cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

assembler-a64.h (143422B)


      1// Copyright 2015, ARM Limited
      2// All rights reserved.
      3//
      4// Redistribution and use in source and binary forms, with or without
      5// modification, are permitted provided that the following conditions are met:
      6//
      7//   * Redistributions of source code must retain the above copyright notice,
      8//     this list of conditions and the following disclaimer.
      9//   * Redistributions in binary form must reproduce the above copyright notice,
     10//     this list of conditions and the following disclaimer in the documentation
     11//     and/or other materials provided with the distribution.
     12//   * Neither the name of ARM Limited nor the names of its contributors may be
     13//     used to endorse or promote products derived from this software without
     14//     specific prior written permission.
     15//
     16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
     17// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     18// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     19// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
     20// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     22// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
     23// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     25// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26
     27#ifndef VIXL_A64_ASSEMBLER_A64_H_
     28#define VIXL_A64_ASSEMBLER_A64_H_
     29
     30
     31#include "vixl/globals.h"
     32#include "vixl/invalset.h"
     33#include "vixl/utils.h"
     34#include "vixl/code-buffer.h"
     35#include "vixl/a64/instructions-a64.h"
     36
     37namespace vixl {
     38
     39typedef uint64_t RegList;
     40static const int kRegListSizeInBits = sizeof(RegList) * 8;
     41
     42
     43// Registers.
     44
     45// Some CPURegister methods can return Register or VRegister types, so we need
     46// to declare them in advance.
     47class Register;
     48class VRegister;
     49
     50class CPURegister {
     51 public:
     52  enum RegisterType {
     53    // The kInvalid value is used to detect uninitialized static instances,
     54    // which are always zero-initialized before any constructors are called.
     55    kInvalid = 0,
     56    kRegister,
     57    kVRegister,
     58    kFPRegister = kVRegister,
     59    kNoRegister
     60  };
     61
     62  CPURegister() : code_(0), size_(0), type_(kNoRegister) {
     63    VIXL_ASSERT(!IsValid());
     64    VIXL_ASSERT(IsNone());
     65  }
     66
     67  CPURegister(unsigned code, unsigned size, RegisterType type)
     68      : code_(code), size_(size), type_(type) {
     69    VIXL_ASSERT(IsValidOrNone());
     70  }
     71
     72  unsigned code() const {
     73    VIXL_ASSERT(IsValid());
     74    return code_;
     75  }
     76
     77  RegisterType type() const {
     78    VIXL_ASSERT(IsValidOrNone());
     79    return type_;
     80  }
     81
     82  RegList Bit() const {
     83    VIXL_ASSERT(code_ < (sizeof(RegList) * 8));
     84    return IsValid() ? (static_cast<RegList>(1) << code_) : 0;
     85  }
     86
     87  unsigned size() const {
     88    VIXL_ASSERT(IsValid());
     89    return size_;
     90  }
     91
     92  int SizeInBytes() const {
     93    VIXL_ASSERT(IsValid());
     94    VIXL_ASSERT(size() % 8 == 0);
     95    return size_ / 8;
     96  }
     97
     98  int SizeInBits() const {
     99    VIXL_ASSERT(IsValid());
    100    return size_;
    101  }
    102
    103  bool Is8Bits() const {
    104    VIXL_ASSERT(IsValid());
    105    return size_ == 8;
    106  }
    107
    108  bool Is16Bits() const {
    109    VIXL_ASSERT(IsValid());
    110    return size_ == 16;
    111  }
    112
    113  bool Is32Bits() const {
    114    VIXL_ASSERT(IsValid());
    115    return size_ == 32;
    116  }
    117
    118  bool Is64Bits() const {
    119    VIXL_ASSERT(IsValid());
    120    return size_ == 64;
    121  }
    122
    123  bool Is128Bits() const {
    124    VIXL_ASSERT(IsValid());
    125    return size_ == 128;
    126  }
    127
    128  bool IsValid() const {
    129    if (IsValidRegister() || IsValidVRegister()) {
    130      VIXL_ASSERT(!IsNone());
    131      return true;
    132    } else {
    133      // This assert is hit when the register has not been properly initialized.
    134      // One cause for this can be an initialisation order fiasco. See
    135      // https://isocpp.org/wiki/faq/ctors#static-init-order for some details.
    136      VIXL_ASSERT(IsNone());
    137      return false;
    138    }
    139  }
    140
    141  bool IsValidRegister() const {
    142    return IsRegister() &&
    143           ((size_ == kWRegSize) || (size_ == kXRegSize)) &&
    144           ((code_ < kNumberOfRegisters) || (code_ == kSPRegInternalCode));
    145  }
    146
    147  bool IsValidVRegister() const {
    148    return IsVRegister() &&
    149           ((size_ == kBRegSize) || (size_ == kHRegSize) ||
    150            (size_ == kSRegSize) || (size_ == kDRegSize) ||
    151            (size_ == kQRegSize)) &&
    152           (code_ < kNumberOfVRegisters);
    153  }
    154
    155  bool IsValidFPRegister() const {
    156    return IsFPRegister() && (code_ < kNumberOfVRegisters);
    157  }
    158
    159  bool IsNone() const {
    160    // kNoRegister types should always have size 0 and code 0.
    161    VIXL_ASSERT((type_ != kNoRegister) || (code_ == 0));
    162    VIXL_ASSERT((type_ != kNoRegister) || (size_ == 0));
    163
    164    return type_ == kNoRegister;
    165  }
    166
    167  bool Aliases(const CPURegister& other) const {
    168    VIXL_ASSERT(IsValidOrNone() && other.IsValidOrNone());
    169    return (code_ == other.code_) && (type_ == other.type_);
    170  }
    171
    172  bool Is(const CPURegister& other) const {
    173    VIXL_ASSERT(IsValidOrNone() && other.IsValidOrNone());
    174    return Aliases(other) && (size_ == other.size_);
    175  }
    176
    177  bool IsZero() const {
    178    VIXL_ASSERT(IsValid());
    179    return IsRegister() && (code_ == kZeroRegCode);
    180  }
    181
    182  bool IsSP() const {
    183    VIXL_ASSERT(IsValid());
    184    return IsRegister() && (code_ == kSPRegInternalCode);
    185  }
    186
    187  bool IsRegister() const {
    188    return type_ == kRegister;
    189  }
    190
    191  bool IsVRegister() const {
    192    return type_ == kVRegister;
    193  }
    194
    195  bool IsFPRegister() const {
    196    return IsS() || IsD();
    197  }
    198
    199  bool IsW() const { return IsValidRegister() && Is32Bits(); }
    200  bool IsX() const { return IsValidRegister() && Is64Bits(); }
    201
    202  // These assertions ensure that the size and type of the register are as
    203  // described. They do not consider the number of lanes that make up a vector.
    204  // So, for example, Is8B() implies IsD(), and Is1D() implies IsD, but IsD()
    205  // does not imply Is1D() or Is8B().
    206  // Check the number of lanes, ie. the format of the vector, using methods such
    207  // as Is8B(), Is1D(), etc. in the VRegister class.
    208  bool IsV() const { return IsVRegister(); }
    209  bool IsB() const { return IsV() && Is8Bits(); }
    210  bool IsH() const { return IsV() && Is16Bits(); }
    211  bool IsS() const { return IsV() && Is32Bits(); }
    212  bool IsD() const { return IsV() && Is64Bits(); }
    213  bool IsQ() const { return IsV() && Is128Bits(); }
    214
    215  const Register& W() const;
    216  const Register& X() const;
    217  const VRegister& V() const;
    218  const VRegister& B() const;
    219  const VRegister& H() const;
    220  const VRegister& S() const;
    221  const VRegister& D() const;
    222  const VRegister& Q() const;
    223
    224  bool IsSameSizeAndType(const CPURegister& other) const {
    225    return (size_ == other.size_) && (type_ == other.type_);
    226  }
    227
    228 protected:
    229  unsigned code_;
    230  unsigned size_;
    231  RegisterType type_;
    232
    233 private:
    234  bool IsValidOrNone() const {
    235    return IsValid() || IsNone();
    236  }
    237};
    238
    239
    240class Register : public CPURegister {
    241 public:
    242  Register() : CPURegister() {}
    243  explicit Register(const CPURegister& other)
    244      : CPURegister(other.code(), other.size(), other.type()) {
    245    VIXL_ASSERT(IsValidRegister());
    246  }
    247  Register(unsigned code, unsigned size)
    248      : CPURegister(code, size, kRegister) {}
    249
    250  bool IsValid() const {
    251    VIXL_ASSERT(IsRegister() || IsNone());
    252    return IsValidRegister();
    253  }
    254
    255  static const Register& WRegFromCode(unsigned code);
    256  static const Register& XRegFromCode(unsigned code);
    257
    258 private:
    259  static const Register wregisters[];
    260  static const Register xregisters[];
    261};
    262
    263
    264class VRegister : public CPURegister {
    265 public:
    266  VRegister() : CPURegister(), lanes_(1) {}
    267  explicit VRegister(const CPURegister& other)
    268      : CPURegister(other.code(), other.size(), other.type()), lanes_(1) {
    269    VIXL_ASSERT(IsValidVRegister());
    270    VIXL_ASSERT(IsPowerOf2(lanes_) && (lanes_ <= 16));
    271  }
    272  VRegister(unsigned code, unsigned size, unsigned lanes = 1)
    273      : CPURegister(code, size, kVRegister), lanes_(lanes) {
    274    VIXL_ASSERT(IsPowerOf2(lanes_) && (lanes_ <= 16));
    275  }
    276  VRegister(unsigned code, VectorFormat format)
    277      : CPURegister(code, RegisterSizeInBitsFromFormat(format), kVRegister),
    278        lanes_(IsVectorFormat(format) ? LaneCountFromFormat(format) : 1) {
    279    VIXL_ASSERT(IsPowerOf2(lanes_) && (lanes_ <= 16));
    280  }
    281
    282  bool IsValid() const {
    283    VIXL_ASSERT(IsVRegister() || IsNone());
    284    return IsValidVRegister();
    285  }
    286
    287  static const VRegister& BRegFromCode(unsigned code);
    288  static const VRegister& HRegFromCode(unsigned code);
    289  static const VRegister& SRegFromCode(unsigned code);
    290  static const VRegister& DRegFromCode(unsigned code);
    291  static const VRegister& QRegFromCode(unsigned code);
    292  static const VRegister& VRegFromCode(unsigned code);
    293
    294  VRegister V8B() const { return VRegister(code_, kDRegSize, 8); }
    295  VRegister V16B() const { return VRegister(code_, kQRegSize, 16); }
    296  VRegister V4H() const { return VRegister(code_, kDRegSize, 4); }
    297  VRegister V8H() const { return VRegister(code_, kQRegSize, 8); }
    298  VRegister V2S() const { return VRegister(code_, kDRegSize, 2); }
    299  VRegister V4S() const { return VRegister(code_, kQRegSize, 4); }
    300  VRegister V2D() const { return VRegister(code_, kQRegSize, 2); }
    301  VRegister V1D() const { return VRegister(code_, kDRegSize, 1); }
    302
    303  bool Is8B() const { return (Is64Bits() && (lanes_ == 8)); }
    304  bool Is16B() const { return (Is128Bits() && (lanes_ == 16)); }
    305  bool Is4H() const { return (Is64Bits() && (lanes_ == 4)); }
    306  bool Is8H() const { return (Is128Bits() && (lanes_ == 8)); }
    307  bool Is2S() const { return (Is64Bits() && (lanes_ == 2)); }
    308  bool Is4S() const { return (Is128Bits() && (lanes_ == 4)); }
    309  bool Is1D() const { return (Is64Bits() && (lanes_ == 1)); }
    310  bool Is2D() const { return (Is128Bits() && (lanes_ == 2)); }
    311
    312  // For consistency, we assert the number of lanes of these scalar registers,
    313  // even though there are no vectors of equivalent total size with which they
    314  // could alias.
    315  bool Is1B() const {
    316    VIXL_ASSERT(!(Is8Bits() && IsVector()));
    317    return Is8Bits();
    318  }
    319  bool Is1H() const {
    320    VIXL_ASSERT(!(Is16Bits() && IsVector()));
    321    return Is16Bits();
    322  }
    323  bool Is1S() const {
    324    VIXL_ASSERT(!(Is32Bits() && IsVector()));
    325    return Is32Bits();
    326  }
    327
    328  bool IsLaneSizeB() const { return LaneSizeInBits() == kBRegSize; }
    329  bool IsLaneSizeH() const { return LaneSizeInBits() == kHRegSize; }
    330  bool IsLaneSizeS() const { return LaneSizeInBits() == kSRegSize; }
    331  bool IsLaneSizeD() const { return LaneSizeInBits() == kDRegSize; }
    332
    333  int lanes() const {
    334    return lanes_;
    335  }
    336
    337  bool IsScalar() const {
    338    return lanes_ == 1;
    339  }
    340
    341  bool IsVector() const {
    342    return lanes_ > 1;
    343  }
    344
    345  bool IsSameFormat(const VRegister& other) const {
    346    return (size_ == other.size_) && (lanes_ == other.lanes_);
    347  }
    348
    349  unsigned LaneSizeInBytes() const {
    350    return SizeInBytes() / lanes_;
    351  }
    352
    353  unsigned LaneSizeInBits() const {
    354    return LaneSizeInBytes() * 8;
    355  }
    356
    357 private:
    358  static const VRegister bregisters[];
    359  static const VRegister hregisters[];
    360  static const VRegister sregisters[];
    361  static const VRegister dregisters[];
    362  static const VRegister qregisters[];
    363  static const VRegister vregisters[];
    364  int lanes_;
    365};
    366
    367
    368// Backward compatibility for FPRegisters.
