cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

nvme.c (49293B)


      1/*
      2 * NVMe block driver based on vfio
      3 *
      4 * Copyright 2016 - 2018 Red Hat, Inc.
      5 *
      6 * Authors:
      7 *   Fam Zheng <famz@redhat.com>
      8 *   Paolo Bonzini <pbonzini@redhat.com>
      9 *
     10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
     11 * See the COPYING file in the top-level directory.
     12 */
     13
     14#include "qemu/osdep.h"
     15#include <linux/vfio.h>
     16#include "qapi/error.h"
     17#include "qapi/qmp/qdict.h"
     18#include "qapi/qmp/qstring.h"
     19#include "qemu/error-report.h"
     20#include "qemu/main-loop.h"
     21#include "qemu/module.h"
     22#include "qemu/cutils.h"
     23#include "qemu/option.h"
     24#include "qemu/vfio-helpers.h"
     25#include "block/block_int.h"
     26#include "sysemu/replay.h"
     27#include "trace.h"
     28
     29#include "block/nvme.h"
     30
     31#define NVME_SQ_ENTRY_BYTES 64
     32#define NVME_CQ_ENTRY_BYTES 16
     33#define NVME_QUEUE_SIZE 128
     34#define NVME_DOORBELL_SIZE 4096
     35
     36/*
     37 * We have to leave one slot empty as that is the full queue case where
     38 * head == tail + 1.
     39 */
     40#define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
     41
     42typedef struct BDRVNVMeState BDRVNVMeState;
     43
     44/* Same index is used for queues and IRQs */
     45#define INDEX_ADMIN     0
     46#define INDEX_IO(n)     (1 + n)
     47
     48/* This driver shares a single MSIX IRQ for the admin and I/O queues */
     49enum {
     50    MSIX_SHARED_IRQ_IDX = 0,
     51    MSIX_IRQ_COUNT = 1
     52};
     53
     54typedef struct {
     55    int32_t  head, tail;
     56    uint8_t  *queue;
     57    uint64_t iova;
     58    /* Hardware MMIO register */
     59    volatile uint32_t *doorbell;
     60} NVMeQueue;
     61
     62typedef struct {
     63    BlockCompletionFunc *cb;
     64    void *opaque;
     65    int cid;
     66    void *prp_list_page;
     67    uint64_t prp_list_iova;
     68    int free_req_next; /* q->reqs[] index of next free req */
     69} NVMeRequest;
     70
     71typedef struct {
     72    QemuMutex   lock;
     73
     74    /* Read from I/O code path, initialized under BQL */
     75    BDRVNVMeState   *s;
     76    int             index;
     77
     78    /* Fields protected by BQL */
     79    uint8_t     *prp_list_pages;
     80
     81    /* Fields protected by @lock */
     82    CoQueue     free_req_queue;
     83    NVMeQueue   sq, cq;
     84    int         cq_phase;
     85    int         free_req_head;
     86    NVMeRequest reqs[NVME_NUM_REQS];
     87    int         need_kick;
     88    int         inflight;
     89
     90    /* Thread-safe, no lock necessary */
     91    QEMUBH      *completion_bh;
     92} NVMeQueuePair;
     93
     94struct BDRVNVMeState {
     95    AioContext *aio_context;
     96    QEMUVFIOState *vfio;
     97    void *bar0_wo_map;
     98    /* Memory mapped registers */
     99    volatile struct {
    100        uint32_t sq_tail;
    101        uint32_t cq_head;
    102    } *doorbells;
    103    /* The submission/completion queue pairs.
    104     * [0]: admin queue.
    105     * [1..]: io queues.
    106     */
    107    NVMeQueuePair **queues;
    108    unsigned queue_count;
    109    size_t page_size;
    110    /* How many uint32_t elements does each doorbell entry take. */
    111    size_t doorbell_scale;
    112    bool write_cache_supported;
    113    EventNotifier irq_notifier[MSIX_IRQ_COUNT];
    114
    115    uint64_t nsze; /* Namespace size reported by identify command */
    116    int nsid;      /* The namespace id to read/write data. */
    117    int blkshift;
    118
    119    uint64_t max_transfer;
    120    bool plugged;
    121
    122    bool supports_write_zeroes;
    123    bool supports_discard;
    124
    125    CoMutex dma_map_lock;
    126    CoQueue dma_flush_queue;
    127
    128    /* Total size of mapped qiov, accessed under dma_map_lock */
    129    int dma_map_count;
    130
    131    /* PCI address (required for nvme_refresh_filename()) */
    132    char *device;
    133
    134    struct {
    135        uint64_t completion_errors;
    136        uint64_t aligned_accesses;
    137        uint64_t unaligned_accesses;
    138    } stats;
    139};
    140
    141#define NVME_BLOCK_OPT_DEVICE "device"
    142#define NVME_BLOCK_OPT_NAMESPACE "namespace"
    143
    144static void nvme_process_completion_bh(void *opaque);
    145
    146static QemuOptsList runtime_opts = {
    147    .name = "nvme",
    148    .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
    149    .desc = {
    150        {
    151            .name = NVME_BLOCK_OPT_DEVICE,
    152            .type = QEMU_OPT_STRING,
    153            .help = "NVMe PCI device address",
    154        },
    155        {
    156            .name = NVME_BLOCK_OPT_NAMESPACE,
    157            .type = QEMU_OPT_NUMBER,
    158            .help = "NVMe namespace",
    159        },
    160        { /* end of list */ }
    161    },
    162};
    163
    164/* Returns true on success, false on failure. */
    165static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q,
    166                            unsigned nentries, size_t entry_bytes, Error **errp)
    167{
    168    size_t bytes;
    169    int r;
    170
    171    bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size);
    172    q->head = q->tail = 0;
    173    q->queue = qemu_try_memalign(qemu_real_host_page_size, bytes);
    174    if (!q->queue) {
    175        error_setg(errp, "Cannot allocate queue");
    176        return false;
    177    }
    178    memset(q->queue, 0, bytes);
    179    r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova, errp);
    180    if (r) {
    181        error_prepend(errp, "Cannot map queue: ");
    182    }
    183    return r == 0;
    184}
    185
    186static void nvme_free_queue_pair(NVMeQueuePair *q)
    187{
    188    trace_nvme_free_queue_pair(q->index, q);
    189    if (q->completion_bh) {
    190        qemu_bh_delete(q->completion_bh);
    191    }
    192    qemu_vfree(q->prp_list_pages);
    193    qemu_vfree(q->sq.queue);
    194    qemu_vfree(q->cq.queue);
    195    qemu_mutex_destroy(&q->lock);
    196    g_free(q);
    197}
    198
    199static void nvme_free_req_queue_cb(void *opaque)
    200{
    201    NVMeQueuePair *q = opaque;
    202
    203    qemu_mutex_lock(&q->lock);
    204    while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
    205        /* Retry all pending requests */
    206    }
    207    qemu_mutex_unlock(&q->lock);
    208}
    209
    210static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s,
    211                                             AioContext *aio_context,
    212                                             unsigned idx, size_t size,
    213                                             Error **errp)
    214{
    215    int i, r;
    216    NVMeQueuePair *q;
    217    uint64_t prp_list_iova;
    218    size_t bytes;
    219
    220    q = g_try_new0(NVMeQueuePair, 1);
    221    if (!q) {
    222        error_setg(errp, "Cannot allocate queue pair");
    223        return NULL;
    224    }
    225    trace_nvme_create_queue_pair(idx, q, size, aio_context,
    226                                 event_notifier_get_fd(s->irq_notifier));
    227    bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS,
    228                          qemu_real_host_page_size);
    229    q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size, bytes);
