cpus-common.c (10334B)
1/* 2 * CPU thread main loop - common bits for user and system mode emulation 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20#include "qemu/osdep.h" 21#include "qemu/main-loop.h" 22#include "exec/cpu-common.h" 23#include "hw/core/cpu.h" 24#include "sysemu/cpus.h" 25#include "qemu/lockable.h" 26 27static QemuMutex qemu_cpu_list_lock; 28static QemuCond exclusive_cond; 29static QemuCond exclusive_resume; 30static QemuCond qemu_work_cond; 31 32/* >= 1 if a thread is inside start_exclusive/end_exclusive. Written 33 * under qemu_cpu_list_lock, read with atomic operations. 34 */ 35static int pending_cpus; 36 37void qemu_init_cpu_list(void) 38{ 39 /* This is needed because qemu_init_cpu_list is also called by the 40 * child process in a fork. */ 41 pending_cpus = 0; 42 43 qemu_mutex_init(&qemu_cpu_list_lock); 44 qemu_cond_init(&exclusive_cond); 45 qemu_cond_init(&exclusive_resume); 46 qemu_cond_init(&qemu_work_cond); 47} 48 49void cpu_list_lock(void) 50{ 51 qemu_mutex_lock(&qemu_cpu_list_lock); 52} 53 54void cpu_list_unlock(void) 55{ 56 qemu_mutex_unlock(&qemu_cpu_list_lock); 57} 58 59static bool cpu_index_auto_assigned; 60 61static int cpu_get_free_index(void) 62{ 63 CPUState *some_cpu; 64 int max_cpu_index = 0; 65 66 cpu_index_auto_assigned = true; 67 CPU_FOREACH(some_cpu) { 68 if (some_cpu->cpu_index >= max_cpu_index) { 69 max_cpu_index = some_cpu->cpu_index + 1; 70 } 71 } 72 return max_cpu_index; 73} 74 75CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); 76 77void cpu_list_add(CPUState *cpu) 78{ 79 QEMU_LOCK_GUARD(&qemu_cpu_list_lock); 80 if (cpu->cpu_index == UNASSIGNED_CPU_INDEX) { 81 cpu->cpu_index = cpu_get_free_index(); 82 assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX); 83 } else { 84 assert(!cpu_index_auto_assigned); 85 } 86 QTAILQ_INSERT_TAIL_RCU(&cpus, cpu, node); 87} 88 89void cpu_list_remove(CPUState *cpu) 90{ 91 QEMU_LOCK_GUARD(&qemu_cpu_list_lock); 92 if (!QTAILQ_IN_USE(cpu, node)) { 93 /* there is nothing to undo since cpu_exec_init() hasn't been called */ 94 return; 95 } 96 97 QTAILQ_REMOVE_RCU(&cpus, cpu, node); 98 cpu->cpu_index = UNASSIGNED_CPU_INDEX; 99} 100 101CPUState *qemu_get_cpu(int index) 102{ 103 CPUState *cpu; 104 105 CPU_FOREACH(cpu) { 106 if (cpu->cpu_index == index) { 107 return cpu; 108 } 109 } 110 111 return NULL; 112} 113 114/* current CPU in the current thread. It is only valid inside cpu_exec() */ 115__thread CPUState *current_cpu; 116 117struct qemu_work_item { 118 QSIMPLEQ_ENTRY(qemu_work_item) node; 119 run_on_cpu_func func; 120 run_on_cpu_data data; 121 bool free, exclusive, done; 122}; 123 124static void queue_work_on_cpu(CPUState *cpu, struct qemu_work_item *wi) 125{ 126 qemu_mutex_lock(&cpu->work_mutex); 127 QSIMPLEQ_INSERT_TAIL(&cpu->work_list, wi, node); 128 wi->done = false; 129 qemu_mutex_unlock(&cpu->work_mutex); 130 131 qemu_cpu_kick(cpu); 132} 133 134void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 135 QemuMutex *mutex) 136{ 137 struct qemu_work_item wi; 138 139 if (qemu_cpu_is_self(cpu)) { 140 func(cpu, data); 141 return; 142 } 143 144 wi.func = func; 145 wi.data = data; 146 wi.done = false; 