    369typedef VRegister FPRegister;
    370
    371// No*Reg is used to indicate an unused argument, or an error case. Note that
    372// these all compare equal (using the Is() method). The Register and VRegister
    373// variants are provided for convenience.
    374const Register NoReg;
    375const VRegister NoVReg;
    376const FPRegister NoFPReg;  // For backward compatibility.
    377const CPURegister NoCPUReg;
    378
    379
    380#define DEFINE_REGISTERS(N)  \
    381const Register w##N(N, kWRegSize);  \
    382const Register x##N(N, kXRegSize);
    383REGISTER_CODE_LIST(DEFINE_REGISTERS)
    384#undef DEFINE_REGISTERS
    385const Register wsp(kSPRegInternalCode, kWRegSize);
    386const Register sp(kSPRegInternalCode, kXRegSize);
    387
    388
    389#define DEFINE_VREGISTERS(N)  \
    390const VRegister b##N(N, kBRegSize);  \
    391const VRegister h##N(N, kHRegSize);  \
    392const VRegister s##N(N, kSRegSize);  \
    393const VRegister d##N(N, kDRegSize);  \
    394const VRegister q##N(N, kQRegSize);  \
    395const VRegister v##N(N, kQRegSize);
    396REGISTER_CODE_LIST(DEFINE_VREGISTERS)
    397#undef DEFINE_VREGISTERS
    398
    399
    400// Registers aliases.
    401const Register ip0 = x16;
    402const Register ip1 = x17;
    403const Register lr = x30;
    404const Register xzr = x31;
    405const Register wzr = w31;
    406
    407
    408// AreAliased returns true if any of the named registers overlap. Arguments
    409// set to NoReg are ignored. The system stack pointer may be specified.
    410bool AreAliased(const CPURegister& reg1,
    411                const CPURegister& reg2,
    412                const CPURegister& reg3 = NoReg,
    413                const CPURegister& reg4 = NoReg,
    414                const CPURegister& reg5 = NoReg,
    415                const CPURegister& reg6 = NoReg,
    416                const CPURegister& reg7 = NoReg,
    417                const CPURegister& reg8 = NoReg);
    418
    419
    420// AreSameSizeAndType returns true if all of the specified registers have the
    421// same size, and are of the same type. The system stack pointer may be
    422// specified. Arguments set to NoReg are ignored, as are any subsequent
    423// arguments. At least one argument (reg1) must be valid (not NoCPUReg).
    424bool AreSameSizeAndType(const CPURegister& reg1,
    425                        const CPURegister& reg2,
    426                        const CPURegister& reg3 = NoCPUReg,
    427                        const CPURegister& reg4 = NoCPUReg,
    428                        const CPURegister& reg5 = NoCPUReg,
    429                        const CPURegister& reg6 = NoCPUReg,
    430                        const CPURegister& reg7 = NoCPUReg,
    431                        const CPURegister& reg8 = NoCPUReg);
    432
    433
    434// AreSameFormat returns true if all of the specified VRegisters have the same
    435// vector format. Arguments set to NoReg are ignored, as are any subsequent
    436// arguments. At least one argument (reg1) must be valid (not NoVReg).
    437bool AreSameFormat(const VRegister& reg1,
    438                   const VRegister& reg2,
    439                   const VRegister& reg3 = NoVReg,
    440                   const VRegister& reg4 = NoVReg);
    441
    442
    443// AreConsecutive returns true if all of the specified VRegisters are
    444// consecutive in the register file. Arguments set to NoReg are ignored, as are
    445// any subsequent arguments. At least one argument (reg1) must be valid
    446// (not NoVReg).
    447bool AreConsecutive(const VRegister& reg1,
    448                    const VRegister& reg2,
    449                    const VRegister& reg3 = NoVReg,
    450                    const VRegister& reg4 = NoVReg);
    451
    452
    453// Lists of registers.
    454class CPURegList {
    455 public:
    456  explicit CPURegList(CPURegister reg1,
    457                      CPURegister reg2 = NoCPUReg,
    458                      CPURegister reg3 = NoCPUReg,
    459                      CPURegister reg4 = NoCPUReg)
    460      : list_(reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit()),
    461        size_(reg1.size()), type_(reg1.type()) {
    462    VIXL_ASSERT(AreSameSizeAndType(reg1, reg2, reg3, reg4));
    463    VIXL_ASSERT(IsValid());
    464  }
    465
    466  CPURegList(CPURegister::RegisterType type, unsigned size, RegList list)
    467      : list_(list), size_(size), type_(type) {
    468    VIXL_ASSERT(IsValid());
    469  }
    470
    471  CPURegList(CPURegister::RegisterType type, unsigned size,
    472             unsigned first_reg, unsigned last_reg)
    473      : size_(size), type_(type) {
    474    VIXL_ASSERT(((type == CPURegister::kRegister) &&
    475                 (last_reg < kNumberOfRegisters)) ||
    476                ((type == CPURegister::kVRegister) &&
    477                 (last_reg < kNumberOfVRegisters)));
    478    VIXL_ASSERT(last_reg >= first_reg);
    479    list_ = (UINT64_C(1) << (last_reg + 1)) - 1;
    480    list_ &= ~((UINT64_C(1) << first_reg) - 1);
    481    VIXL_ASSERT(IsValid());
    482  }
    483
    484  CPURegister::RegisterType type() const {
    485    VIXL_ASSERT(IsValid());
    486    return type_;
    487  }
    488
    489  // Combine another CPURegList into this one. Registers that already exist in
    490  // this list are left unchanged. The type and size of the registers in the
    491  // 'other' list must match those in this list.
    492  void Combine(const CPURegList& other) {
    493    VIXL_ASSERT(IsValid());
    494    VIXL_ASSERT(other.type() == type_);
    495    VIXL_ASSERT(other.RegisterSizeInBits() == size_);
    496    list_ |= other.list();
    497  }
    498
    499  // Remove every register in the other CPURegList from this one. Registers that
    500  // do not exist in this list are ignored. The type and size of the registers
    501  // in the 'other' list must match those in this list.
    502  void Remove(const CPURegList& other) {
    503    VIXL_ASSERT(IsValid());
    504    VIXL_ASSERT(other.type() == type_);
    505    VIXL_ASSERT(other.RegisterSizeInBits() == size_);
    506    list_ &= ~other.list();
    507  }
    508
    509  // Variants of Combine and Remove which take a single register.
    510  void Combine(const CPURegister& other) {
    511    VIXL_ASSERT(other.type() == type_);
    512    VIXL_ASSERT(other.size() == size_);
    513    Combine(other.code());
    514  }
    515
    516  void Remove(const CPURegister& other) {
    517    VIXL_ASSERT(other.type() == type_);
    518    VIXL_ASSERT(other.size() == size_);
    519    Remove(other.code());
    520  }
    521
    522  // Variants of Combine and Remove which take a single register by its code;
    523  // the type and size of the register is inferred from this list.
    524  void Combine(int code) {
    525    VIXL_ASSERT(IsValid());
    526    VIXL_ASSERT(CPURegister(code, size_, type_).IsValid());
    527    list_ |= (UINT64_C(1) << code);
    528  }
    529
    530  void Remove(int code) {
    531    VIXL_ASSERT(IsValid());
    532    VIXL_ASSERT(CPURegister(code, size_, type_).IsValid());
    533    list_ &= ~(UINT64_C(1) << code);
    534  }
    535
    536  static CPURegList Union(const CPURegList& list_1, const CPURegList& list_2) {
    537    VIXL_ASSERT(list_1.type_ == list_2.type_);
    538    VIXL_ASSERT(list_1.size_ == list_2.size_);
    539    return CPURegList(list_1.type_, list_1.size_, list_1.list_ | list_2.list_);
    540  }
    541  static CPURegList Union(const CPURegList& list_1,
    542                          const CPURegList& list_2,
    543                          const CPURegList& list_3);
    544  static CPURegList Union(const CPURegList& list_1,
    545                          const CPURegList& list_2,
    546                          const CPURegList& list_3,
    547                          const CPURegList& list_4);
    548
    549  static CPURegList Intersection(const CPURegList& list_1,
    550                                 const CPURegList& list_2) {
    551    VIXL_ASSERT(list_1.type_ == list_2.type_);
    552    VIXL_ASSERT(list_1.size_ == list_2.size_);
    553    return CPURegList(list_1.type_, list_1.size_, list_1.list_ & list_2.list_);
    554  }
    555  static CPURegList Intersection(const CPURegList& list_1,
    556                                 const CPURegList& list_2,
    557                                 const CPURegList& list_3);
    558  static CPURegList Intersection(const CPURegList& list_1,
    559                                 const CPURegList& list_2,
    560                                 const CPURegList& list_3,
    561                                 const CPURegList& list_4);
    562
    563  bool Overlaps(const CPURegList& other) const {
    564    return (type_ == other.type_) && ((list_ & other.list_) != 0);
    565  }
    566
    567  RegList list() const {
    568    VIXL_ASSERT(IsValid());
    569    return list_;
    570  }
    571
    572  void set_list(RegList new_list) {
    573    VIXL_ASSERT(IsValid());
    574    list_ = new_list;
    575  }
    576
    577  // Remove all callee-saved registers from the list. This can be useful when
    578  // preparing registers for an AAPCS64 function call, for example.
    579  void RemoveCalleeSaved();
    580
    581  CPURegister PopLowestIndex();
    582  CPURegister PopHighestIndex();
    583
    584  // AAPCS64 callee-saved registers.
    585  static CPURegList GetCalleeSaved(unsigned size = kXRegSize);
    586  static CPURegList GetCalleeSavedV(unsigned size = kDRegSize);
    587
    588  // AAPCS64 caller-saved registers. Note that this includes lr.
    589  // TODO(all): Determine how we handle d8-d15 being callee-saved, but the top
    590  // 64-bits being caller-saved.
    591  static CPURegList GetCallerSaved(unsigned size = kXRegSize);
    592  static CPURegList GetCallerSavedV(unsigned size = kDRegSize);
    593
    594  bool IsEmpty() const {
    595    VIXL_ASSERT(IsValid());
    596    return list_ == 0;
    597  }
    598
    599  bool IncludesAliasOf(const CPURegister& other) const {
    600    VIXL_ASSERT(IsValid());
    601    return (type_ == other.type()) && ((other.Bit() & list_) != 0);
    602  }
    603
    604  bool IncludesAliasOf(int code) const {
    605    VIXL_ASSERT(IsValid());
    606    return ((code & list_) != 0);
    607  }
    608
    609  int Count() const {
    610    VIXL_ASSERT(IsValid());
    611    return CountSetBits(list_);
    612  }
    613
    614  unsigned RegisterSizeInBits() const {
    615    VIXL_ASSERT(IsValid());
    616    return size_;
    617  }
    618
    619  unsigned RegisterSizeInBytes() const {
    620    int size_in_bits = RegisterSizeInBits();
    621    VIXL_ASSERT((size_in_bits % 8) == 0);
    622    return size_in_bits / 8;
    623  }
    624
    625  unsigned TotalSizeInBytes() const {
    626    VIXL_ASSERT(IsValid());
    627    return RegisterSizeInBytes() * Count();
    628  }
    629
    630 private:
    631  RegList list_;
    632  unsigned size_;
    633  CPURegister::RegisterType type_;
    634
    635  bool IsValid() const;
    636};
    637
    638
    639// AAPCS64 callee-saved registers.
    640extern const CPURegList kCalleeSaved;
    641extern const CPURegList kCalleeSavedV;
    642
    643
    644// AAPCS64 caller-saved registers. Note that this includes lr.
    645extern const CPURegList kCallerSaved;
    646extern const CPURegList kCallerSavedV;
    647
    648
    649// Operand.
    650class Operand {
    651 public:
    652  // #<immediate>
    653  // where <immediate> is int64_t.
    654  // This is allowed to be an implicit constructor because Operand is
    655  // a wrapper class that doesn't normally perform any type conversion.
    656  Operand(int64_t immediate = 0);           // NOLINT(runtime/explicit)
    657
    658  // rm, {<shift> #<shift_amount>}
    659  // where <shift> is one of {LSL, LSR, ASR, ROR}.
    660  //       <shift_amount> is uint6_t.
    661  // This is allowed to be an implicit constructor because Operand is
    662  // a wrapper class that doesn't normally perform any type conversion.
    663  Operand(Register reg,
    664          Shift shift = LSL,
    665          unsigned shift_amount = 0);   // NOLINT(runtime/explicit)
    666
    667  // rm, {<extend> {#<shift_amount>}}
    668  // where <extend> is one of {UXTB, UXTH, UXTW, UXTX, SXTB, SXTH, SXTW, SXTX}.
    669  //       <shift_amount> is uint2_t.
    670  explicit Operand(Register reg, Extend extend, unsigned shift_amount = 0);
    671
    672  bool IsImmediate() const;
    673  bool IsShiftedRegister() const;
    674  bool IsExtendedRegister() const;
    675  bool IsZero() const;
    676
    677  // This returns an LSL shift (<= 4) operand as an equivalent extend operand,
    678  // which helps in the encoding of instructions that use the stack pointer.