    230    if (!q->prp_list_pages) {
    231        error_setg(errp, "Cannot allocate PRP page list");
    232        goto fail;
    233    }
    234    memset(q->prp_list_pages, 0, bytes);
    235    qemu_mutex_init(&q->lock);
    236    q->s = s;
    237    q->index = idx;
    238    qemu_co_queue_init(&q->free_req_queue);
    239    q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q);
    240    r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes,
    241                          false, &prp_list_iova, errp);
    242    if (r) {
    243        error_prepend(errp, "Cannot map buffer for DMA: ");
    244        goto fail;
    245    }
    246    q->free_req_head = -1;
    247    for (i = 0; i < NVME_NUM_REQS; i++) {
    248        NVMeRequest *req = &q->reqs[i];
    249        req->cid = i + 1;
    250        req->free_req_next = q->free_req_head;
    251        q->free_req_head = i;
    252        req->prp_list_page = q->prp_list_pages + i * s->page_size;
    253        req->prp_list_iova = prp_list_iova + i * s->page_size;
    254    }
    255
    256    if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) {
    257        goto fail;
    258    }
    259    q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail;
    260
    261    if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) {
    262        goto fail;
    263    }
    264    q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head;
    265
    266    return q;
    267fail:
    268    nvme_free_queue_pair(q);
    269    return NULL;
    270}
    271
    272/* With q->lock */
    273static void nvme_kick(NVMeQueuePair *q)
    274{
    275    BDRVNVMeState *s = q->s;
    276
    277    if (s->plugged || !q->need_kick) {
    278        return;
    279    }
    280    trace_nvme_kick(s, q->index);
    281    assert(!(q->sq.tail & 0xFF00));
    282    /* Fence the write to submission queue entry before notifying the device. */
    283    smp_wmb();
    284    *q->sq.doorbell = cpu_to_le32(q->sq.tail);
    285    q->inflight += q->need_kick;
    286    q->need_kick = 0;
    287}
    288
    289/* Find a free request element if any, otherwise:
    290 * a) if in coroutine context, try to wait for one to become available;
    291 * b) if not in coroutine, return NULL;
    292 */
    293static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
    294{
    295    NVMeRequest *req;
    296
    297    qemu_mutex_lock(&q->lock);
    298
    299    while (q->free_req_head == -1) {
    300        if (qemu_in_coroutine()) {
    301            trace_nvme_free_req_queue_wait(q->s, q->index);
    302            qemu_co_queue_wait(&q->free_req_queue, &q->lock);
    303        } else {
    304            qemu_mutex_unlock(&q->lock);
    305            return NULL;
    306        }
    307    }
    308
    309    req = &q->reqs[q->free_req_head];
    310    q->free_req_head = req->free_req_next;
    311    req->free_req_next = -1;
    312
    313    qemu_mutex_unlock(&q->lock);
    314    return req;
    315}
    316
    317/* With q->lock */
    318static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
    319{
    320    req->free_req_next = q->free_req_head;
    321    q->free_req_head = req - q->reqs;
    322}
    323
    324/* With q->lock */
    325static void nvme_wake_free_req_locked(NVMeQueuePair *q)
    326{
    327    if (!qemu_co_queue_empty(&q->free_req_queue)) {
    328        replay_bh_schedule_oneshot_event(q->s->aio_context,
    329                nvme_free_req_queue_cb, q);
    330    }
    331}
    332
    333/* Insert a request in the freelist and wake waiters */
    334static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
    335{
    336    qemu_mutex_lock(&q->lock);
    337    nvme_put_free_req_locked(q, req);
    338    nvme_wake_free_req_locked(q);
    339    qemu_mutex_unlock(&q->lock);
    340}
    341
    342static inline int nvme_translate_error(const NvmeCqe *c)
    343{
    344    uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
    345    if (status) {
    346        trace_nvme_error(le32_to_cpu(c->result),
    347                         le16_to_cpu(c->sq_head),
    348                         le16_to_cpu(c->sq_id),
    349                         le16_to_cpu(c->cid),
    350                         le16_to_cpu(status));
    351    }
    352    switch (status) {
    353    case 0:
    354        return 0;
    355    case 1:
    356        return -ENOSYS;
    357    case 2:
    358        return -EINVAL;
    359    default:
    360        return -EIO;
    361    }
    362}
    363
    364/* With q->lock */
    365static bool nvme_process_completion(NVMeQueuePair *q)
    366{
    367    BDRVNVMeState *s = q->s;
    368    bool progress = false;
    369    NVMeRequest *preq;
    370    NVMeRequest req;
    371    NvmeCqe *c;
    372
    373    trace_nvme_process_completion(s, q->index, q->inflight);
    374    if (s->plugged) {
    375        trace_nvme_process_completion_queue_plugged(s, q->index);
    376        return false;
    377    }
    378
    379    /*
    380     * Support re-entrancy when a request cb() function invokes aio_poll().
    381     * Pending completions must be visible to aio_poll() so that a cb()
    382     * function can wait for the completion of another request.
    383     *
    384     * The aio_poll() loop will execute our BH and we'll resume completion
    385     * processing there.
    386     */
    387    qemu_bh_schedule(q->completion_bh);
    388
    389    assert(q->inflight >= 0);
    390    while (q->inflight) {
    391        int ret;
    392        int16_t cid;
    393
    394        c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
    395        if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
    396            break;
    397        }
    398        ret = nvme_translate_error(c);
    399        if (ret) {
    400            s->stats.completion_errors++;
    401        }
    402        q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
    403        if (!q->cq.head) {
    404            q->cq_phase = !q->cq_phase;
    405        }
    406        cid = le16_to_cpu(c->cid);
    407        if (cid == 0 || cid > NVME_QUEUE_SIZE) {
    408            warn_report("NVMe: Unexpected CID in completion queue: %"PRIu32", "
    409                        "queue size: %u", cid, NVME_QUEUE_SIZE);
    410            continue;
    411        }
    412        trace_nvme_complete_command(s, q->index, cid);
    413        preq = &q->reqs[cid - 1];
    414        req = *preq;
    415        assert(req.cid == cid);
    416        assert(req.cb);
    417        nvme_put_free_req_locked(q, preq);
    418        preq->cb = preq->opaque = NULL;
    419        q->inflight--;
    420        qemu_mutex_unlock(&q->lock);
    421        req.cb(req.opaque, ret);
    422        qemu_mutex_lock(&q->lock);
    423        progress = true;
    424    }
    425    if (progress) {
    426        /* Notify the device so it can post more completions. */
    427        smp_mb_release();
    428        *q->cq.doorbell = cpu_to_le32(q->cq.head);
    429        nvme_wake_free_req_locked(q);
    430    }
    431
    432    qemu_bh_cancel(q->completion_bh);
    433
    434    return progress;
    435}
    436
    437static void nvme_process_completion_bh(void *opaque)
    438{
    439    NVMeQueuePair *q = opaque;
    440
    441    /*
    442     * We're being invoked because a nvme_process_completion() cb() function
    443     * called aio_poll(). The callback may be waiting for further completions
    444     * so notify the device that it has space to fill in more completions now.