147 wi.free = false; 148 wi.exclusive = false; 149 150 queue_work_on_cpu(cpu, &wi); 151 while (!qatomic_mb_read(&wi.done)) { 152 CPUState *self_cpu = current_cpu; 153 154 qemu_cond_wait(&qemu_work_cond, mutex); 155 current_cpu = self_cpu; 156 } 157} 158 159void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data) 160{ 161 struct qemu_work_item *wi; 162 163 wi = g_malloc0(sizeof(struct qemu_work_item)); 164 wi->func = func; 165 wi->data = data; 166 wi->free = true; 167 168 queue_work_on_cpu(cpu, wi); 169} 170 171/* Wait for pending exclusive operations to complete. The CPU list lock 172 must be held. */ 173static inline void exclusive_idle(void) 174{ 175 while (pending_cpus) { 176 qemu_cond_wait(&exclusive_resume, &qemu_cpu_list_lock); 177 } 178} 179 180/* Start an exclusive operation. 181 Must only be called from outside cpu_exec. */ 182void start_exclusive(void) 183{ 184 CPUState *other_cpu; 185 int running_cpus; 186 187 qemu_mutex_lock(&qemu_cpu_list_lock); 188 exclusive_idle(); 189 190 /* Make all other cpus stop executing. */ 191 qatomic_set(&pending_cpus, 1); 192 193 /* Write pending_cpus before reading other_cpu->running. */ 194 smp_mb(); 195 running_cpus = 0; 196 CPU_FOREACH(other_cpu) { 197 if (qatomic_read(&other_cpu->running)) { 198 other_cpu->has_waiter = true; 199 running_cpus++; 200 qemu_cpu_kick(other_cpu); 201 } 202 } 203 204 qatomic_set(&pending_cpus, running_cpus + 1); 205 while (pending_cpus > 1) { 206 qemu_cond_wait(&exclusive_cond, &qemu_cpu_list_lock); 207 } 208 209 /* Can release mutex, no one will enter another exclusive 210 * section until end_exclusive resets pending_cpus to 0. 211 */ 212 qemu_mutex_unlock(&qemu_cpu_list_lock); 213 214 current_cpu->in_exclusive_context = true; 215} 216 217/* Finish an exclusive operation. */ 218void end_exclusive(void) 219{ 220 current_cpu->in_exclusive_context = false; 221 222 qemu_mutex_lock(&qemu_cpu_list_lock); 223 qatomic_set(&pending_cpus, 0); 224 qemu_cond_broadcast(&exclusive_resume); 225 qemu_mutex_unlock(&qemu_cpu_list_lock); 226} 227 228/* Wait for exclusive ops to finish, and begin cpu execution. */ 229void cpu_exec_start(CPUState *cpu) 230{ 231 qatomic_set(&cpu->running, true); 232 233 /* Write cpu->running before reading pending_cpus. */ 234 smp_mb(); 235 236 /* 1. start_exclusive saw cpu->running == true and pending_cpus >= 1. 237 * After taking the lock we'll see cpu->has_waiter == true and run---not 238 * for long because start_exclusive kicked us. cpu_exec_end will 239 * decrement pending_cpus and signal the waiter. 240 * 241 * 2. start_exclusive saw cpu->running == false but pending_cpus >= 1. 242 * This includes the case when an exclusive item is running now. 243 * Then we'll see cpu->has_waiter == false and wait for the item to 244 * complete. 245 * 246 * 3. pending_cpus == 0. Then start_exclusive is definitely going to 247 * see cpu->running == true, and it will kick the CPU. 248 */ 249 if (unlikely(qatomic_read(&pending_cpus))) { 250 QEMU_LOCK_GUARD(&qemu_cpu_list_lock); 251 if (!cpu->has_waiter) { 252 /* Not counted in pending_cpus, let the exclusive item 253 * run. Since we have the lock, just set cpu->running to true 254 * while holding it; no need to check pending_cpus again. 