    679  Operand ToExtendedRegister() const;
    680
    681  int64_t immediate() const {
    682    VIXL_ASSERT(IsImmediate());
    683    return immediate_;
    684  }
    685
    686  Register reg() const {
    687    VIXL_ASSERT(IsShiftedRegister() || IsExtendedRegister());
    688    return reg_;
    689  }
    690
    691  Shift shift() const {
    692    VIXL_ASSERT(IsShiftedRegister());
    693    return shift_;
    694  }
    695
    696  Extend extend() const {
    697    VIXL_ASSERT(IsExtendedRegister());
    698    return extend_;
    699  }
    700
    701  unsigned shift_amount() const {
    702    VIXL_ASSERT(IsShiftedRegister() || IsExtendedRegister());
    703    return shift_amount_;
    704  }
    705
    706 private:
    707  int64_t immediate_;
    708  Register reg_;
    709  Shift shift_;
    710  Extend extend_;
    711  unsigned shift_amount_;
    712};
    713
    714
    715// MemOperand represents the addressing mode of a load or store instruction.
    716class MemOperand {
    717 public:
    718  explicit MemOperand(Register base,
    719                      int64_t offset = 0,
    720                      AddrMode addrmode = Offset);
    721  MemOperand(Register base,
    722             Register regoffset,
    723             Shift shift = LSL,
    724             unsigned shift_amount = 0);
    725  MemOperand(Register base,
    726             Register regoffset,
    727             Extend extend,
    728             unsigned shift_amount = 0);
    729  MemOperand(Register base,
    730             const Operand& offset,
    731             AddrMode addrmode = Offset);
    732
    733  const Register& base() const { return base_; }
    734  const Register& regoffset() const { return regoffset_; }
    735  int64_t offset() const { return offset_; }
    736  AddrMode addrmode() const { return addrmode_; }
    737  Shift shift() const { return shift_; }
    738  Extend extend() const { return extend_; }
    739  unsigned shift_amount() const { return shift_amount_; }
    740  bool IsImmediateOffset() const;
    741  bool IsRegisterOffset() const;
    742  bool IsPreIndex() const;
    743  bool IsPostIndex() const;
    744
    745  void AddOffset(int64_t offset);
    746
    747 private:
    748  Register base_;
    749  Register regoffset_;
    750  int64_t offset_;
    751  AddrMode addrmode_;
    752  Shift shift_;
    753  Extend extend_;
    754  unsigned shift_amount_;
    755};
    756
    757
    758class LabelTestHelper;  // Forward declaration.
    759
    760
    761class Label {
    762 public:
    763  Label() : location_(kLocationUnbound) {}
    764  ~Label() {
    765    // If the label has been linked to, it needs to be bound to a target.
    766    VIXL_ASSERT(!IsLinked() || IsBound());
    767  }
    768
    769  bool IsBound() const { return location_ >= 0; }
    770  bool IsLinked() const { return !links_.empty(); }
    771
    772  ptrdiff_t location() const { return location_; }
    773
    774  static const int kNPreallocatedLinks = 4;
    775  static const ptrdiff_t kInvalidLinkKey = PTRDIFF_MAX;
    776  static const size_t kReclaimFrom = 512;
    777  static const size_t kReclaimFactor = 2;
    778
    779  typedef InvalSet<ptrdiff_t,
    780                   kNPreallocatedLinks,
    781                   ptrdiff_t,
    782                   kInvalidLinkKey,
    783                   kReclaimFrom,
    784                   kReclaimFactor> LinksSetBase;
    785  typedef InvalSetIterator<LinksSetBase> LabelLinksIteratorBase;
    786
    787 private:
    788  class LinksSet : public LinksSetBase {
    789   public:
    790    LinksSet() : LinksSetBase() {}
    791  };
    792
    793  // Allows iterating over the links of a label. The behaviour is undefined if
    794  // the list of links is modified in any way while iterating.
    795  class LabelLinksIterator : public LabelLinksIteratorBase {
    796   public:
    797    explicit LabelLinksIterator(Label* label)
    798        : LabelLinksIteratorBase(&label->links_) {}
    799  };
    800
    801  void Bind(ptrdiff_t location) {
    802    // Labels can only be bound once.
    803    VIXL_ASSERT(!IsBound());
    804    location_ = location;
    805  }
    806
    807  void AddLink(ptrdiff_t instruction) {
    808    // If a label is bound, the assembler already has the information it needs
    809    // to write the instruction, so there is no need to add it to links_.
    810    VIXL_ASSERT(!IsBound());
    811    links_.insert(instruction);
    812  }
    813
    814  void DeleteLink(ptrdiff_t instruction) {
    815    links_.erase(instruction);
    816  }
    817
    818  void ClearAllLinks() {
    819    links_.clear();
    820  }
    821
    822  // TODO: The comment below considers average case complexity for our
    823  // usual use-cases. The elements of interest are:
    824  // - Branches to a label are emitted in order: branch instructions to a label
    825  // are generated at an offset in the code generation buffer greater than any
    826  // other branch to that same label already generated. As an example, this can
    827  // be broken when an instruction is patched to become a branch. Note that the
    828  // code will still work, but the complexity considerations below may locally
    829  // not apply any more.
    830  // - Veneers are generated in order: for multiple branches of the same type
    831  // branching to the same unbound label going out of range, veneers are
    832  // generated in growing order of the branch instruction offset from the start
    833  // of the buffer.
    834  //
    835  // When creating a veneer for a branch going out of range, the link for this
    836  // branch needs to be removed from this `links_`. Since all branches are
    837  // tracked in one underlying InvalSet, the complexity for this deletion is the
    838  // same as for finding the element, ie. O(n), where n is the number of links
    839  // in the set.
    840  // This could be reduced to O(1) by using the same trick as used when tracking
    841  // branch information for veneers: split the container to use one set per type
    842  // of branch. With that setup, when a veneer is created and the link needs to
    843  // be deleted, if the two points above hold, it must be the minimum element of
    844  // the set for its type of branch, and that minimum element will be accessible
    845  // in O(1).
    846
    847  // The offsets of the instructions that have linked to this label.
    848  LinksSet links_;
    849  // The label location.
    850  ptrdiff_t location_;
    851
    852  static const ptrdiff_t kLocationUnbound = -1;
    853
    854  // It is not safe to copy labels, so disable the copy constructor and operator
    855  // by declaring them private (without an implementation).
    856  Label(const Label&);
    857  void operator=(const Label&);
    858
    859  // The Assembler class is responsible for binding and linking labels, since
    860  // the stored offsets need to be consistent with the Assembler's buffer.
    861  friend class Assembler;
    862  // The MacroAssembler and VeneerPool handle resolution of branches to distant
    863  // targets.
    864  friend class MacroAssembler;
    865  friend class VeneerPool;
    866};
    867
    868
    869// Required InvalSet template specialisations.
    870#define INVAL_SET_TEMPLATE_PARAMETERS \
    871    ptrdiff_t,                        \
    872    Label::kNPreallocatedLinks,       \
    873    ptrdiff_t,                        \
    874    Label::kInvalidLinkKey,           \
    875    Label::kReclaimFrom,              \
    876    Label::kReclaimFactor
    877template<>
    878inline ptrdiff_t InvalSet<INVAL_SET_TEMPLATE_PARAMETERS>::Key(
    879    const ptrdiff_t& element) {
    880  return element;
    881}
    882template<>
    883inline void InvalSet<INVAL_SET_TEMPLATE_PARAMETERS>::SetKey(
    884              ptrdiff_t* element, ptrdiff_t key) {
    885  *element = key;
    886}
    887#undef INVAL_SET_TEMPLATE_PARAMETERS
    888
    889
    890class Assembler;
    891class LiteralPool;
    892
    893// A literal is a 32-bit or 64-bit piece of data stored in the instruction
    894// stream and loaded through a pc relative load. The same literal can be
    895// referred to by multiple instructions but a literal can only reside at one
    896// place in memory. A literal can be used by a load before or after being
    897// placed in memory.
    898//
    899// Internally an offset of 0 is associated with a literal which has been
    900// neither used nor placed. Then two possibilities arise:
    901//  1) the label is placed, the offset (stored as offset + 1) is used to
    902//     resolve any subsequent load using the label.
    903//  2) the label is not placed and offset is the offset of the last load using
    904//     the literal (stored as -offset -1). If multiple loads refer to this
    905//     literal then the last load holds the offset of the preceding load and
    906//     all loads form a chain. Once the offset is placed all the loads in the
    907//     chain are resolved and future loads fall back to possibility 1.
    908class RawLiteral {
    909 public:
    910  enum DeletionPolicy {
    911    kDeletedOnPlacementByPool,
    912    kDeletedOnPoolDestruction,
    913    kManuallyDeleted
    914  };
    915
    916  RawLiteral(size_t size,
    917             LiteralPool* literal_pool,
    918             DeletionPolicy deletion_policy = kManuallyDeleted);
    919
    920  // The literal pool only sees and deletes `RawLiteral*` pointers, but they are
    921  // actually pointing to `Literal<T>` objects.
    922  virtual ~RawLiteral() {}
    923
    924  size_t size() {
    925    VIXL_STATIC_ASSERT(kDRegSizeInBytes == kXRegSizeInBytes);
    926    VIXL_STATIC_ASSERT(kSRegSizeInBytes == kWRegSizeInBytes);
    927    VIXL_ASSERT((size_ == kXRegSizeInBytes) ||
    928                (size_ == kWRegSizeInBytes) ||
    929                (size_ == kQRegSizeInBytes));
    930    return size_;
    931  }
    932  uint64_t raw_value128_low64() {
    933    VIXL_ASSERT(size_ == kQRegSizeInBytes);
    934    return low64_;
    935  }
    936  uint64_t raw_value128_high64() {
    937    VIXL_ASSERT(size_ == kQRegSizeInBytes);
    938    return high64_;
    939  }
    940  uint64_t raw_value64() {
    941    VIXL_ASSERT(size_ == kXRegSizeInBytes);
    942    VIXL_ASSERT(high64_ == 0);
    943    return low64_;
    944  }
    945  uint32_t raw_value32() {
    946    VIXL_ASSERT(size_ == kWRegSizeInBytes);
    947    VIXL_ASSERT(high64_ == 0);
    948    VIXL_ASSERT(is_uint32(low64_) || is_int32(low64_));
    949    return static_cast<uint32_t>(low64_);
    950  }
    951  bool IsUsed() { return offset_ < 0; }
    952  bool IsPlaced() { return offset_ > 0; }
    953
    954  LiteralPool* GetLiteralPool() const {
    955    return literal_pool_;
    956  }
    957
    958  ptrdiff_t offset() {
    959    VIXL_ASSERT(IsPlaced());
    960    return offset_ - 1;
    961  }
    962
    963 protected:
    964  void set_offset(ptrdiff_t offset) {
    965    VIXL_ASSERT(offset >= 0);
    966    VIXL_ASSERT(IsWordAligned(offset));
    967    VIXL_ASSERT(!IsPlaced());
    968    offset_ = offset + 1;
    969  }
    970  ptrdiff_t last_use() {
    971    VIXL_ASSERT(IsUsed());
    972    return -offset_ - 1;
    973  }
    974  void set_last_use(ptrdiff_t offset) {
    975    VIXL_ASSERT(offset >= 0);
    976    VIXL_ASSERT(IsWordAligned(offset));
    977    VIXL_ASSERT(!IsPlaced());
    978    offset_ = -offset - 1;
    979  }
    980
    981  size_t size_;
    982  ptrdiff_t offset_;
    983  uint64_t low64_;
    984  uint64_t high64_;
    985
    986 private:
    987  LiteralPool* literal_pool_;
    988  DeletionPolicy deletion_policy_;
    989
    990  friend class Assembler;
    991  friend class LiteralPool;
    992};
    993
    994
    995template <typename T>
    996class Literal : public RawLiteral {
    997 public:
    998  explicit Literal(T value,
    999                   LiteralPool* literal_pool = NULL,
   1000                   RawLiteral::DeletionPolicy ownership = kManuallyDeleted)
   1001      : RawLiteral(sizeof(value), literal_pool, ownership) {
   1002    VIXL_STATIC_ASSERT(sizeof(value) <= kXRegSizeInBytes);
   1003    UpdateValue(value);
   1004  }
   1005
   1006  Literal(T high64, T low64,
   1007          LiteralPool* literal_pool = NULL,
   1008          RawLiteral::DeletionPolicy ownership = kManuallyDeleted)
   1009      : RawLiteral(kQRegSizeInBytes, literal_pool, ownership) {
   1010    VIXL_STATIC_ASSERT(sizeof(low64) == (kQRegSizeInBytes / 2));
   1011    UpdateValue(high64, low64);
   1012  }
   1013
   1014  virtual ~Literal() {}
   1015
   1016  // Update the value of this literal, if necessary by rewriting the value in
   1017  // the pool.
   1018  // If the literal has already been placed in a literal pool, the address of
   1019  // the start of the code buffer must be provided, as the literal only knows it
   1020  // offset from there.  This also allows patching the value after the code has
   1021  // been moved in memory.