    445     */
    446    smp_mb_release();
    447    *q->cq.doorbell = cpu_to_le32(q->cq.head);
    448    nvme_wake_free_req_locked(q);
    449
    450    nvme_process_completion(q);
    451}
    452
    453static void nvme_trace_command(const NvmeCmd *cmd)
    454{
    455    int i;
    456
    457    if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
    458        return;
    459    }
    460    for (i = 0; i < 8; ++i) {
    461        uint8_t *cmdp = (uint8_t *)cmd + i * 8;
    462        trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
    463                                      cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
    464    }
    465}
    466
    467static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
    468                                NvmeCmd *cmd, BlockCompletionFunc cb,
    469                                void *opaque)
    470{
    471    assert(!req->cb);
    472    req->cb = cb;
    473    req->opaque = opaque;
    474    cmd->cid = cpu_to_le16(req->cid);
    475
    476    trace_nvme_submit_command(q->s, q->index, req->cid);
    477    nvme_trace_command(cmd);
    478    qemu_mutex_lock(&q->lock);
    479    memcpy((uint8_t *)q->sq.queue +
    480           q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
    481    q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
    482    q->need_kick++;
    483    nvme_kick(q);
    484    nvme_process_completion(q);
    485    qemu_mutex_unlock(&q->lock);
    486}
    487
    488static void nvme_admin_cmd_sync_cb(void *opaque, int ret)
    489{
    490    int *pret = opaque;
    491    *pret = ret;
    492    aio_wait_kick();
    493}
    494
    495static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd)
    496{
    497    BDRVNVMeState *s = bs->opaque;
    498    NVMeQueuePair *q = s->queues[INDEX_ADMIN];
    499    AioContext *aio_context = bdrv_get_aio_context(bs);
    500    NVMeRequest *req;
    501    int ret = -EINPROGRESS;
    502    req = nvme_get_free_req(q);
    503    if (!req) {
    504        return -EBUSY;
    505    }
    506    nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret);
    507
    508    AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS);
    509    return ret;
    510}
    511
    512/* Returns true on success, false on failure. */
    513static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
    514{
    515    BDRVNVMeState *s = bs->opaque;
    516    bool ret = false;
    517    union {
    518        NvmeIdCtrl ctrl;
    519        NvmeIdNs ns;
    520    } *id;
    521    NvmeLBAF *lbaf;
    522    uint16_t oncs;
    523    int r;
    524    uint64_t iova;
    525    NvmeCmd cmd = {
    526        .opcode = NVME_ADM_CMD_IDENTIFY,
    527        .cdw10 = cpu_to_le32(0x1),
    528    };
    529    size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size);
    530
    531    id = qemu_try_memalign(qemu_real_host_page_size, id_size);
    532    if (!id) {
    533        error_setg(errp, "Cannot allocate buffer for identify response");
    534        goto out;
    535    }
    536    r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova, errp);
    537    if (r) {
    538        error_prepend(errp, "Cannot map buffer for DMA: ");
    539        goto out;
    540    }
    541
    542    memset(id, 0, id_size);
    543    cmd.dptr.prp1 = cpu_to_le64(iova);
    544    if (nvme_admin_cmd_sync(bs, &cmd)) {
    545        error_setg(errp, "Failed to identify controller");
    546        goto out;
    547    }
    548
    549    if (le32_to_cpu(id->ctrl.nn) < namespace) {
    550        error_setg(errp, "Invalid namespace");
    551        goto out;
    552    }
    553    s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
    554    s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
    555    /* For now the page list buffer per command is one page, to hold at most
    556     * s->page_size / sizeof(uint64_t) entries. */
    557    s->max_transfer = MIN_NON_ZERO(s->max_transfer,
    558                          s->page_size / sizeof(uint64_t) * s->page_size);
    559
    560    oncs = le16_to_cpu(id->ctrl.oncs);
    561    s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
    562    s->supports_discard = !!(oncs & NVME_ONCS_DSM);
    563
    564    memset(id, 0, id_size);
    565    cmd.cdw10 = 0;
    566    cmd.nsid = cpu_to_le32(namespace);
    567    if (nvme_admin_cmd_sync(bs, &cmd)) {
    568        error_setg(errp, "Failed to identify namespace");
    569        goto out;
    570    }
    571
    572    s->nsze = le64_to_cpu(id->ns.nsze);
    573    lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
    574
    575    if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
    576            NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
    577                    NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
    578        bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
    579    }
    580
    581    if (lbaf->ms) {
    582        error_setg(errp, "Namespaces with metadata are not yet supported");
    583        goto out;
    584    }
    585
    586    if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
    587        (1 << lbaf->ds) > s->page_size)
    588    {
    589        error_setg(errp, "Namespace has unsupported block size (2^%d)",
    590                   lbaf->ds);
    591        goto out;
    592    }
    593
    594    ret = true;
    595    s->blkshift = lbaf->ds;
    596out:
    597    qemu_vfio_dma_unmap(s->vfio, id);
    598    qemu_vfree(id);
    599
    600    return ret;
    601}
    602
    603static bool nvme_poll_queue(NVMeQueuePair *q)
    604{
    605    bool progress = false;
    606
    607    const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
    608    NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
    609
    610    trace_nvme_poll_queue(q->s, q->index);
    611    /*
    612     * Do an early check for completions. q->lock isn't needed because
    613     * nvme_process_completion() only runs in the event loop thread and
    614     * cannot race with itself.
