: ret may be positive here because of block-status result. 822 */ 823 assert(ret >= 0 || aio_task_pool_status(aio) < 0); 824 ret = aio_task_pool_status(aio); 825 826 aio_task_pool_free(aio); 827 } 828 829 return ret < 0 ? ret : found_dirty; 830} 831 832void block_copy_kick(BlockCopyCallState *call_state) 833{ 834 qemu_co_sleep_wake(&call_state->sleep); 835} 836 837/* 838 * block_copy_common 839 * 840 * Copy requested region, accordingly to dirty bitmap. 841 * Collaborate with parallel block_copy requests: if they succeed it will help 842 * us. If they fail, we will retry not-copied regions. So, if we return error, 843 * it means that some I/O operation failed in context of _this_ block_copy call, 844 * not some parallel operation. 845 */ 846static int coroutine_fn block_copy_common(BlockCopyCallState *call_state) 847{ 848 int ret; 849 BlockCopyState *s = call_state->s; 850 851 qemu_co_mutex_lock(&s->lock); 852 QLIST_INSERT_HEAD(&s->calls, call_state, list); 853 qemu_co_mutex_unlock(&s->lock); 854 855 do { 856 ret = block_copy_dirty_clusters(call_state); 857 858 if (ret == 0 && !qatomic_read(&call_state->cancelled)) { 859 WITH_QEMU_LOCK_GUARD(&s->lock) { 860 /* 861 * Check that there is no task we still need to 862 * wait to complete 863 */ 864 ret = block_copy_wait_one(s, call_state->offset, 865 call_state->bytes); 866 if (ret == 0) { 867 /* 868 * No pending tasks, but check again the bitmap in this 869 * same critical section, since a task might have failed 870 * between this and the critical section in 871 * block_copy_dirty_clusters(). 872 * 873 * block_copy_wait_one return value 0 also means that it 874 * didn't release the lock. So, we are still in the same 875 * critical section, not interrupted by any concurrent 876 * access to state. 877 */ 878 ret = bdrv_dirty_bitmap_next_dirty(s->copy_bitmap, 879 call_state->offset, 880 call_state->bytes) >= 0; 881 } 882 } 883 } 884 885 /* 886 * We retry in two cases: 887 * 1. Some progress done 888 * Something was copied, which means that there were yield points 889 * and some new dirty bits may have appeared (due to failed parallel 890 * block-copy requests). 891 * 2. We have waited for some intersecting block-copy request 892 * It may have failed and produced new dirty bits. 893 */ 894 } while (ret > 0 && !qatomic_read(&call_state->cancelled)); 895 896 qatomic_store_release(&call_state->finished, true); 897 898 if (call_state->cb) { 899 call_state->cb(call_state->cb_opaque); 900 } 901 902 qemu_co_mutex_lock(&s->lock); 903 QLIST_REMOVE(call_state, list); 904 qemu_co_mutex_unlock(&s->lock); 905 906 return ret; 907} 908 909int coroutine_fn block_copy(BlockCopyState *s, int64_t start, int64_t bytes, 910 bool ignore_ratelimit) 911{ 912 BlockCopyCallState call_state = { 913 .s = s, 914 .offset = start, 915 .bytes = bytes, 916 .ignore_ratelimit = ignore_ratelimit, 917 .max_workers = BLOCK_COPY_MAX_WORKERS, 918 }; 919 920 return block_copy_common(&call_state); 921} 922 923static void coroutine_fn block_copy_async_co_entry(void *opaque) 924{ 925 block_copy_common(opaque); 926} 927 928BlockCopyCallState *block_copy_async(BlockCopyState *s, 929 int64_t offset, int64_t bytes, 930 int max_workers, int64_t max_chunk, 931 BlockCopyAsyncCallbackFunc cb, 932 void *cb_opaque) 933{ 934 BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1); 935 936 *call_state = (BlockCopyCallState) { 937 .s = s, 938 .offset = offset, 939 .bytes = bytes, 940 .max_workers = max_workers, 941 .max_chunk = max_chunk, 942 .cb = cb, 943 .cb_opaque = cb_opaque, 944 945 .co = qemu_coroutine_create(block_copy_async_co_entry, call_state), 946 }; 947 948 qemu_coroutine_enter(call_state->co); 949 950 return call_state; 951} 952 953void block_copy_call_free(BlockCopyCallState *call_state) 954{ 955 if (!call_state) { 956 return; 957 } 958 959 assert(qatomic_read(&call_state->finished)); 960 g_free(call_state); 961} 962 963bool block_copy_call_finished(BlockCopyCallState *call_state) 964{ 965 return qatomic_read(&call_state->finished); 966} 967 968bool block_copy_call_succeeded(BlockCopyCallState *call_state) 969{ 970 return qatomic_load_acquire(&call_state->finished) && 971 !qatomic_read(&call_state->cancelled) && 972 call_state->ret == 0; 973} 974 975bool block_copy_call_failed(BlockCopyCallState *call_state) 976{ 977 return qatomic_load_acquire(&call_state->finished) && 978 !qatomic_read(&call_state->cancelled) && 979 call_state->ret < 0; 980} 981 982bool block_copy_call_cancelled(BlockCopyCallState *call_state) 983{ 984 return qatomic_read(&call_state->cancelled); 985} 986 987int block_copy_call_status(BlockCopyCallState *call_state, bool *error_is_read) 988{ 989 assert(qatomic_load_acquire(&call_state->finished)); 990 if (error_is_read) { 991 *error_is_read = call_state->error_is_read; 992 } 993 return call_state->ret; 994} 995 996/* 997 * Note that cancelling and finishing are racy. 998 * User can cancel a block-copy that is already finished. 999 */ 1000void block_copy_call_cancel(BlockCopyCallState *call_state) 1001{ 1002 qatomic_set(&call_state->cancelled, true); 1003 block_copy_kick(call_state); 1004} 1005 1006BdrvDirtyBitmap *block_copy_dirty_bitmap(BlockCopyState *s) 1007{ 1008 return s->copy_bitmap; 1009} 1010 1011int64_t block_copy_cluster_size(BlockCopyState *s) 1012{ 1013 return s->cluster_size; 1014} 1015 1016void block_copy_set_skip_unallocated(BlockCopyState *s, bool skip) 1017{ 1018 qatomic_set(&s->skip_unallocated, skip); 1019} 1020 1021void block_copy_set_speed(BlockCopyState *s, uint64_t speed) 1022{ 1023 ratelimit_set_speed(&s->rate_limit, speed, BLOCK_COPY_SLICE_TIME); 1024 1025 /* 1026 * Note: it's good to kick all call states from here, but it should be done 1027 * only from a coroutine, to not crash if s->calls list changed while 1028 * entering one call. So for now, the only user of this function kicks its 1029 * only one call_state by hand. 1030 */ 1031}