   1022  void UpdateValue(T new_value, uint8_t* code_buffer = NULL) {
   1023    VIXL_ASSERT(sizeof(new_value) == size_);
   1024    memcpy(&low64_, &new_value, sizeof(new_value));
   1025    if (IsPlaced()) {
   1026      VIXL_ASSERT(code_buffer != NULL);
   1027      RewriteValueInCode(code_buffer);
   1028    }
   1029  }
   1030
   1031  void UpdateValue(T high64, T low64, uint8_t* code_buffer = NULL) {
   1032    VIXL_ASSERT(sizeof(low64) == size_ / 2);
   1033    memcpy(&low64_, &low64, sizeof(low64));
   1034    memcpy(&high64_, &high64, sizeof(high64));
   1035    if (IsPlaced()) {
   1036      VIXL_ASSERT(code_buffer != NULL);
   1037      RewriteValueInCode(code_buffer);
   1038    }
   1039  }
   1040
   1041  void UpdateValue(T new_value, const Assembler* assembler);
   1042  void UpdateValue(T high64, T low64, const Assembler* assembler);
   1043
   1044 private:
   1045  void RewriteValueInCode(uint8_t* code_buffer) {
   1046    VIXL_ASSERT(IsPlaced());
   1047    VIXL_STATIC_ASSERT(sizeof(T) <= kXRegSizeInBytes);
   1048    switch (size()) {
   1049      case kSRegSizeInBytes:
   1050        *reinterpret_cast<uint32_t*>(code_buffer + offset()) = raw_value32();
   1051        break;
   1052      case kDRegSizeInBytes:
   1053        *reinterpret_cast<uint64_t*>(code_buffer + offset()) = raw_value64();
   1054        break;
   1055      default:
   1056        VIXL_ASSERT(size() == kQRegSizeInBytes);
   1057        uint64_t* base_address =
   1058            reinterpret_cast<uint64_t*>(code_buffer + offset());
   1059        *base_address = raw_value128_low64();
   1060        *(base_address + 1) = raw_value128_high64();
   1061    }
   1062  }
   1063};
   1064
   1065
   1066// Control whether or not position-independent code should be emitted.
   1067enum PositionIndependentCodeOption {
   1068  // All code generated will be position-independent; all branches and
   1069  // references to labels generated with the Label class will use PC-relative
   1070  // addressing.
   1071  PositionIndependentCode,
   1072
   1073  // Allow VIXL to generate code that refers to absolute addresses. With this
   1074  // option, it will not be possible to copy the code buffer and run it from a
   1075  // different address; code must be generated in its final location.
   1076  PositionDependentCode,
   1077
   1078  // Allow VIXL to assume that the bottom 12 bits of the address will be
   1079  // constant, but that the top 48 bits may change. This allows `adrp` to
   1080  // function in systems which copy code between pages, but otherwise maintain
   1081  // 4KB page alignment.
   1082  PageOffsetDependentCode
   1083};
   1084
   1085
   1086// Control how scaled- and unscaled-offset loads and stores are generated.
   1087enum LoadStoreScalingOption {
   1088  // Prefer scaled-immediate-offset instructions, but emit unscaled-offset,
   1089  // register-offset, pre-index or post-index instructions if necessary.
   1090  PreferScaledOffset,
   1091
   1092  // Prefer unscaled-immediate-offset instructions, but emit scaled-offset,
   1093  // register-offset, pre-index or post-index instructions if necessary.
   1094  PreferUnscaledOffset,
   1095
   1096  // Require scaled-immediate-offset instructions.
   1097  RequireScaledOffset,
   1098
   1099  // Require unscaled-immediate-offset instructions.
   1100  RequireUnscaledOffset
   1101};
   1102
   1103
   1104// Assembler.
   1105class Assembler {
   1106 public:
   1107  Assembler(size_t capacity,
   1108            PositionIndependentCodeOption pic = PositionIndependentCode);
   1109  Assembler(byte* buffer, size_t capacity,
   1110            PositionIndependentCodeOption pic = PositionIndependentCode);
   1111
   1112  // The destructor asserts that one of the following is true:
   1113  //  * The Assembler object has not been used.
   1114  //  * Nothing has been emitted since the last Reset() call.
   1115  //  * Nothing has been emitted since the last FinalizeCode() call.
   1116  ~Assembler();
   1117
   1118  // System functions.
   1119
   1120  // Start generating code from the beginning of the buffer, discarding any code
   1121  // and data that has already been emitted into the buffer.
   1122  void Reset();
   1123
   1124  // Finalize a code buffer of generated instructions. This function must be
   1125  // called before executing or copying code from the buffer.
   1126  void FinalizeCode();
   1127
   1128  // Label.
   1129  // Bind a label to the current PC.
   1130  void bind(Label* label);
   1131
   1132  // Bind a label to a specified offset from the start of the buffer.
   1133  void BindToOffset(Label* label, ptrdiff_t offset);
   1134
   1135  // Place a literal at the current PC.
   1136  void place(RawLiteral* literal);
   1137
   1138  ptrdiff_t CursorOffset() const {
   1139    return buffer_->CursorOffset();
   1140  }
   1141
   1142  ptrdiff_t BufferEndOffset() const {
   1143    return static_cast<ptrdiff_t>(buffer_->capacity());
   1144  }
   1145
   1146  // Return the address of an offset in the buffer.
   1147  template <typename T>
   1148  T GetOffsetAddress(ptrdiff_t offset) const {
   1149    VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
   1150    return buffer_->GetOffsetAddress<T>(offset);
   1151  }
   1152
   1153  // Return the address of a bound label.
   1154  template <typename T>
   1155  T GetLabelAddress(const Label * label) const {
   1156    VIXL_ASSERT(label->IsBound());
   1157    VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
   1158    return GetOffsetAddress<T>(label->location());
   1159  }
   1160
   1161  // Return the address of the cursor.
   1162  template <typename T>
   1163  T GetCursorAddress() const {
   1164    VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
   1165    return GetOffsetAddress<T>(CursorOffset());
   1166  }
   1167
   1168  // Return the address of the start of the buffer.
   1169  template <typename T>
   1170  T GetStartAddress() const {
   1171    VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
   1172    return GetOffsetAddress<T>(0);
   1173  }
   1174
   1175  Instruction* InstructionAt(ptrdiff_t instruction_offset) {
   1176    return GetOffsetAddress<Instruction*>(instruction_offset);
   1177  }
   1178
   1179  ptrdiff_t InstructionOffset(Instruction* instruction) {
   1180    VIXL_STATIC_ASSERT(sizeof(*instruction) == 1);
   1181    ptrdiff_t offset = instruction - GetStartAddress<Instruction*>();
   1182    VIXL_ASSERT((0 <= offset) &&
   1183                (offset < static_cast<ptrdiff_t>(BufferCapacity())));
   1184    return offset;
   1185  }
   1186
   1187  // Instruction set functions.
   1188
   1189  // Branch / Jump instructions.
   1190  // Branch to register.
   1191  void br(const Register& xn);
   1192
   1193  // Branch with link to register.
   1194  void blr(const Register& xn);
   1195
   1196  // Branch to register with return hint.
   1197  void ret(const Register& xn = lr);
   1198
   1199  // Unconditional branch to label.
   1200  void b(Label* label);
   1201
   1202  // Conditional branch to label.
   1203  void b(Label* label, Condition cond);
   1204
   1205  // Unconditional branch to PC offset.
   1206  void b(int imm26);
   1207
   1208  // Conditional branch to PC offset.
   1209  void b(int imm19, Condition cond);
   1210
   1211  // Branch with link to label.
   1212  void bl(Label* label);
   1213
   1214  // Branch with link to PC offset.
   1215  void bl(int imm26);
   1216
   1217  // Compare and branch to label if zero.
   1218  void cbz(const Register& rt, Label* label);
   1219
   1220  // Compare and branch to PC offset if zero.
   1221  void cbz(const Register& rt, int imm19);
   1222
   1223  // Compare and branch to label if not zero.
   1224  void cbnz(const Register& rt, Label* label);
   1225
   1226  // Compare and branch to PC offset if not zero.
   1227  void cbnz(const Register& rt, int imm19);
   1228
   1229  // Table lookup from one register.
   1230  void tbl(const VRegister& vd,
   1231           const VRegister& vn,
   1232           const VRegister& vm);
   1233
   1234  // Table lookup from two registers.
   1235  void tbl(const VRegister& vd,
   1236           const VRegister& vn,
   1237           const VRegister& vn2,
   1238           const VRegister& vm);
   1239
   1240  // Table lookup from three registers.
   1241  void tbl(const VRegister& vd,
   1242           const VRegister& vn,
   1243           const VRegister& vn2,
   1244           const VRegister& vn3,
   1245           const VRegister& vm);
   1246
   1247  // Table lookup from four registers.
   1248  void tbl(const VRegister& vd,
   1249           const VRegister& vn,
   1250           const VRegister& vn2,
   1251           const VRegister& vn3,
   1252           const VRegister& vn4,
   1253           const VRegister& vm);
   1254
   1255  // Table lookup extension from one register.
   1256  void tbx(const VRegister& vd,
   1257           const VRegister& vn,
   1258           const VRegister& vm);
   1259
   1260  // Table lookup extension from two registers.
   1261  void tbx(const VRegister& vd,
   1262           const VRegister& vn,
   1263           const VRegister& vn2,
   1264           const VRegister& vm);
   1265
   1266  // Table lookup extension from three registers.
   1267  void tbx(const VRegister& vd,
   1268           const VRegister& vn,
   1269           const VRegister& vn2,
   1270           const VRegister& vn3,
   1271           const VRegister& vm);
   1272
   1273  // Table lookup extension from four registers.
   1274  void tbx(const VRegister& vd,
   1275           const VRegister& vn,
   1276           const VRegister& vn2,
   1277           const VRegister& vn3,
   1278           const VRegister& vn4,
   1279           const VRegister& vm);
   1280
   1281  // Test bit and branch to label if zero.
   1282  void tbz(const Register& rt, unsigned bit_pos, Label* label);
   1283
   1284  // Test bit and branch to PC offset if zero.
   1285  void tbz(const Register& rt, unsigned bit_pos, int imm14);
   1286
   1287  // Test bit and branch to label if not zero.
   1288  void tbnz(const Register& rt, unsigned bit_pos, Label* label);
   1289
   1290  // Test bit and branch to PC offset if not zero.
   1291  void tbnz(const Register& rt, unsigned bit_pos, int imm14);
   1292
   1293  // Address calculation instructions.
   1294  // Calculate a PC-relative address. Unlike for branches the offset in adr is
   1295  // unscaled (i.e. the result can be unaligned).
   1296
   1297  // Calculate the address of a label.
   1298  void adr(const Register& rd, Label* label);
   1299
   1300  // Calculate the address of a PC offset.
   1301  void adr(const Register& rd, int imm21);
   1302
   1303  // Calculate the page address of a label.
   1304  void adrp(const Register& rd, Label* label);
   1305
   1306  // Calculate the page address of a PC offset.
   1307  void adrp(const Register& rd, int imm21);
   1308
   1309  // Data Processing instructions.
   1310  // Add.
   1311  void add(const Register& rd,
   1312           const Register& rn,
   1313           const Operand& operand);
   1314
   1315  // Add and update status flags.
   1316  void adds(const Register& rd,
   1317            const Register& rn,
   1318            const Operand& operand);
   1319
   1320  // Compare negative.
   1321  void cmn(const Register& rn, const Operand& operand);
   1322
   1323  // Subtract.
   1324  void sub(const Register& rd,
   1325           const Register& rn,
   1326           const Operand& operand);
   1327
   1328  // Subtract and update status flags.
   1329  void subs(const Register& rd,
   1330            const Register& rn,
   1331            const Operand& operand);
   1332
   1333  // Compare.
   1334  void cmp(const Register& rn, const Operand& operand);
   1335
   1336  // Negate.
   1337  void neg(const Register& rd,
   1338           const Operand& operand);
   1339
   1340  // Negate and update status flags.
   1341  void negs(const Register& rd,
   1342            const Operand& operand);
   1343
   1344  // Add with carry bit.
   1345  void adc(const Register& rd,
   1346           const Register& rn,
   1347           const Operand& operand);
   1348
   1349  // Add with carry bit and update status flags.
   1350  void adcs(const Register& rd,
   1351            const Register& rn,
   1352            const Operand& operand);
   1353
   1354  // Subtract with carry bit.
   1355  void sbc(const Register& rd,
   1356           const Register& rn,
   1357           const Operand& operand);
   1358
   1359  // Subtract with carry bit and update status flags.
   1360  void sbcs(const Register& rd,
   1361            const Register& rn,
   1362            const Operand& operand);
   1363
   1364  // Negate with carry bit.
   1365  void ngc(const Register& rd,
   1366           const Operand& operand);
   1367
   1368  // Negate with carry bit and update status flags.
   1369  void ngcs(const Register& rd,
   1370            const Operand& operand);
   1371
   1372  // Logical instructions.
   1373  // Bitwise and (A & B).
   1374  void and_(const Register& rd,
   1375            const Register& rn,
   1376            const Operand& operand);
   1377
   1378  // Bitwise and (A & B) and update status flags.
   1379  void ands(const Register& rd,
   1380            const Register& rn,
   1381            const Operand& operand);
   1382
   1383  // Bit test and set flags.
   1384  void tst(const Register& rn, const Operand& operand);
   1385
   1386  // Bit clear (A & ~B).
   1387  void bic(const Register& rd,
   1388           const Register& rn,
   1389           const Operand& operand);
   1390
   1391  // Bit clear (A & ~B) and update status flags.
   1392  void bics(const Register& rd,
   1393            const Register& rn,
   1394            const Operand& operand);
   1395
   1396  // Bitwise or (A | B).
   1397  void orr(const Register& rd, const Register& rn, const Operand& operand);
   1398
   1399  // Bitwise nor (A | ~B).