    615     */
    616    if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
    617        return false;
    618    }
    619
    620    qemu_mutex_lock(&q->lock);
    621    while (nvme_process_completion(q)) {
    622        /* Keep polling */
    623        progress = true;
    624    }
    625    qemu_mutex_unlock(&q->lock);
    626
    627    return progress;
    628}
    629
    630static bool nvme_poll_queues(BDRVNVMeState *s)
    631{
    632    bool progress = false;
    633    int i;
    634
    635    for (i = 0; i < s->queue_count; i++) {
    636        if (nvme_poll_queue(s->queues[i])) {
    637            progress = true;
    638        }
    639    }
    640    return progress;
    641}
    642
    643static void nvme_handle_event(EventNotifier *n)
    644{
    645    BDRVNVMeState *s = container_of(n, BDRVNVMeState,
    646                                    irq_notifier[MSIX_SHARED_IRQ_IDX]);
    647
    648    trace_nvme_handle_event(s);
    649    event_notifier_test_and_clear(n);
    650    nvme_poll_queues(s);
    651}
    652
    653static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
    654{
    655    BDRVNVMeState *s = bs->opaque;
    656    unsigned n = s->queue_count;
    657    NVMeQueuePair *q;
    658    NvmeCmd cmd;
    659    unsigned queue_size = NVME_QUEUE_SIZE;
    660
    661    assert(n <= UINT16_MAX);
    662    q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs),
    663                               n, queue_size, errp);
    664    if (!q) {
    665        return false;
    666    }
    667    cmd = (NvmeCmd) {
    668        .opcode = NVME_ADM_CMD_CREATE_CQ,
    669        .dptr.prp1 = cpu_to_le64(q->cq.iova),
    670        .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
    671        .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC),
    672    };
    673    if (nvme_admin_cmd_sync(bs, &cmd)) {
    674        error_setg(errp, "Failed to create CQ io queue [%u]", n);
    675        goto out_error;
    676    }
    677    cmd = (NvmeCmd) {
    678        .opcode = NVME_ADM_CMD_CREATE_SQ,
    679        .dptr.prp1 = cpu_to_le64(q->sq.iova),
    680        .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
    681        .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)),
    682    };
    683    if (nvme_admin_cmd_sync(bs, &cmd)) {
    684        error_setg(errp, "Failed to create SQ io queue [%u]", n);
    685        goto out_error;
    686    }
    687    s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
    688    s->queues[n] = q;
    689    s->queue_count++;
    690    return true;
    691out_error:
    692    nvme_free_queue_pair(q);
    693    return false;
    694}
    695
    696static bool nvme_poll_cb(void *opaque)
    697{
    698    EventNotifier *e = opaque;
    699    BDRVNVMeState *s = container_of(e, BDRVNVMeState,
    700                                    irq_notifier[MSIX_SHARED_IRQ_IDX]);
    701
    702    return nvme_poll_queues(s);
    703}
    704
    705static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
    706                     Error **errp)
    707{
    708    BDRVNVMeState *s = bs->opaque;
    709    NVMeQueuePair *q;
    710    AioContext *aio_context = bdrv_get_aio_context(bs);
    711    int ret;
    712    uint64_t cap;
    713    uint32_t ver;
    714    uint64_t timeout_ms;
    715    uint64_t deadline, now;
    716    volatile NvmeBar *regs = NULL;
    717
    718    qemu_co_mutex_init(&s->dma_map_lock);
    719    qemu_co_queue_init(&s->dma_flush_queue);
    720    s->device = g_strdup(device);
    721    s->nsid = namespace;
    722    s->aio_context = bdrv_get_aio_context(bs);
    723    ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0);
    724    if (ret) {
    725        error_setg(errp, "Failed to init event notifier");
    726        return ret;
    727    }
    728
    729    s->vfio = qemu_vfio_open_pci(device, errp);
    730    if (!s->vfio) {
    731        ret = -EINVAL;
    732        goto out;
    733    }
    734
    735    regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar),
    736                                 PROT_READ | PROT_WRITE, errp);
    737    if (!regs) {
    738        ret = -EINVAL;
    739        goto out;
    740    }
    741    /* Perform initialize sequence as described in NVMe spec "7.6.1
    742     * Initialization". */
    743
    744    cap = le64_to_cpu(regs->cap);
    745    trace_nvme_controller_capability_raw(cap);
    746    trace_nvme_controller_capability("Maximum Queue Entries Supported",
    747                                     1 + NVME_CAP_MQES(cap));
    748    trace_nvme_controller_capability("Contiguous Queues Required",
    749                                     NVME_CAP_CQR(cap));
    750    trace_nvme_controller_capability("Doorbell Stride",
    751                                     1 << (2 + NVME_CAP_DSTRD(cap)));
    752    trace_nvme_controller_capability("Subsystem Reset Supported",
    753                                     NVME_CAP_NSSRS(cap));
    754    trace_nvme_controller_capability("Memory Page Size Minimum",
    755                                     1 << (12 + NVME_CAP_MPSMIN(cap)));
    756    trace_nvme_controller_capability("Memory Page Size Maximum",
    757                                     1 << (12 + NVME_CAP_MPSMAX(cap)));
    758    if (!NVME_CAP_CSS(cap)) {
    759        error_setg(errp, "Device doesn't support NVMe command set");
    760        ret = -EINVAL;
    761        goto out;
    762    }
    763
    764    s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap));
    765    s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t);
    766    bs->bl.opt_mem_alignment = s->page_size;
    767    bs->bl.request_alignment = s->page_size;
    768    timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000);
    769
    770    ver = le32_to_cpu(regs->vs);
    771    trace_nvme_controller_spec_version(extract32(ver, 16, 16),
    772                                       extract32(ver, 8, 8),
    773                                       extract32(ver, 0, 8));
    774
    775    /* Reset device to get a clean state. */
    776    regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE);
    777    /* Wait for CSTS.RDY = 0. */
    778    deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
    779    while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
    780        if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
    781            error_setg(errp, "Timeout while waiting for device to reset (%"
    782                             PRId64 " ms)",
    783                       timeout_ms);
    784            ret = -ETIMEDOUT;
    785            goto out;
    786        }
    787    }
    788
    789    s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0,
    790                                           sizeof(NvmeBar) + NVME_DOORBELL_SIZE,
    791                                           PROT_WRITE, errp);
    792    s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar));
    793    if (!s->doorbells) {
    794        ret = -EINVAL;
    795        goto out;
    796    }
    797
    798    /* Set up admin queue. */
    799    s->queues = g_new(NVMeQueuePair *, 1);
    800    q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp);
    801    if (!q) {
    802        ret = -EINVAL;
    803        goto out;
    804    }
    805    s->queues[INDEX_ADMIN] = q;
    806    s->queue_count = 1;
    807    QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000);
    808    regs->aqa = cpu_to_le32(((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) |
    809                            ((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT));
    810    regs->asq = cpu_to_le64(q->sq.iova);
    811    regs->acq = cpu_to_le64(q->cq.iova);
    812
    813    /* After setting up all control registers we can enable device now. */
    814    regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) |
    815                           (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) |
    816                           CC_EN_MASK);
    817    /* Wait for CSTS.RDY = 1. */
    818    now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
    819    deadline = now + timeout_ms * SCALE_MS;
    820    while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
    821        if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
    822            error_setg(errp, "Timeout while waiting for device to start (%"
    823                             PRId64 " ms)",
    824                       timeout_ms);
    825            ret = -ETIMEDOUT;
    826            goto out;
    827        }
    828    }
    829
    830    ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier,
    831                                 VFIO_PCI_MSIX_IRQ_INDEX, errp);