255 */ 256 qatomic_set(&cpu->running, false); 257 exclusive_idle(); 258 /* Now pending_cpus is zero. */ 259 qatomic_set(&cpu->running, true); 260 } else { 261 /* Counted in pending_cpus, go ahead and release the 262 * waiter at cpu_exec_end. 263 */ 264 } 265 } 266} 267 268/* Mark cpu as not executing, and release pending exclusive ops. */ 269void cpu_exec_end(CPUState *cpu) 270{ 271 qatomic_set(&cpu->running, false); 272 273 /* Write cpu->running before reading pending_cpus. */ 274 smp_mb(); 275 276 /* 1. start_exclusive saw cpu->running == true. Then it will increment 277 * pending_cpus and wait for exclusive_cond. After taking the lock 278 * we'll see cpu->has_waiter == true. 279 * 280 * 2. start_exclusive saw cpu->running == false but here pending_cpus >= 1. 281 * This includes the case when an exclusive item started after setting 282 * cpu->running to false and before we read pending_cpus. Then we'll see 283 * cpu->has_waiter == false and not touch pending_cpus. The next call to 284 * cpu_exec_start will run exclusive_idle if still necessary, thus waiting 285 * for the item to complete. 286 * 287 * 3. pending_cpus == 0. Then start_exclusive is definitely going to 288 * see cpu->running == false, and it can ignore this CPU until the 289 * next cpu_exec_start. 290 */ 291 if (unlikely(qatomic_read(&pending_cpus))) { 292 QEMU_LOCK_GUARD(&qemu_cpu_list_lock); 293 if (cpu->has_waiter) { 294 cpu->has_waiter = false; 295 qatomic_set(&pending_cpus, pending_cpus - 1); 296 if (pending_cpus == 1) { 297 qemu_cond_signal(&exclusive_cond); 298 } 299 } 300 } 301} 302 303void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, 304 run_on_cpu_data data) 305{ 306 struct qemu_work_item *wi; 307 308 wi = g_malloc0(sizeof(struct qemu_work_item)); 309 wi->func = func; 310 wi->data = data; 311 wi->free = true; 312 wi->exclusive = true; 313 314 queue_work_on_cpu(cpu, wi); 315} 316 317void process_queued_cpu_work(CPUState *cpu) 318{ 319 struct qemu_work_item *wi; 320 321 qemu_mutex_lock(&cpu->work_mutex); 322 if (QSIMPLEQ_EMPTY(&cpu->work_list)) { 323 qemu_mutex_unlock(&cpu->work_mutex); 324 return; 325 } 326 while (!QSIMPLEQ_EMPTY(&cpu->work_list)) { 327 wi = QSIMPLEQ_FIRST(&cpu->work_list); 328 QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node); 329 qemu_mutex_unlock(&cpu->work_mutex); 330 if (wi->exclusive) { 331 /* Running work items outside the BQL avoids the following deadlock: 332 * 1) start_exclusive() is called with the BQL taken while another 333 * CPU is running; 2) cpu_exec in the other CPU tries to takes the 334 * BQL, so it goes to sleep; start_exclusive() is sleeping too, so 335 * neither CPU can proceed. 336 */ 337 qemu_mutex_unlock_iothread(); 338 start_exclusive(); 339 wi->func(cpu, wi->data); 340 end_exclusive(); 341 qemu_mutex_lock_iothread(); 342 } else { 343 wi->func(cpu, wi->data); 344 } 345 qemu_mutex_lock(&cpu->work_mutex); 346 if (wi->free) { 347 g_free(wi); 348 } else { 349 qatomic_mb_set(&wi->done, true); 350 } 351 } 352 qemu_mutex_unlock(&cpu->work_mutex); 353 qemu_cond_broadcast(&qemu_work_cond); 354}