   1400  void orn(const Register& rd, const Register& rn, const Operand& operand);
   1401
   1402  // Bitwise eor/xor (A ^ B).
   1403  void eor(const Register& rd, const Register& rn, const Operand& operand);
   1404
   1405  // Bitwise enor/xnor (A ^ ~B).
   1406  void eon(const Register& rd, const Register& rn, const Operand& operand);
   1407
   1408  // Logical shift left by variable.
   1409  void lslv(const Register& rd, const Register& rn, const Register& rm);
   1410
   1411  // Logical shift right by variable.
   1412  void lsrv(const Register& rd, const Register& rn, const Register& rm);
   1413
   1414  // Arithmetic shift right by variable.
   1415  void asrv(const Register& rd, const Register& rn, const Register& rm);
   1416
   1417  // Rotate right by variable.
   1418  void rorv(const Register& rd, const Register& rn, const Register& rm);
   1419
   1420  // Bitfield instructions.
   1421  // Bitfield move.
   1422  void bfm(const Register& rd,
   1423           const Register& rn,
   1424           unsigned immr,
   1425           unsigned imms);
   1426
   1427  // Signed bitfield move.
   1428  void sbfm(const Register& rd,
   1429            const Register& rn,
   1430            unsigned immr,
   1431            unsigned imms);
   1432
   1433  // Unsigned bitfield move.
   1434  void ubfm(const Register& rd,
   1435            const Register& rn,
   1436            unsigned immr,
   1437            unsigned imms);
   1438
   1439  // Bfm aliases.
   1440  // Bitfield insert.
   1441  void bfi(const Register& rd,
   1442           const Register& rn,
   1443           unsigned lsb,
   1444           unsigned width) {
   1445    VIXL_ASSERT(width >= 1);
   1446    VIXL_ASSERT(lsb + width <= rn.size());
   1447    bfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
   1448  }
   1449
   1450  // Bitfield extract and insert low.
   1451  void bfxil(const Register& rd,
   1452             const Register& rn,
   1453             unsigned lsb,
   1454             unsigned width) {
   1455    VIXL_ASSERT(width >= 1);
   1456    VIXL_ASSERT(lsb + width <= rn.size());
   1457    bfm(rd, rn, lsb, lsb + width - 1);
   1458  }
   1459
   1460  // Sbfm aliases.
   1461  // Arithmetic shift right.
   1462  void asr(const Register& rd, const Register& rn, unsigned shift) {
   1463    VIXL_ASSERT(shift < rd.size());
   1464    sbfm(rd, rn, shift, rd.size() - 1);
   1465  }
   1466
   1467  // Signed bitfield insert with zero at right.
   1468  void sbfiz(const Register& rd,
   1469             const Register& rn,
   1470             unsigned lsb,
   1471             unsigned width) {
   1472    VIXL_ASSERT(width >= 1);
   1473    VIXL_ASSERT(lsb + width <= rn.size());
   1474    sbfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
   1475  }
   1476
   1477  // Signed bitfield extract.
   1478  void sbfx(const Register& rd,
   1479            const Register& rn,
   1480            unsigned lsb,
   1481            unsigned width) {
   1482    VIXL_ASSERT(width >= 1);
   1483    VIXL_ASSERT(lsb + width <= rn.size());
   1484    sbfm(rd, rn, lsb, lsb + width - 1);
   1485  }
   1486
   1487  // Signed extend byte.
   1488  void sxtb(const Register& rd, const Register& rn) {
   1489    sbfm(rd, rn, 0, 7);
   1490  }
   1491
   1492  // Signed extend halfword.
   1493  void sxth(const Register& rd, const Register& rn) {
   1494    sbfm(rd, rn, 0, 15);
   1495  }
   1496
   1497  // Signed extend word.
   1498  void sxtw(const Register& rd, const Register& rn) {
   1499    sbfm(rd, rn, 0, 31);
   1500  }
   1501
   1502  // Ubfm aliases.
   1503  // Logical shift left.
   1504  void lsl(const Register& rd, const Register& rn, unsigned shift) {
   1505    unsigned reg_size = rd.size();
   1506    VIXL_ASSERT(shift < reg_size);
   1507    ubfm(rd, rn, (reg_size - shift) % reg_size, reg_size - shift - 1);
   1508  }
   1509
   1510  // Logical shift right.
   1511  void lsr(const Register& rd, const Register& rn, unsigned shift) {
   1512    VIXL_ASSERT(shift < rd.size());
   1513    ubfm(rd, rn, shift, rd.size() - 1);
   1514  }
   1515
   1516  // Unsigned bitfield insert with zero at right.
   1517  void ubfiz(const Register& rd,
   1518             const Register& rn,
   1519             unsigned lsb,
   1520             unsigned width) {
   1521    VIXL_ASSERT(width >= 1);
   1522    VIXL_ASSERT(lsb + width <= rn.size());
   1523    ubfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
   1524  }
   1525
   1526  // Unsigned bitfield extract.
   1527  void ubfx(const Register& rd,
   1528            const Register& rn,
   1529            unsigned lsb,
   1530            unsigned width) {
   1531    VIXL_ASSERT(width >= 1);
   1532    VIXL_ASSERT(lsb + width <= rn.size());
   1533    ubfm(rd, rn, lsb, lsb + width - 1);
   1534  }
   1535
   1536  // Unsigned extend byte.
   1537  void uxtb(const Register& rd, const Register& rn) {
   1538    ubfm(rd, rn, 0, 7);
   1539  }
   1540
   1541  // Unsigned extend halfword.
   1542  void uxth(const Register& rd, const Register& rn) {
   1543    ubfm(rd, rn, 0, 15);
   1544  }
   1545
   1546  // Unsigned extend word.
   1547  void uxtw(const Register& rd, const Register& rn) {
   1548    ubfm(rd, rn, 0, 31);
   1549  }
   1550
   1551  // Extract.
   1552  void extr(const Register& rd,
   1553            const Register& rn,
   1554            const Register& rm,
   1555            unsigned lsb);
   1556
   1557  // Conditional select: rd = cond ? rn : rm.
   1558  void csel(const Register& rd,
   1559            const Register& rn,
   1560            const Register& rm,
   1561            Condition cond);
   1562
   1563  // Conditional select increment: rd = cond ? rn : rm + 1.
   1564  void csinc(const Register& rd,
   1565             const Register& rn,
   1566             const Register& rm,
   1567             Condition cond);
   1568
   1569  // Conditional select inversion: rd = cond ? rn : ~rm.
   1570  void csinv(const Register& rd,
   1571             const Register& rn,
   1572             const Register& rm,
   1573             Condition cond);
   1574
   1575  // Conditional select negation: rd = cond ? rn : -rm.
   1576  void csneg(const Register& rd,
   1577             const Register& rn,
   1578             const Register& rm,
   1579             Condition cond);
   1580
   1581  // Conditional set: rd = cond ? 1 : 0.
   1582  void cset(const Register& rd, Condition cond);
   1583
   1584  // Conditional set mask: rd = cond ? -1 : 0.
   1585  void csetm(const Register& rd, Condition cond);
   1586
   1587  // Conditional increment: rd = cond ? rn + 1 : rn.
   1588  void cinc(const Register& rd, const Register& rn, Condition cond);
   1589
   1590  // Conditional invert: rd = cond ? ~rn : rn.
   1591  void cinv(const Register& rd, const Register& rn, Condition cond);
   1592
   1593  // Conditional negate: rd = cond ? -rn : rn.
   1594  void cneg(const Register& rd, const Register& rn, Condition cond);
   1595
   1596  // Rotate right.
   1597  void ror(const Register& rd, const Register& rs, unsigned shift) {
   1598    extr(rd, rs, rs, shift);
   1599  }
   1600
   1601  // Conditional comparison.
   1602  // Conditional compare negative.
   1603  void ccmn(const Register& rn,
   1604            const Operand& operand,
   1605            StatusFlags nzcv,
   1606            Condition cond);
   1607
   1608  // Conditional compare.
   1609  void ccmp(const Register& rn,
   1610            const Operand& operand,
   1611            StatusFlags nzcv,
   1612            Condition cond);
   1613
   1614  // CRC-32 checksum from byte.
   1615  void crc32b(const Register& rd,
   1616              const Register& rn,
   1617              const Register& rm);
   1618
   1619  // CRC-32 checksum from half-word.
   1620  void crc32h(const Register& rd,
   1621              const Register& rn,
   1622              const Register& rm);
   1623
   1624  // CRC-32 checksum from word.
   1625  void crc32w(const Register& rd,
   1626              const Register& rn,
   1627              const Register& rm);
   1628
   1629  // CRC-32 checksum from double word.
   1630  void crc32x(const Register& rd,
   1631              const Register& rn,
   1632              const Register& rm);
   1633
   1634  // CRC-32 C checksum from byte.
   1635  void crc32cb(const Register& rd,
   1636               const Register& rn,
   1637               const Register& rm);
   1638
   1639  // CRC-32 C checksum from half-word.
   1640  void crc32ch(const Register& rd,
   1641               const Register& rn,
   1642               const Register& rm);
   1643
   1644  // CRC-32 C checksum from word.
   1645  void crc32cw(const Register& rd,
   1646               const Register& rn,
   1647               const Register& rm);
   1648
   1649  // CRC-32C checksum from double word.
   1650  void crc32cx(const Register& rd,
   1651               const Register& rn,
   1652               const Register& rm);
   1653
   1654  // Multiply.
   1655  void mul(const Register& rd, const Register& rn, const Register& rm);
   1656
   1657  // Negated multiply.
   1658  void mneg(const Register& rd, const Register& rn, const Register& rm);
   1659
   1660  // Signed long multiply: 32 x 32 -> 64-bit.
   1661  void smull(const Register& rd, const Register& rn, const Register& rm);
   1662
   1663  // Signed multiply high: 64 x 64 -> 64-bit <127:64>.
   1664  void smulh(const Register& xd, const Register& xn, const Register& xm);
   1665
   1666  // Multiply and accumulate.
   1667  void madd(const Register& rd,
   1668            const Register& rn,
   1669            const Register& rm,
   1670            const Register& ra);
   1671
   1672  // Multiply and subtract.
   1673  void msub(const Register& rd,
   1674            const Register& rn,
   1675            const Register& rm,
   1676            const Register& ra);
   1677
   1678  // Signed long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
   1679  void smaddl(const Register& rd,
   1680              const Register& rn,
   1681              const Register& rm,
   1682              const Register& ra);
   1683
   1684  // Unsigned long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
   1685  void umaddl(const Register& rd,
   1686              const Register& rn,
   1687              const Register& rm,
   1688              const Register& ra);
   1689
   1690  // Unsigned long multiply: 32 x 32 -> 64-bit.
   1691  void umull(const Register& rd,
   1692             const Register& rn,
   1693             const Register& rm) {
   1694    umaddl(rd, rn, rm, xzr);
   1695  }
   1696
   1697  // Unsigned multiply high: 64 x 64 -> 64-bit <127:64>.
   1698  void umulh(const Register& xd,
   1699             const Register& xn,
   1700             const Register& xm);
   1701
   1702  // Signed long multiply and subtract: 64 - (32 x 32) -> 64-bit.
   1703  void smsubl(const Register& rd,
   1704              const Register& rn,
   1705              const Register& rm,
   1706              const Register& ra);
   1707
   1708  // Unsigned long multiply and subtract: 64 - (32 x 32) -> 64-bit.
   1709  void umsubl(const Register& rd,
   1710              const Register& rn,
   1711              const Register& rm,
   1712              const Register& ra);
   1713
   1714  // Signed integer divide.
   1715  void sdiv(const Register& rd, const Register& rn, const Register& rm);
   1716
   1717  // Unsigned integer divide.
   1718  void udiv(const Register& rd, const Register& rn, const Register& rm);
   1719
   1720  // Bit reverse.
   1721  void rbit(const Register& rd, const Register& rn);
   1722
   1723  // Reverse bytes in 16-bit half words.
   1724  void rev16(const Register& rd, const Register& rn);
   1725
   1726  // Reverse bytes in 32-bit words.
   1727  void rev32(const Register& rd, const Register& rn);
   1728
   1729  // Reverse bytes.
   1730  void rev(const Register& rd, const Register& rn);
   1731
   1732  // Count leading zeroes.
   1733  void clz(const Register& rd, const Register& rn);
   1734
   1735  // Count leading sign bits.
   1736  void cls(const Register& rd, const Register& rn);
   1737
   1738  // Memory instructions.
   1739  // Load integer or FP register.
   1740  void ldr(const CPURegister& rt, const MemOperand& src,
   1741           LoadStoreScalingOption option = PreferScaledOffset);
   1742
   1743  // Store integer or FP register.
   1744  void str(const CPURegister& rt, const MemOperand& dst,
   1745           LoadStoreScalingOption option = PreferScaledOffset);
   1746
   1747  // Load word with sign extension.
   1748  void ldrsw(const Register& rt, const MemOperand& src,
   1749             LoadStoreScalingOption option = PreferScaledOffset);
   1750
   1751  // Load byte.
   1752  void ldrb(const Register& rt, const MemOperand& src,
   1753            LoadStoreScalingOption option = PreferScaledOffset);
   1754
   1755  // Store byte.
   1756  void strb(const Register& rt, const MemOperand& dst,
   1757            LoadStoreScalingOption option = PreferScaledOffset);
   1758
   1759  // Load byte with sign extension.
   1760  void ldrsb(const Register& rt, const MemOperand& src,
   1761             LoadStoreScalingOption option = PreferScaledOffset);
   1762
   1763  // Load half-word.