    832    if (ret) {
    833        goto out;
    834    }
    835    aio_set_event_notifier(bdrv_get_aio_context(bs),
    836                           &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
    837                           false, nvme_handle_event, nvme_poll_cb);
    838
    839    if (!nvme_identify(bs, namespace, errp)) {
    840        ret = -EIO;
    841        goto out;
    842    }
    843
    844    /* Set up command queues. */
    845    if (!nvme_add_io_queue(bs, errp)) {
    846        ret = -EIO;
    847    }
    848out:
    849    if (regs) {
    850        qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar));
    851    }
    852
    853    /* Cleaning up is done in nvme_file_open() upon error. */
    854    return ret;
    855}
    856
    857/* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
    858 *
    859 *     nvme://0000:44:00.0/1
    860 *
    861 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
    862 * is the PCI address, and the last part is the namespace number starting from
    863 * 1 according to the NVMe spec. */
    864static void nvme_parse_filename(const char *filename, QDict *options,
    865                                Error **errp)
    866{
    867    int pref = strlen("nvme://");
    868
    869    if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
    870        const char *tmp = filename + pref;
    871        char *device;
    872        const char *namespace;
    873        unsigned long ns;
    874        const char *slash = strchr(tmp, '/');
    875        if (!slash) {
    876            qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
    877            return;
    878        }
    879        device = g_strndup(tmp, slash - tmp);
    880        qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
    881        g_free(device);
    882        namespace = slash + 1;
    883        if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
    884            error_setg(errp, "Invalid namespace '%s', positive number expected",
    885                       namespace);
    886            return;
    887        }
    888        qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
    889                      *namespace ? namespace : "1");
    890    }
    891}
    892
    893static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
    894                                           Error **errp)
    895{
    896    int ret;
    897    BDRVNVMeState *s = bs->opaque;
    898    NvmeCmd cmd = {
    899        .opcode = NVME_ADM_CMD_SET_FEATURES,
    900        .nsid = cpu_to_le32(s->nsid),
    901        .cdw10 = cpu_to_le32(0x06),
    902        .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
    903    };
    904
    905    ret = nvme_admin_cmd_sync(bs, &cmd);
    906    if (ret) {
    907        error_setg(errp, "Failed to configure NVMe write cache");
    908    }
    909    return ret;
    910}
    911
    912static void nvme_close(BlockDriverState *bs)
    913{
    914    BDRVNVMeState *s = bs->opaque;
    915
    916    for (unsigned i = 0; i < s->queue_count; ++i) {
    917        nvme_free_queue_pair(s->queues[i]);
    918    }
    919    g_free(s->queues);
    920    aio_set_event_notifier(bdrv_get_aio_context(bs),
    921                           &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
    922                           false, NULL, NULL);
    923    event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]);
    924    qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map,
    925                            0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE);
    926    qemu_vfio_close(s->vfio);
    927
    928    g_free(s->device);
    929}
    930
    931static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
    932                          Error **errp)
    933{
    934    const char *device;
    935    QemuOpts *opts;
    936    int namespace;
    937    int ret;
    938    BDRVNVMeState *s = bs->opaque;
    939
    940    bs->supported_write_flags = BDRV_REQ_FUA;
    941
    942    opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
    943    qemu_opts_absorb_qdict(opts, options, &error_abort);
    944    device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
    945    if (!device) {
    946        error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
    947        qemu_opts_del(opts);
    948        return -EINVAL;
    949    }
    950
    951    namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
    952    ret = nvme_init(bs, device, namespace, errp);
    953    qemu_opts_del(opts);
    954    if (ret) {
    955        goto fail;
    956    }
    957    if (flags & BDRV_O_NOCACHE) {
    958        if (!s->write_cache_supported) {
    959            error_setg(errp,
    960                       "NVMe controller doesn't support write cache configuration");
    961            ret = -EINVAL;
    962        } else {
    963            ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
    964                                                  errp);
    965        }
    966        if (ret) {
    967            goto fail;
    968        }
    969    }
    970    return 0;
    971fail:
    972    nvme_close(bs);
    973    return ret;
    974}
    975
    976static int64_t nvme_getlength(BlockDriverState *bs)
    977{
    978    BDRVNVMeState *s = bs->opaque;
    979    return s->nsze << s->blkshift;
    980}
    981
    982static uint32_t nvme_get_blocksize(BlockDriverState *bs)
    983{
    984    BDRVNVMeState *s = bs->opaque;
    985    assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
    986    return UINT32_C(1) << s->blkshift;
    987}
    988
    989static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
    990{
    991    uint32_t blocksize = nvme_get_blocksize(bs);
    992    bsz->phys = blocksize;
    993    bsz->log = blocksize;
    994    return 0;
    995}
    996
    997/* Called with s->dma_map_lock */
    998static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
    999                                            QEMUIOVector *qiov)
   1000{
   1001    int r = 0;
   1002    BDRVNVMeState *s = bs->opaque;
   1003
   1004    s->dma_map_count -= qiov->size;
   1005    if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
   1006        r = qemu_vfio_dma_reset_temporary(s->vfio);
   1007        if (!r) {
   1008            qemu_co_queue_restart_all(&s->dma_flush_queue);
   1009        }
   1010    }
   1011    return r;
   1012}
   1013
   1014/* Called with s->dma_map_lock */
   1015static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
   1016                                          NVMeRequest *req, QEMUIOVector *qiov)
   1017{
   1018    BDRVNVMeState *s = bs->opaque;
   1019    uint64_t *pagelist = req->prp_list_page;
   1020    int i, j, r;
   1021    int entries = 0;
   1022    Error *local_err = NULL, **errp = NULL;
   1023
   1024    assert(qiov->size);
   1025    assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
   1026    assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
   1027    for (i = 0; i < qiov->niov; ++i) {
   1028        bool retry = true;
   1029        uint64_t iova;
   1030        size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len,
   1031                                   qemu_real_host_page_size);
   1032try_map:
   1033        r = qemu_vfio_dma_map(s->vfio,
   1034                              qiov->iov[i].iov_base,
   1035                              len, true, &iova, errp);
   1036        if (r == -ENOSPC) {
   1037            /*
   1038             * In addition to the -ENOMEM error, the VFIO_IOMMU_MAP_DMA
   1039             * ioctl returns -ENOSPC to signal the user exhausted the DMA
   1040             * mappings available for a container since Linux kernel commit
   1041             * 492855939bdb ("vfio/type1: Limit DMA mappings per container",
   1042             * April 2019, see CVE-2019-3882).
   1043             *
   1044             * This block driver already handles this error path by checking
   1045             * for the -ENOMEM error, so we directly replace -ENOSPC by
   1046             * -ENOMEM. Beside, -ENOSPC has a specific meaning for blockdev
   1047             * coroutines: it triggers BLOCKDEV_ON_ERROR_ENOSPC and
   1048             * BLOCK_ERROR_ACTION_STOP which stops the VM, asking the operator
   1049             * to add more storage to the blockdev. Not something we can do
   1050             * easily with an IOMMU :)
   1051             */
   1052            r = -ENOMEM;
   1053        }
   1054        if (r == -ENOMEM && retry) {
   1055            /*
   1056             * We exhausted the DMA mappings available for our container:
   1057             * recycle the volatile IOVA mappings.
   1058             */
   1059            retry = false;
   1060            trace_nvme_dma_flush_queue_wait(s);
   1061            if (s->dma_map_count) {
   1062                trace_nvme_dma_map_flush(s);
   1063                qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
   1064            } else {
   1065                r = qemu_vfio_dma_reset_temporary(s->vfio);
   1066                if (r) {
   1067                    goto fail;
   1068                }
   1069            }
   1070            errp = &local_err;
   1071
   1072            goto try_map;
   1073        }
   1074        if (r) {
   1075            goto fail;
   1076        }
   1077
   1078        for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
   1079            pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
   1080        }
   1081        trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
   1082                                    qiov->iov[i].iov_len / s->page_size);
   1083    }
   1084
   1085    s->dma_map_count += qiov->size;
   1086
   1087    assert(entries <= s->page_size / sizeof(uint64_t));
   1088    switch (entries) {
   1089    case 0:
   1090        abort();
   1091    case 1:
   1092        cmd->dptr.prp1 = pagelist[0];
   1093        cmd->dptr.prp2 = 0;
   1094        break;
   1095    case 2:
   1096        cmd->dptr.prp1 = pagelist[0];
   1097        cmd->dptr.prp2 = pagelist[1];
   1098        break;
   1099    default:
   1100        cmd->dptr.prp1 = pagelist[0];
   1101        cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
   1102        break;
   1103    }
   1104    trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
   1105    for (i = 0; i < entries; ++i) {
   1106        trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
   1107    }
   1108    return 0;
   1109fail:
   1110    /* No need to unmap [0 - i) iovs even if we've failed, since we don't
   1111     * increment s->dma_map_count. This is okay for fixed mapping memory areas
   1112     * because they are already mapped before calling this function; for
   1113     * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
   1114     * calling qemu_vfio_dma_reset_temporary when necessary. */
   1115    if (local_err) {
   1116        error_reportf_err(local_err, "Cannot map buffer for DMA: ");
   1117    }
   1118    return r;
   1119}
   1120
   1121typedef struct {
   1122    Coroutine *co;
   1123    int ret;
   1124    AioContext *ctx;
   1125} NVMeCoData;
   1126
   1127static void nvme_rw_cb_bh(void *opaque)
   1128{
   1129    NVMeCoData *data = opaque;
   1130    qemu_coroutine_enter(data->co);
   1131}
   1132
   1133static void nvme_rw_cb(void *opaque, int ret)
   1134{
   1135    NVMeCoData *data = opaque;
   1136    data->ret = ret;
   1137    if (!data->co) {
   1138        /* The rw coroutine hasn't yielded, don't try to enter. */
   1139        return;
   1140    }
   1141    replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
   1142}
   1143
   1144static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
   1145                                            uint64_t offset, uint64_t bytes,
   1146                                            QEMUIOVector *qiov,
   1147                                            bool is_write,
   1148                                            int flags)
   1149{
   1150    int r;
   1151    BDRVNVMeState *s = bs->opaque;
   1152    NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
   1153    NVMeRequest *req;
   1154
   1155    uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
   1156                       (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
   1157    NvmeCmd cmd = {
   1158        .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
   1159        .nsid = cpu_to_le32(s->nsid),
   1160        .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
   1161        .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
   1162        .cdw12 = cpu_to_le32(cdw12),
   1163    };
   1164    NVMeCoData data = {
   1165        .ctx = bdrv_get_aio_context(bs),
   1166        .ret = -EINPROGRESS,
   1167    };
   1168
   1169    trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
   1170    assert(s->queue_count > 1);
   1171    req = nvme_get_free_req(ioq);
   1172    assert(req);
   1173
   1174    qemu_co_mutex_lock(&s->dma_map_lock);
   1175    r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
   1176    qemu_co_mutex_unlock(&s->dma_map_lock);
   1177    if (r) {
   1178        nvme_put_free_req_and_wake(ioq, req);
   1179        return r;
   1180    }
   1181    nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
   1182
   1183    data.co = qemu_coroutine_self();
   1184    while (data.ret == -EINPROGRESS) {
   1185        qemu_coroutine_yield();
   1186    }
   1187
   1188    qemu_co_mutex_lock(&s->dma_map_lock);
   1189    r = nvme_cmd_unmap_qiov(bs, qiov);
   1190    qemu_co_mutex_unlock(&s->dma_map_lock);
   1191    if (r) {
   1192        return r;
   1193    }
   1194
   1195    trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
   1196    return data.ret;
   1197}
   1198
   1199static inline bool nvme_qiov_aligned(BlockDriverState *bs,
   1200                                     const QEMUIOVector *qiov)
   1201{
   1202    int i;
   1203    BDRVNVMeState *s = bs->opaque;
   1204
   1205    for (i = 0; i < qiov->niov; ++i) {
   1206        if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base,
   1207                                 qemu_real_host_page_size) ||
   1208            !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size)) {
   1209            trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
   1210                                      qiov->iov[i].iov_len, s->page_size);
   1211            return false;
   1212        }
   1213    }
   1214    return true;
   1215}
   1216
   1217static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
   1218                       QEMUIOVector *qiov, bool is_write, int flags)
   1219{
   1220    BDRVNVMeState *s = bs->opaque;
   1221    int r;
   1222    uint8_t *buf = NULL;
   1223    QEMUIOVector local_qiov;
   1224    size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size);
   1225    assert(QEMU_IS_ALIGNED(offset, s->page_size));
   1226    assert(QEMU_IS_ALIGNED(bytes, s->page_size));
   1227    assert(bytes <= s->max_transfer);
   1228    if (nvme_qiov_aligned(bs, qiov)) {
   1229        s->stats.aligned_accesses++;
   1230        return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
   1231    }
   1232    s->stats.unaligned_accesses++;
   1233    trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
   1234    buf = qemu_try_memalign(qemu_real_host_page_size, len);
   1235
   1236    if (!buf) {
   1237        return -ENOMEM;
   1238    }
   1239    qemu_iovec_init(&local_qiov, 1);
   1240    if (is_write) {
   1241        qemu_iovec_to_buf(qiov, 0, buf, bytes);
   1242    }
   1243    qemu_iovec_add(&local_qiov, buf, bytes);
   1244    r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
   1245    qemu_iovec_destroy(&local_qiov);
   1246    if (!r && !is_write) {
   1247        qemu_iovec_from_buf(qiov, 0, buf, bytes);
   1248    }
   1249    qemu_vfree(buf);
   1250    return r;
   1251}
   1252
   1253static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
   1254                                       int64_t offset, int64_t bytes,
   1255                                       QEMUIOVector *qiov,
   1256                                       BdrvRequestFlags flags)
   1257{
   1258    return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
   1259}
   1260
   1261static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
   1262                                        int64_t offset, int64_t bytes,
   1263                                        QEMUIOVector *qiov,
   1264                                        BdrvRequestFlags flags)
   1265{
   1266    return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
   1267}
   1268
   1269static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
   1270{
   1271    BDRVNVMeState *s = bs->opaque;
   1272    NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
   1273    NVMeRequest *req;
   1274    NvmeCmd cmd = {
   1275        .opcode = NVME_CMD_FLUSH,
   1276        .nsid = cpu_to_le32(s->nsid),
   1277    };
   1278    NVMeCoData data = {
   1279        .ctx = bdrv_get_aio_context(bs),
   1280        .ret = -EINPROGRESS,
   1281    };
   1282
   1283    assert(s->queue_count > 1);
   1284    req = nvme_get_free_req(ioq);
   1285    assert(req);
   1286    nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
   1287
   1288    data.co = qemu_coroutine_self();
   1289    if (data.ret == -EINPROGRESS) {
   1290        qemu_coroutine_yield();
   1291    }
   1292
   1293    return data.ret;
   1294}
   1295
   1296
   1297static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
   1298                                              int64_t offset,
   1299                                              int64_t bytes,
   1300                                              BdrvRequestFlags flags)
   1301{
   1302    BDRVNVMeState *s = bs->opaque;
   1303    NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
   1304    NVMeRequest *req;
   1305    uint32_t cdw12;
   1306
   1307    if (!s->supports_write_zeroes) {
   1308        return -ENOTSUP;
   1309    }
   1310
   1311    if (bytes == 0) {
   1312        return 0;
   1313    }
   1314
   1315    cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
   1316    /*
   1317     * We should not lose information. pwrite_zeroes_alignment and
   1318     * max_pwrite_zeroes guarantees it.