   1764  void ldrh(const Register& rt, const MemOperand& src,
   1765            LoadStoreScalingOption option = PreferScaledOffset);
   1766
   1767  // Store half-word.
   1768  void strh(const Register& rt, const MemOperand& dst,
   1769            LoadStoreScalingOption option = PreferScaledOffset);
   1770
   1771  // Load half-word with sign extension.
   1772  void ldrsh(const Register& rt, const MemOperand& src,
   1773             LoadStoreScalingOption option = PreferScaledOffset);
   1774
   1775  // Load integer or FP register (with unscaled offset).
   1776  void ldur(const CPURegister& rt, const MemOperand& src,
   1777            LoadStoreScalingOption option = PreferUnscaledOffset);
   1778
   1779  // Store integer or FP register (with unscaled offset).
   1780  void stur(const CPURegister& rt, const MemOperand& src,
   1781            LoadStoreScalingOption option = PreferUnscaledOffset);
   1782
   1783  // Load word with sign extension.
   1784  void ldursw(const Register& rt, const MemOperand& src,
   1785              LoadStoreScalingOption option = PreferUnscaledOffset);
   1786
   1787  // Load byte (with unscaled offset).
   1788  void ldurb(const Register& rt, const MemOperand& src,
   1789             LoadStoreScalingOption option = PreferUnscaledOffset);
   1790
   1791  // Store byte (with unscaled offset).
   1792  void sturb(const Register& rt, const MemOperand& dst,
   1793             LoadStoreScalingOption option = PreferUnscaledOffset);
   1794
   1795  // Load byte with sign extension (and unscaled offset).
   1796  void ldursb(const Register& rt, const MemOperand& src,
   1797              LoadStoreScalingOption option = PreferUnscaledOffset);
   1798
   1799  // Load half-word (with unscaled offset).
   1800  void ldurh(const Register& rt, const MemOperand& src,
   1801             LoadStoreScalingOption option = PreferUnscaledOffset);
   1802
   1803  // Store half-word (with unscaled offset).
   1804  void sturh(const Register& rt, const MemOperand& dst,
   1805             LoadStoreScalingOption option = PreferUnscaledOffset);
   1806
   1807  // Load half-word with sign extension (and unscaled offset).
   1808  void ldursh(const Register& rt, const MemOperand& src,
   1809              LoadStoreScalingOption option = PreferUnscaledOffset);
   1810
   1811  // Load integer or FP register pair.
   1812  void ldp(const CPURegister& rt, const CPURegister& rt2,
   1813           const MemOperand& src);
   1814
   1815  // Store integer or FP register pair.
   1816  void stp(const CPURegister& rt, const CPURegister& rt2,
   1817           const MemOperand& dst);
   1818
   1819  // Load word pair with sign extension.
   1820  void ldpsw(const Register& rt, const Register& rt2, const MemOperand& src);
   1821
   1822  // Load integer or FP register pair, non-temporal.
   1823  void ldnp(const CPURegister& rt, const CPURegister& rt2,
   1824            const MemOperand& src);
   1825
   1826  // Store integer or FP register pair, non-temporal.
   1827  void stnp(const CPURegister& rt, const CPURegister& rt2,
   1828            const MemOperand& dst);
   1829
   1830  // Load integer or FP register from literal pool.
   1831  void ldr(const CPURegister& rt, RawLiteral* literal);
   1832
   1833  // Load word with sign extension from literal pool.
   1834  void ldrsw(const Register& rt, RawLiteral* literal);
   1835
   1836  // Load integer or FP register from pc + imm19 << 2.
   1837  void ldr(const CPURegister& rt, int imm19);
   1838
   1839  // Load word with sign extension from pc + imm19 << 2.
   1840  void ldrsw(const Register& rt, int imm19);
   1841
   1842  // Store exclusive byte.
   1843  void stxrb(const Register& rs, const Register& rt, const MemOperand& dst);
   1844
   1845  // Store exclusive half-word.
   1846  void stxrh(const Register& rs, const Register& rt, const MemOperand& dst);
   1847
   1848  // Store exclusive register.
   1849  void stxr(const Register& rs, const Register& rt, const MemOperand& dst);
   1850
   1851  // Load exclusive byte.
   1852  void ldxrb(const Register& rt, const MemOperand& src);
   1853
   1854  // Load exclusive half-word.
   1855  void ldxrh(const Register& rt, const MemOperand& src);
   1856
   1857  // Load exclusive register.
   1858  void ldxr(const Register& rt, const MemOperand& src);
   1859
   1860  // Store exclusive register pair.
   1861  void stxp(const Register& rs,
   1862            const Register& rt,
   1863            const Register& rt2,
   1864            const MemOperand& dst);
   1865
   1866  // Load exclusive register pair.
   1867  void ldxp(const Register& rt, const Register& rt2, const MemOperand& src);
   1868
   1869  // Store-release exclusive byte.
   1870  void stlxrb(const Register& rs, const Register& rt, const MemOperand& dst);
   1871
   1872  // Store-release exclusive half-word.
   1873  void stlxrh(const Register& rs, const Register& rt, const MemOperand& dst);
   1874
   1875  // Store-release exclusive register.
   1876  void stlxr(const Register& rs, const Register& rt, const MemOperand& dst);
   1877
   1878  // Load-acquire exclusive byte.
   1879  void ldaxrb(const Register& rt, const MemOperand& src);
   1880
   1881  // Load-acquire exclusive half-word.
   1882  void ldaxrh(const Register& rt, const MemOperand& src);
   1883
   1884  // Load-acquire exclusive register.
   1885  void ldaxr(const Register& rt, const MemOperand& src);
   1886
   1887  // Store-release exclusive register pair.
   1888  void stlxp(const Register& rs,
   1889             const Register& rt,
   1890             const Register& rt2,
   1891             const MemOperand& dst);
   1892
   1893  // Load-acquire exclusive register pair.
   1894  void ldaxp(const Register& rt, const Register& rt2, const MemOperand& src);
   1895
   1896  // Store-release byte.
   1897  void stlrb(const Register& rt, const MemOperand& dst);
   1898
   1899  // Store-release half-word.
   1900  void stlrh(const Register& rt, const MemOperand& dst);
   1901
   1902  // Store-release register.
   1903  void stlr(const Register& rt, const MemOperand& dst);
   1904
   1905  // Load-acquire byte.
   1906  void ldarb(const Register& rt, const MemOperand& src);
   1907
   1908  // Load-acquire half-word.
   1909  void ldarh(const Register& rt, const MemOperand& src);
   1910
   1911  // Load-acquire register.
   1912  void ldar(const Register& rt, const MemOperand& src);
   1913
   1914  // Prefetch memory.
   1915  void prfm(PrefetchOperation op, const MemOperand& addr,
   1916            LoadStoreScalingOption option = PreferScaledOffset);
   1917
   1918  // Prefetch memory (with unscaled offset).
   1919  void prfum(PrefetchOperation op, const MemOperand& addr,
   1920             LoadStoreScalingOption option = PreferUnscaledOffset);
   1921
   1922  // Prefetch memory in the literal pool.
   1923  void prfm(PrefetchOperation op, RawLiteral* literal);
   1924
   1925  // Prefetch from pc + imm19 << 2.
   1926  void prfm(PrefetchOperation op, int imm19);
   1927
   1928  // Move instructions. The default shift of -1 indicates that the move
   1929  // instruction will calculate an appropriate 16-bit immediate and left shift
   1930  // that is equal to the 64-bit immediate argument. If an explicit left shift
   1931  // is specified (0, 16, 32 or 48), the immediate must be a 16-bit value.
   1932  //
   1933  // For movk, an explicit shift can be used to indicate which half word should
   1934  // be overwritten, eg. movk(x0, 0, 0) will overwrite the least-significant
   1935  // half word with zero, whereas movk(x0, 0, 48) will overwrite the
   1936  // most-significant.
   1937
   1938  // Move immediate and keep.
   1939  void movk(const Register& rd, uint64_t imm, int shift = -1) {
   1940    MoveWide(rd, imm, shift, MOVK);
   1941  }
   1942
   1943  // Move inverted immediate.
   1944  void movn(const Register& rd, uint64_t imm, int shift = -1) {
   1945    MoveWide(rd, imm, shift, MOVN);
   1946  }
   1947
   1948  // Move immediate.
   1949  void movz(const Register& rd, uint64_t imm, int shift = -1) {
   1950    MoveWide(rd, imm, shift, MOVZ);
   1951  }
   1952
   1953  // Misc instructions.
   1954  // Monitor debug-mode breakpoint.
   1955  void brk(int code);
   1956
   1957  // Halting debug-mode breakpoint.
   1958  void hlt(int code);
   1959
   1960  // Generate exception targeting EL1.
   1961  void svc(int code);
   1962
   1963  // Move register to register.
   1964  void mov(const Register& rd, const Register& rn);
   1965
   1966  // Move inverted operand to register.
   1967  void mvn(const Register& rd, const Operand& operand);
   1968
   1969  // System instructions.
   1970  // Move to register from system register.
   1971  void mrs(const Register& rt, SystemRegister sysreg);
   1972
   1973  // Move from register to system register.
   1974  void msr(SystemRegister sysreg, const Register& rt);
   1975
   1976  // System instruction.
   1977  void sys(int op1, int crn, int crm, int op2, const Register& rt = xzr);
   1978
   1979  // System instruction with pre-encoded op (op1:crn:crm:op2).
   1980  void sys(int op, const Register& rt = xzr);
   1981
   1982  // System data cache operation.
   1983  void dc(DataCacheOp op, const Register& rt);
   1984
   1985  // System instruction cache operation.
   1986  void ic(InstructionCacheOp op, const Register& rt);
   1987
   1988  // System hint.
   1989  void hint(SystemHint code);
   1990
   1991  // Clear exclusive monitor.
   1992  void clrex(int imm4 = 0xf);
   1993
   1994  // Data memory barrier.
   1995  void dmb(BarrierDomain domain, BarrierType type);
   1996
   1997  // Data synchronization barrier.
   1998  void dsb(BarrierDomain domain, BarrierType type);
   1999
   2000  // Instruction synchronization barrier.
   2001  void isb();
   2002
   2003  // Alias for system instructions.
   2004  // No-op.
   2005  void nop() {
   2006    hint(NOP);
   2007  }
   2008
   2009  // FP and NEON instructions.
   2010  // Move double precision immediate to FP register.
   2011  void fmov(const VRegister& vd, double imm);
   2012
   2013  // Move single precision immediate to FP register.
   2014  void fmov(const VRegister& vd, float imm);
   2015
   2016  // Move FP register to register.
   2017  void fmov(const Register& rd, const VRegister& fn);
   2018
   2019  // Move register to FP register.
   2020  void fmov(const VRegister& vd, const Register& rn);
   2021
   2022  // Move FP register to FP register.
   2023  void fmov(const VRegister& vd, const VRegister& fn);
   2024
   2025  // Move 64-bit register to top half of 128-bit FP register.
   2026  void fmov(const VRegister& vd, int index, const Register& rn);
   2027
   2028  // Move top half of 128-bit FP register to 64-bit register.
   2029  void fmov(const Register& rd, const VRegister& vn, int index);
   2030
   2031  // FP add.
   2032  void fadd(const VRegister& vd, const VRegister& vn, const VRegister& vm);
   2033
   2034  // FP subtract.
   2035  void fsub(const VRegister& vd, const VRegister& vn, const VRegister& vm);
   2036
   2037  // FP multiply.
   2038  void fmul(const VRegister& vd, const VRegister& vn, const VRegister& vm);
   2039
   2040  // FP fused multiply-add.
   2041  void fmadd(const VRegister& vd,
   2042             const VRegister& vn,
   2043             const VRegister& vm,
   2044             const VRegister& va);
   2045
   2046  // FP fused multiply-subtract.
   2047  void fmsub(const VRegister& vd,
   2048             const VRegister& vn,
   2049             const VRegister& vm,
   2050             const VRegister& va);
   2051
   2052  // FP fused multiply-add and negate.
   2053  void fnmadd(const VRegister& vd,
   2054              const VRegister& vn,
   2055              const VRegister& vm,
   2056              const VRegister& va);
   2057
   2058  // FP fused multiply-subtract and negate.
   2059  void fnmsub(const VRegister& vd,
   2060              const VRegister& vn,
   2061              const VRegister& vm,
   2062              const VRegister& va);
   2063
   2064  // FP multiply-negate scalar.
   2065  void fnmul(const VRegister& vd,
   2066             const VRegister& vn,
   2067             const VRegister& vm);
   2068
   2069  // FP reciprocal exponent scalar.
   2070  void frecpx(const VRegister& vd,
   2071              const VRegister& vn);
   2072
   2073  // FP divide.
   2074  void fdiv(const VRegister& vd, const VRegister& fn, const VRegister& vm);
   2075
   2076  // FP maximum.
   2077  void fmax(const VRegister& vd, const VRegister& fn, const VRegister& vm);
   2078
   2079  // FP minimum.
   2080  void fmin(const VRegister& vd, const VRegister& fn, const VRegister& vm);
   2081
   2082  // FP maximum number.
   2083  void fmaxnm(const VRegister& vd, const VRegister& fn, const VRegister& vm);
   2084
   2085  // FP minimum number.
   2086  void fminnm(const VRegister& vd, const VRegister& fn, const VRegister& vm);
   2087
   2088  // FP absolute.