   1319     */
   1320    assert(((cdw12 + 1) << s->blkshift) == bytes);
   1321
   1322    NvmeCmd cmd = {
   1323        .opcode = NVME_CMD_WRITE_ZEROES,
   1324        .nsid = cpu_to_le32(s->nsid),
   1325        .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
   1326        .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
   1327    };
   1328
   1329    NVMeCoData data = {
   1330        .ctx = bdrv_get_aio_context(bs),
   1331        .ret = -EINPROGRESS,
   1332    };
   1333
   1334    if (flags & BDRV_REQ_MAY_UNMAP) {
   1335        cdw12 |= (1 << 25);
   1336    }
   1337
   1338    if (flags & BDRV_REQ_FUA) {
   1339        cdw12 |= (1 << 30);
   1340    }
   1341
   1342    cmd.cdw12 = cpu_to_le32(cdw12);
   1343
   1344    trace_nvme_write_zeroes(s, offset, bytes, flags);
   1345    assert(s->queue_count > 1);
   1346    req = nvme_get_free_req(ioq);
   1347    assert(req);
   1348
   1349    nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
   1350
   1351    data.co = qemu_coroutine_self();
   1352    while (data.ret == -EINPROGRESS) {
   1353        qemu_coroutine_yield();
   1354    }
   1355
   1356    trace_nvme_rw_done(s, true, offset, bytes, data.ret);
   1357    return data.ret;
   1358}
   1359
   1360
   1361static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
   1362                                         int64_t offset,
   1363                                         int64_t bytes)
   1364{
   1365    BDRVNVMeState *s = bs->opaque;
   1366    NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
   1367    NVMeRequest *req;
   1368    NvmeDsmRange *buf;
   1369    QEMUIOVector local_qiov;
   1370    int ret;
   1371
   1372    NvmeCmd cmd = {
   1373        .opcode = NVME_CMD_DSM,
   1374        .nsid = cpu_to_le32(s->nsid),
   1375        .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
   1376        .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
   1377    };
   1378
   1379    NVMeCoData data = {
   1380        .ctx = bdrv_get_aio_context(bs),
   1381        .ret = -EINPROGRESS,
   1382    };
   1383
   1384    if (!s->supports_discard) {
   1385        return -ENOTSUP;
   1386    }
   1387
   1388    assert(s->queue_count > 1);
   1389
   1390    /*
   1391     * Filling the @buf requires @offset and @bytes to satisfy restrictions
   1392     * defined in nvme_refresh_limits().
   1393     */
   1394    assert(QEMU_IS_ALIGNED(bytes, 1UL << s->blkshift));
   1395    assert(QEMU_IS_ALIGNED(offset, 1UL << s->blkshift));
   1396    assert((bytes >> s->blkshift) <= UINT32_MAX);
   1397
   1398    buf = qemu_try_memalign(s->page_size, s->page_size);
   1399    if (!buf) {
   1400        return -ENOMEM;
   1401    }
   1402    memset(buf, 0, s->page_size);
   1403    buf->nlb = cpu_to_le32(bytes >> s->blkshift);
   1404    buf->slba = cpu_to_le64(offset >> s->blkshift);
   1405    buf->cattr = 0;
   1406
   1407    qemu_iovec_init(&local_qiov, 1);
   1408    qemu_iovec_add(&local_qiov, buf, 4096);
   1409
   1410    req = nvme_get_free_req(ioq);
   1411    assert(req);
   1412
   1413    qemu_co_mutex_lock(&s->dma_map_lock);
   1414    ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
   1415    qemu_co_mutex_unlock(&s->dma_map_lock);
   1416
   1417    if (ret) {
   1418        nvme_put_free_req_and_wake(ioq, req);
   1419        goto out;
   1420    }
   1421
   1422    trace_nvme_dsm(s, offset, bytes);
   1423
   1424    nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
   1425
   1426    data.co = qemu_coroutine_self();
   1427    while (data.ret == -EINPROGRESS) {
   1428        qemu_coroutine_yield();
   1429    }
   1430
   1431    qemu_co_mutex_lock(&s->dma_map_lock);
   1432    ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
   1433    qemu_co_mutex_unlock(&s->dma_map_lock);
   1434
   1435    if (ret) {
   1436        goto out;
   1437    }
   1438
   1439    ret = data.ret;
   1440    trace_nvme_dsm_done(s, offset, bytes, ret);
   1441out:
   1442    qemu_iovec_destroy(&local_qiov);
   1443    qemu_vfree(buf);
   1444    return ret;
   1445
   1446}
   1447
   1448static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset,
   1449                                         bool exact, PreallocMode prealloc,
   1450                                         BdrvRequestFlags flags, Error **errp)
   1451{
   1452    int64_t cur_length;
   1453
   1454    if (prealloc != PREALLOC_MODE_OFF) {
   1455        error_setg(errp, "Unsupported preallocation mode '%s'",
   1456                   PreallocMode_str(prealloc));
   1457        return -ENOTSUP;
   1458    }
   1459
   1460    cur_length = nvme_getlength(bs);
   1461    if (offset != cur_length && exact) {
   1462        error_setg(errp, "Cannot resize NVMe devices");
   1463        return -ENOTSUP;
   1464    } else if (offset > cur_length) {
   1465        error_setg(errp, "Cannot grow NVMe devices");
   1466        return -EINVAL;
   1467    }
   1468
   1469    return 0;
   1470}
   1471
   1472static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
   1473                               BlockReopenQueue *queue, Error **errp)
   1474{
   1475    return 0;
   1476}
   1477
   1478static void nvme_refresh_filename(BlockDriverState *bs)
   1479{
   1480    BDRVNVMeState *s = bs->opaque;
   1481
   1482    snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
   1483             s->device, s->nsid);
   1484}
   1485
   1486static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
   1487{
   1488    BDRVNVMeState *s = bs->opaque;
   1489
   1490    bs->bl.opt_mem_alignment = s->page_size;
   1491    bs->bl.request_alignment = s->page_size;
   1492    bs->bl.max_transfer = s->max_transfer;
   1493
   1494    /*
   1495     * Look at nvme_co_pwrite_zeroes: after shift and decrement we should get
   1496     * at most 0xFFFF
   1497     */
   1498    bs->bl.max_pwrite_zeroes = 1ULL << (s->blkshift + 16);
   1499    bs->bl.pwrite_zeroes_alignment = MAX(bs->bl.request_alignment,
   1500                                         1UL << s->blkshift);
   1501
   1502    bs->bl.max_pdiscard = (uint64_t)UINT32_MAX << s->blkshift;
   1503    bs->bl.pdiscard_alignment = MAX(bs->bl.request_alignment,
   1504                                    1UL << s->blkshift);
   1505}
   1506
   1507static void nvme_detach_aio_context(BlockDriverState *bs)
   1508{
   1509    BDRVNVMeState *s = bs->opaque;
   1510
   1511    for (unsigned i = 0; i < s->queue_count; i++) {
   1512        NVMeQueuePair *q = s->queues[i];
   1513
   1514        qemu_bh_delete(q->completion_bh);
   1515        q->completion_bh = NULL;
   1516    }
   1517
   1518    aio_set_event_notifier(bdrv_get_aio_context(bs),
   1519                           &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
   1520                           false, NULL, NULL);
   1521}
   1522
   1523static void nvme_attach_aio_context(BlockDriverState *bs,
   1524                                    AioContext *new_context)
   1525{
   1526    BDRVNVMeState *s = bs->opaque;
   1527
   1528    s->aio_context = new_context;
   1529    aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
   1530                           false, nvme_handle_event, nvme_poll_cb);
   1531
   1532    for (unsigned i = 0; i < s->queue_count; i++) {
   1533        NVMeQueuePair *q = s->queues[i];
   1534
   1535        q->completion_bh =
   1536            aio_bh_new(new_context, nvme_process_completion_bh, q);
   1537    }
   1538}
   1539
   1540static void nvme_aio_plug(BlockDriverState *bs)
   1541{
   1542    BDRVNVMeState *s = bs->opaque;
   1543    assert(!s->plugged);
   1544    s->plugged = true;
   1545}
   1546
   1547static void nvme_aio_unplug(BlockDriverState *bs)
   1548{
   1549    BDRVNVMeState *s = bs->opaque;
   1550    assert(s->plugged);
   1551    s->plugged = false;
   1552    for (unsigned i = INDEX_IO(0); i < s->queue_count; i++) {
   1553        NVMeQueuePair *q = s->queues[i];
   1554        qemu_mutex_lock(&q->lock);
   1555        nvme_kick(q);
   1556        nvme_process_completion(q);
   1557        qemu_mutex_unlock(&q->lock);
   1558    }
   1559}
   1560
   1561static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
   1562{
   1563    int ret;
   1564    Error *local_err = NULL;
   1565    BDRVNVMeState *s = bs->opaque;
   1566
   1567    ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL, &local_err);
   1568    if (ret) {
   1569        /* FIXME: we may run out of IOVA addresses after repeated
   1570         * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
   1571         * doesn't reclaim addresses for fixed mappings. */
   1572        error_reportf_err(local_err, "nvme_register_buf failed: ");
   1573    }
   1574}
   1575
   1576static void nvme_unregister_buf(BlockDriverState *bs, void *host)
   1577{
   1578    BDRVNVMeState *s = bs->opaque;
   1579
   1580    qemu_vfio_dma_unmap(s->vfio, host);
   1581}
   1582
   1583static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs)
   1584{
   1585    BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1);
   1586    BDRVNVMeState *s = bs->opaque;
   1587
   1588    stats->driver = BLOCKDEV_DRIVER_NVME;
   1589    stats->u.nvme = (BlockStatsSpecificNvme) {
   1590        .completion_errors = s->stats.completion_errors,
   1591        .aligned_accesses = s->stats.aligned_accesses,
   1592        .unaligned_accesses = s->stats.unaligned_accesses,
   1593    };
   1594
   1595    return stats;
   1596}
   1597
   1598static const char *const nvme_strong_runtime_opts[] = {
   1599    NVME_BLOCK_OPT_DEVICE,
   1600    NVME_BLOCK_OPT_NAMESPACE,
   1601
   1602    NULL
   1603};
   1604
   1605static BlockDriver bdrv_nvme = {
   1606    .format_name              = "nvme",
   1607    .protocol_name            = "nvme",
   1608    .instance_size            = sizeof(BDRVNVMeState),
   1609
   1610    .bdrv_co_create_opts      = bdrv_co_create_opts_simple,
   1611    .create_opts              = &bdrv_create_opts_simple,
   1612
   1613    .bdrv_parse_filename      = nvme_parse_filename,
   1614    .bdrv_file_open           = nvme_file_open,
   1615    .bdrv_close               = nvme_close,
   1616    .bdrv_getlength           = nvme_getlength,
   1617    .bdrv_probe_blocksizes    = nvme_probe_blocksizes,
   1618    .bdrv_co_truncate         = nvme_co_truncate,
   1619
   1620    .bdrv_co_preadv           = nvme_co_preadv,
   1621    .bdrv_co_pwritev          = nvme_co_pwritev,
   1622
   1623    .bdrv_co_pwrite_zeroes    = nvme_co_pwrite_zeroes,
   1624    .bdrv_co_pdiscard         = nvme_co_pdiscard,
   1625
   1626    .bdrv_co_flush_to_disk    = nvme_co_flush,
   1627    .bdrv_reopen_prepare      = nvme_reopen_prepare,
   1628
   1629    .bdrv_refresh_filename    = nvme_refresh_filename,
   1630    .bdrv_refresh_limits      = nvme_refresh_limits,
   1631    .strong_runtime_opts      = nvme_strong_runtime_opts,
   1632    .bdrv_get_specific_stats  = nvme_get_specific_stats,
   1633
   1634    .bdrv_detach_aio_context  = nvme_detach_aio_context,
   1635    .bdrv_attach_aio_context  = nvme_attach_aio_context,
   1636
   1637    .bdrv_io_plug             = nvme_aio_plug,
   1638    .bdrv_io_unplug           = nvme_aio_unplug,
   1639
   1640    .bdrv_register_buf        = nvme_register_buf,
   1641    .bdrv_unregister_buf      = nvme_unregister_buf,
   1642};
   1643
   1644static void bdrv_nvme_init(void)
   1645{
   1646    bdrv_register(&bdrv_nvme);
   1647}
   1648
   1649block_init(bdrv_nvme_init);