   2089  void fabs(const VRegister& vd, const VRegister& vn);
   2090
   2091  // FP negate.
   2092  void fneg(const VRegister& vd, const VRegister& vn);
   2093
   2094  // FP square root.
   2095  void fsqrt(const VRegister& vd, const VRegister& vn);
   2096
   2097  // FP round to integer, nearest with ties to away.
   2098  void frinta(const VRegister& vd, const VRegister& vn);
   2099
   2100  // FP round to integer, implicit rounding.
   2101  void frinti(const VRegister& vd, const VRegister& vn);
   2102
   2103  // FP round to integer, toward minus infinity.
   2104  void frintm(const VRegister& vd, const VRegister& vn);
   2105
   2106  // FP round to integer, nearest with ties to even.
   2107  void frintn(const VRegister& vd, const VRegister& vn);
   2108
   2109  // FP round to integer, toward plus infinity.
   2110  void frintp(const VRegister& vd, const VRegister& vn);
   2111
   2112  // FP round to integer, exact, implicit rounding.
   2113  void frintx(const VRegister& vd, const VRegister& vn);
   2114
   2115  // FP round to integer, towards zero.
   2116  void frintz(const VRegister& vd, const VRegister& vn);
   2117
   2118  void FPCompareMacro(const VRegister& vn,
   2119                      double value,
   2120                      FPTrapFlags trap);
   2121
   2122  void FPCompareMacro(const VRegister& vn,
   2123                      const VRegister& vm,
   2124                      FPTrapFlags trap);
   2125
   2126  // FP compare registers.
   2127  void fcmp(const VRegister& vn, const VRegister& vm);
   2128
   2129  // FP compare immediate.
   2130  void fcmp(const VRegister& vn, double value);
   2131
   2132  void FPCCompareMacro(const VRegister& vn,
   2133                       const VRegister& vm,
   2134                       StatusFlags nzcv,
   2135                       Condition cond,
   2136                       FPTrapFlags trap);
   2137
   2138  // FP conditional compare.
   2139  void fccmp(const VRegister& vn,
   2140             const VRegister& vm,
   2141             StatusFlags nzcv,
   2142             Condition cond);
   2143
   2144  // FP signaling compare registers.
   2145  void fcmpe(const VRegister& vn, const VRegister& vm);
   2146
   2147  // FP signaling compare immediate.
   2148  void fcmpe(const VRegister& vn, double value);
   2149
   2150  // FP conditional signaling compare.
   2151  void fccmpe(const VRegister& vn,
   2152              const VRegister& vm,
   2153              StatusFlags nzcv,
   2154              Condition cond);
   2155
   2156  // FP conditional select.
   2157  void fcsel(const VRegister& vd,
   2158             const VRegister& vn,
   2159             const VRegister& vm,
   2160             Condition cond);
   2161
   2162  // Common FP Convert functions.
   2163  void NEONFPConvertToInt(const Register& rd,
   2164                          const VRegister& vn,
   2165                          Instr op);
   2166  void NEONFPConvertToInt(const VRegister& vd,
   2167                          const VRegister& vn,
   2168                          Instr op);
   2169
   2170  // FP convert between precisions.
   2171  void fcvt(const VRegister& vd, const VRegister& vn);
   2172
   2173  // FP convert to higher precision.
   2174  void fcvtl(const VRegister& vd, const VRegister& vn);
   2175
   2176  // FP convert to higher precision (second part).
   2177  void fcvtl2(const VRegister& vd, const VRegister& vn);
   2178
   2179  // FP convert to lower precision.
   2180  void fcvtn(const VRegister& vd, const VRegister& vn);
   2181
   2182  // FP convert to lower prevision (second part).
   2183  void fcvtn2(const VRegister& vd, const VRegister& vn);
   2184
   2185  // FP convert to lower precision, rounding to odd.
   2186  void fcvtxn(const VRegister& vd, const VRegister& vn);
   2187
   2188  // FP convert to lower precision, rounding to odd (second part).
   2189  void fcvtxn2(const VRegister& vd, const VRegister& vn);
   2190
   2191  // FP convert to signed integer, nearest with ties to away.
   2192  void fcvtas(const Register& rd, const VRegister& vn);
   2193
   2194  // FP convert to unsigned integer, nearest with ties to away.
   2195  void fcvtau(const Register& rd, const VRegister& vn);
   2196
   2197  // FP convert to signed integer, nearest with ties to away.
   2198  void fcvtas(const VRegister& vd, const VRegister& vn);
   2199
   2200  // FP convert to unsigned integer, nearest with ties to away.
   2201  void fcvtau(const VRegister& vd, const VRegister& vn);
   2202
   2203  // FP convert to signed integer, round towards -infinity.
   2204  void fcvtms(const Register& rd, const VRegister& vn);
   2205
   2206  // FP convert to unsigned integer, round towards -infinity.
   2207  void fcvtmu(const Register& rd, const VRegister& vn);
   2208
   2209  // FP convert to signed integer, round towards -infinity.
   2210  void fcvtms(const VRegister& vd, const VRegister& vn);
   2211
   2212  // FP convert to unsigned integer, round towards -infinity.
   2213  void fcvtmu(const VRegister& vd, const VRegister& vn);
   2214
   2215  // FP convert to signed integer, nearest with ties to even.
   2216  void fcvtns(const Register& rd, const VRegister& vn);
   2217
   2218  // FP convert to unsigned integer, nearest with ties to even.
   2219  void fcvtnu(const Register& rd, const VRegister& vn);
   2220
   2221  // FP convert to signed integer, nearest with ties to even.
   2222  void fcvtns(const VRegister& rd, const VRegister& vn);
   2223
   2224  // FP convert to unsigned integer, nearest with ties to even.
   2225  void fcvtnu(const VRegister& rd, const VRegister& vn);
   2226
   2227  // FP convert to signed integer or fixed-point, round towards zero.
   2228  void fcvtzs(const Register& rd, const VRegister& vn, int fbits = 0);
   2229
   2230  // FP convert to unsigned integer or fixed-point, round towards zero.
   2231  void fcvtzu(const Register& rd, const VRegister& vn, int fbits = 0);
   2232
   2233  // FP convert to signed integer or fixed-point, round towards zero.
   2234  void fcvtzs(const VRegister& vd, const VRegister& vn, int fbits = 0);
   2235
   2236  // FP convert to unsigned integer or fixed-point, round towards zero.
   2237  void fcvtzu(const VRegister& vd, const VRegister& vn, int fbits = 0);
   2238
   2239  // FP convert to signed integer, round towards +infinity.
   2240  void fcvtps(const Register& rd, const VRegister& vn);
   2241
   2242  // FP convert to unsigned integer, round towards +infinity.
   2243  void fcvtpu(const Register& rd, const VRegister& vn);
   2244
   2245  // FP convert to signed integer, round towards +infinity.
   2246  void fcvtps(const VRegister& vd, const VRegister& vn);
   2247
   2248  // FP convert to unsigned integer, round towards +infinity.
   2249  void fcvtpu(const VRegister& vd, const VRegister& vn);
   2250
   2251  // Convert signed integer or fixed point to FP.
   2252  void scvtf(const VRegister& fd, const Register& rn, int fbits = 0);
   2253
   2254  // Convert unsigned integer or fixed point to FP.
   2255  void ucvtf(const VRegister& fd, const Register& rn, int fbits = 0);
   2256
   2257  // Convert signed integer or fixed-point to FP.
   2258  void scvtf(const VRegister& fd, const VRegister& vn, int fbits = 0);
   2259
   2260  // Convert unsigned integer or fixed-point to FP.
   2261  void ucvtf(const VRegister& fd, const VRegister& vn, int fbits = 0);
   2262
   2263  // Unsigned absolute difference.
   2264  void uabd(const VRegister& vd,
   2265            const VRegister& vn,
   2266            const VRegister& vm);
   2267
   2268  // Signed absolute difference.
   2269  void sabd(const VRegister& vd,
   2270            const VRegister& vn,
   2271            const VRegister& vm);
   2272
   2273  // Unsigned absolute difference and accumulate.
   2274  void uaba(const VRegister& vd,
   2275            const VRegister& vn,
   2276            const VRegister& vm);
   2277
   2278  // Signed absolute difference and accumulate.
   2279  void saba(const VRegister& vd,
   2280            const VRegister& vn,
   2281            const VRegister& vm);
   2282
   2283  // Add.
   2284  void add(const VRegister& vd,
   2285           const VRegister& vn,
   2286           const VRegister& vm);
   2287
   2288  // Subtract.
   2289  void sub(const VRegister& vd,
   2290           const VRegister& vn,
   2291           const VRegister& vm);
   2292
   2293  // Unsigned halving add.
   2294  void uhadd(const VRegister& vd,
   2295             const VRegister& vn,
   2296             const VRegister& vm);
   2297
   2298  // Signed halving add.
   2299  void shadd(const VRegister& vd,
   2300             const VRegister& vn,
   2301             const VRegister& vm);
   2302
   2303  // Unsigned rounding halving add.
   2304  void urhadd(const VRegister& vd,
   2305              const VRegister& vn,
   2306              const VRegister& vm);
   2307
   2308  // Signed rounding halving add.
   2309  void srhadd(const VRegister& vd,
   2310              const VRegister& vn,
   2311              const VRegister& vm);
   2312
   2313  // Unsigned halving sub.
   2314  void uhsub(const VRegister& vd,
   2315             const VRegister& vn,
   2316             const VRegister& vm);
   2317
   2318  // Signed halving sub.
   2319  void shsub(const VRegister& vd,
   2320             const VRegister& vn,
   2321             const VRegister& vm);
   2322
   2323  // Unsigned saturating add.
   2324  void uqadd(const VRegister& vd,
   2325             const VRegister& vn,
   2326             const VRegister& vm);
   2327
   2328  // Signed saturating add.
   2329  void sqadd(const VRegister& vd,
   2330             const VRegister& vn,
   2331             const VRegister& vm);
   2332
   2333  // Unsigned saturating subtract.
   2334  void uqsub(const VRegister& vd,
   2335             const VRegister& vn,
   2336             const VRegister& vm);
   2337
   2338  // Signed saturating subtract.
   2339  void sqsub(const VRegister& vd,
   2340             const VRegister& vn,
   2341             const VRegister& vm);
   2342
   2343  // Add pairwise.
   2344  void addp(const VRegister& vd,
   2345            const VRegister& vn,
   2346            const VRegister& vm);
   2347
   2348  // Add pair of elements scalar.
   2349  void addp(const VRegister& vd,
   2350            const VRegister& vn);
   2351
   2352  // Multiply-add to accumulator.
   2353  void mla(const VRegister& vd,
   2354           const VRegister& vn,
   2355           const VRegister& vm);
   2356
   2357  // Multiply-subtract to accumulator.
   2358  void mls(const VRegister& vd,
   2359           const VRegister& vn,
   2360           const VRegister& vm);
   2361
   2362  // Multiply.
   2363  void mul(const VRegister& vd,
   2364           const VRegister& vn,
   2365           const VRegister& vm);
   2366
   2367  // Multiply by scalar element.
   2368  void mul(const VRegister& vd,
   2369           const VRegister& vn,
   2370           const VRegister& vm,
   2371           int vm_index);
   2372
   2373  // Multiply-add by scalar element.
   2374  void mla(const VRegister& vd,
   2375           const VRegister& vn,
   2376           const VRegister& vm,
   2377           int vm_index);
   2378
   2379  // Multiply-subtract by scalar element.
   2380  void mls(const VRegister& vd,
   2381           const VRegister& vn,
   2382           const VRegister& vm,
   2383           int vm_index);
   2384
   2385  // Signed long multiply-add by scalar element.
   2386  void smlal(const VRegister& vd,
   2387             const VRegister& vn,
   2388             const VRegister& vm,
   2389             int vm_index);
   2390
   2391  // Signed long multiply-add by scalar element (second part).
   2392  void smlal2(const VRegister& vd,
   2393              const VRegister& vn,
   2394              const VRegister& vm,
   2395              int vm_index);
   2396
   2397  // Unsigned long multiply-add by scalar element.
   2398  void umlal(const VRegister& vd,
   2399             const VRegister& vn,
   2400             const VRegister& vm,
   2401             int vm_index);
   2402
   2403  // Unsigned long multiply-add by scalar element (second part).
   2404  void umlal2(const VRegister& vd,
   2405              const VRegister& vn,
   2406              const VRegister& vm,
   2407              int vm_index);
   2408
   2409  // Signed long multiply-sub by scalar element.
   2410  void smlsl(const VRegister& vd,
   2411             const VRegister& vn,
   2412             const VRegister& vm,
   2413             int vm_index);
   2414
   2415  // Signed long multiply-sub by scalar element (second part).
   2416  void smlsl2(const VRegister& vd,
   2417              const VRegister& vn,
   2418              const VRegister& vm,
   2419              int vm_index);
   2420
   2421  // Unsigned long multiply-sub by scalar element.
   2422  void umlsl(const VRegister& vd,
   2423             const VRegister& vn,
   2424             const VRegister& vm,
   2425             int vm_index);
   2426
   2427  // Unsigned long multiply-sub by scalar element (second part).
   2428  void umlsl2(const VRegister& vd,
   2429              const VRegister& vn,
   2430              const VRegister& vm,
   2431              int vm_index);
   2432
   2433  // Signed long multiply by scalar element.
   2434  void smull(const VRegister& vd,
   2435             const VRegister& vn,
   2436             const VRegister& vm,
   2437             int vm_index);
   2438
   2439  // Signed long multiply by scalar element (second part).
   2440  void smull2(const VRegister& vd,
   2441              const VRegister& vn,
   2442              const VRegister& vm,
   2443              int vm_index);
   2444
   2445  // Unsigned long multiply by scalar element.
   2446  void umull(const VRegister& vd,
   2447             const VRegister& vn,
   2448             const VRegister& vm,
   2449             int vm_index);
   2450
   2451  // Unsigned long multiply by scalar element (second part).
   2452  void umull2(const VRegister& vd,
   2453              const VRegister& vn,
   2454              const VRegister& vm,
   2455              int vm_index);
   2456
   2457  // Signed saturating double long multiply by element.
   2458  void sqdmull(const VRegister& vd,
   2459               const VRegister& vn,
   2460               const VRegister& vm,
   2461               int vm_index);
   2462
   2463  // Signed saturating double long multiply by element (second part).
   2464  void sqdmull2(const VRegister& vd,
   2465                const VRegister& vn,
   2466                const VRegister& vm,
   2467                int vm_index);
   2468
   2469  // Signed saturating doubling long multiply-add by element.
   2470  void sqdmlal(const VRegister& vd,
   2471               const VRegister& vn,
   2472               const VRegister& vm,
   2473               int vm_index);
   2474
   2475  // Signed saturating doubling long multiply-add by element (second part).
   2476  void sqdmlal2(const VRegister& vd,
   2477                const VRegister& vn,
   2478                const VRegister& vm,
   2479                int vm_index);
   2480
   2481  // Signed saturating doubling long multiply-sub by element.
   2482  void sqdmlsl(const VRegister& vd,
   2483               const VRegister& vn,
   2484               const VRegister& vm,
   2485               int vm_index);
   2486
   2487  // Signed saturating doubling long multiply-sub by element (second part).
   2488  void sqdmlsl2(const VRegister& vd,
   2489                const VRegister& vn,
   2490                const VRegister& vm,
   2491                int vm_index);
   2492
   2493  // Compare equal.
   2494  void cmeq(const VRegister& vd,
   2495            const VRegister& vn,
   2496            const VRegister& vm);
   2497
   2498  // Compare signed greater than or equal.
   2499  void cmge(const VRegister& vd,
   2500            const VRegister& vn,
   2501            const VRegister& vm);
   2502
   2503  // Compare signed greater than.
   2504  void cmgt(const VRegister& vd,
   2505            const VRegister& vn,
   2506            const VRegister& vm);
   2507
   2508  // Compare unsigned higher.
   2509  void cmhi(const VRegister& vd,
   2510            const VRegister& vn,
   2511            const VRegister& vm);
   2512
   2513  // Compare unsigned higher or same.
   2514  void cmhs(const VRegister& vd,
   2515            const VRegister& vn,
   2516            const VRegister& vm);
   2517
   2518  // Compare bitwise test bits nonzero.
   2519  void cmtst(const VRegister& vd,
   2520             const VRegister& vn,
   2521             const VRegister& vm);
   2522
   2523  // Compare bitwise to zero.
   2524  void cmeq(const VRegister& vd,
   2525            const VRegister& vn,
   2526            int value);
   2527
   2528  // Compare signed greater than or equal to zero.
   2529  void cmge(const VRegister& vd,
   2530            const VRegister& vn,
   2531            int value);
   2532
   2533  // Compare signed greater than zero.
   2534  void cmgt(const VRegister& vd,
   2535            const VRegister& vn,
   2536            int value);
   2537
   2538  // Compare signed less than or equal to zero.
   2539  void cmle(const VRegister& vd,
   2540            const VRegister& vn,
   2541            int value);
   2542
   2543  // Compare signed less than zero.
   2544  void cmlt(const VRegister& vd,
   2545            const VRegister& vn,
   2546            int value);
   2547
   2548  // Signed shift left by register.
   2549  void sshl(const VRegister& vd,
   2550            const VRegister& vn,
   2551            const VRegister& vm);
   2552
   2553  // Unsigned shift left by register.
   2554  void ushl(const VRegister& vd,
   2555            const VRegister& vn,
   2556            const VRegister& vm);
   2557
   2558  // Signed saturating shift left by register.
   2559  void sqshl(const VRegister& vd,
   2560             const VRegister& vn,
   2561             const VRegister& vm);
   2562
   2563  // Unsigned saturating shift left by register.
   2564  void uqshl(const VRegister& vd,
   2565             const VRegister& vn,
   2566             const VRegister& vm);
   2567
   2568  // Signed rounding shift left by register.
   2569  void srshl(const VRegister& vd,
   2570             const VRegister& vn,
   2571             const VRegister& vm);
   2572
   2573  // Unsigned rounding shift left by register.
   2574  void urshl(const VRegister& vd,
   2575             const VRegister& vn,
   2576             const VRegister& vm);
   2577
   2578  // Signed saturating rounding shift left by register.
   2579  void sqrshl(const VRegister& vd,
   2580              const VRegister& vn,
   2581              const VRegister& vm);
   2582
   2583  // Unsigned saturating rounding shift left by register.
   2584  void uqrshl(const VRegister& vd,
   2585              const VRegister& vn,
   2586              const VRegister& vm);
   2587
   2588  // Bitwise and.
   2589  void and_(const VRegister& vd,
   2590            const VRegister& vn,
   2591            const VRegister& vm);
   2592
   2593  // Bitwise or.
   2594  void orr(const VRegister& vd,
   2595           const VRegister& vn,
   2596           const VRegister& vm);
   2597
   2598  // Bitwise or immediate.
   2599  void orr(const VRegister& vd,
   2600           const int imm8,
   2601           const int left_shift = 0);
   2602
   2603  // Move register to register.
   2604  void mov(const VRegister& vd,
   2605           const VRegister& vn);
   2606
   2607  // Bitwise orn.
   2608  void orn(const VRegister& vd,
   2609           const VRegister& vn,
   2610           const VRegister& vm);
   2611
   2612  // Bitwise eor.
   2613  void eor(const VRegister& vd,
   2614           const VRegister& vn,
   2615           const VRegister& vm);
   2616
   2617  // Bit clear immediate.
   2618  void bic(const VRegister& vd,
   2619           const int imm8,
   2620           const int left_shift = 0);
   2621
   2622  // Bit clear.
   2623  void bic(const VRegister& vd,
   2624           const VRegister& vn,
   2625           const VRegister& vm);
   2626
   2627  // Bitwise insert if false.
   2628  void bif(const VRegister& vd,
   2629           const VRegister& vn,
   2630           const VRegister& vm);
   2631
   2632  // Bitwise insert if true.
   2633  void bit(const VRegister& vd,
   2634           const VRegister& vn,
   2635           const VRegister& vm);
   2636
   2637  // Bitwise select.
   2638  void bsl(const VRegister& vd,
   2639           const VRegister& vn,
   2640           const VRegister& vm);
   2641
   2642  // Polynomial multiply.
   2643  void pmul(const VRegister& vd,
   2644            const VRegister& vn,
   2645            const VRegister& vm);
   2646
   2647  // Vector move immediate.
   2648  void movi(const VRegister& vd,
   2649            const uint64_t imm,
   2650            Shift shift = LSL,
   2651            const int shift_amount = 0);
   2652
   2653  // Bitwise not.
   2654  void mvn(const VRegister& vd,
   2655           const VRegister& vn);
   2656
   2657  // Vector move inverted immediate.
   2658  void mvni(const VRegister& vd,
   2659            const int imm8,
   2660            Shift shift = LSL,
   2661            const int shift_amount = 0);
   2662
   2663  // Signed saturating accumulate of unsigned value.
   2664  void suqadd(const VRegister& vd,
   2665              const VRegister& vn);
   2666
   2667  // Unsigned saturating accumulate of signed value.
   2668  void usqadd(const VRegister& vd,
   2669              const VRegister& vn);
   2670
   2671  // Absolute value.
   2672  void abs(const VRegister& vd,
   2673           const VRegister& vn);
   2674
   2675  // Signed saturating absolute value.
   2676  void sqabs(const VRegister& vd,
   2677             const VRegister& vn);
   2678
   2679  // Negate.
   2680  void neg(const VRegister& vd,
   2681           const VRegister& vn);
   2682
   2683  // Signed saturating negate.
   2684  void sqneg(const VRegister& vd,
   2685             const VRegister& vn);
   2686
   2687  // Bitwise not.
   2688  void not_(const VRegister& vd,
   2689            const VRegister& vn);
   2690
   2691  // Extract narrow.
   2692  void xtn(const VRegister& vd,
   2693           const VRegister& vn);
   2694
   2695  // Extract narrow (second part).
   2696  void xtn2(const VRegister& vd,
   2697            const VRegister& vn);
   2698
   2699  // Signed saturating extract narrow.
   2700  void sqxtn(const VRegister& vd,
   2701             const VRegister& vn);
   2702
   2703  // Signed saturating extract narrow (second part).
   2704  void sqxtn2(const VRegister& vd,
   2705              const VRegister& vn);
   2706
   2707  // Unsigned saturating extract narrow.
   2708  void uqxtn(const VRegister& vd,
   2709             const VRegister& vn);
   2710
   2711  // Unsigned saturating extract narrow (second part).
   2712  void uqxtn2(const VRegister& vd,
   2713              const VRegister& vn);
   2714
   2715  // Signed saturating extract unsigned narrow.
   2716  void sqxtun(const VRegister& vd,
   2717              const VRegister& vn);
   2718
   2719  // Signed saturating extract unsigned narrow (second part).
   2720  void sqxtun2(const VRegister& vd,
   2721               const VRegister& vn);
   2722
   2723  // Extract vector from pair of vectors.
   2724  void ext(const VRegister& vd,
   2725           const VRegister& vn,
   2726           const VRegister& vm,
   2727           int index);
   2728
   2729  // Duplicate vector element to vector or scalar.
   2730  void dup(const VRegister& vd,
   2731           const VRegister& vn,
   2732           int vn_index);
   2733
   2734  // Move vector element to scalar.
   2735  void mov(const VRegister& vd,
   2736           const VRegister& vn,
   2737           int vn_index);
   2738
   2739  // Duplicate general-purpose register to vector.
   2740  void dup(const VRegister& vd,
   2741           const Register& rn);
   2742
   2743  // Insert vector element from another vector element.
   2744  void ins(const VRegister& vd,
   2745           int vd_index,
   2746           const VRegister& vn,
   2747           int vn_index);
   2748
   2749  // Move vector element to another vector element.
   2750  void mov(const VRegister& vd,
   2751           int vd_index,
   2752           const VRegister& vn,
   2753           int vn_index);
   2754
   2755  // Insert vector element from general-purpose register.
   2756  void ins(const VRegister& vd,
   2757           int vd_index,
   2758           const Register& rn);
   2759
   2760  // Move general-purpose register to a vector element.
   2761  void mov(const VRegister& vd,
   2762           int vd_index,
   2763           const Register& rn);
   2764
   2765  // Unsigned move vector element to general-purpose register.
   2766  void umov(const Register& rd,
   2767            const VRegister& vn,
   2768            int vn_index);
   2769
   2770  // Move vector element to general-purpose register.
   2771  void mov(const Register& rd,
   2772           const VRegister& vn,
   2773           int vn_index);
   2774
   2775  // Signed move vector element to general-purpose register.
   2776  void smov(const Register& rd,
   2777            const VRegister& vn,
   2778            int vn_index);
   2779
   2780  // One-element structure load to one register.
   2781  void ld1(const VRegister& vt,
   2782           const MemOperand& src);
   2783
   2784  // One-element structure load to two registers.
   2785  void ld1(const VRegister& vt,
   2786           const VRegister& vt2,
   2787           const MemOperand& src);
   2788
   2789  // One-element structure load to three registers.
   2790  void ld1(const VRegister& vt,
   2791           const VRegister& vt2,
   2792           const VRegister& vt3,
   2793           const MemOperand& src);
   2794
   2795  // One-element structure load to four registers.
   2796  void ld1(const VRegister& vt,
   2797           const VRegister& vt2,
   2798           const VRegister& vt3,
   2799           const VRegister& vt4,
   2800           const MemOperand& src);
   2801
   2802  // One-element single structure load to one lane.
   2803  void ld1(const VRegister& vt,
   2804           int lane,
   2805           const MemOperand& src);
   2806
   2807  // One-element single structure load to all lanes.
   2808  void ld1r(const VRegister& vt,
   2809            const MemOperand& src);
   2810
   2811  // Two-element structure load.
   2812  void ld2(const VRegister& vt,
   2813           const VRegister& vt2,
   2814           const MemOperand& src);
   2815
   2816  // Two-element single structure load to one lane.
   2817  void ld2(const VRegister& vt,
   2818           const VRegister& vt2,
   2819           int lane,
   2820           const MemOperand& src);
   2821
   2822  // Two-element single structure load to all lanes.
   2823  void ld2r(const VRegister& vt,
   2824            const VRegister& vt2,
   2825            const MemOperand& src);
   2826
   2827  // Three-element structure load.
   2828  void ld3(const VRegister& vt,
   2829           const VRegister& vt2,
   2830           const VRegister& vt3,
   2831           const MemOperand& src);
   2832
   2833  // Three-element single structure load to one lane.
   2834  void ld3(const VRegister& vt,
   2835           const VRegister& vt2,
   2836           const VRegister& vt3,
   2837           int lane,
   2838           const MemOperand& src);
   2839
   2840  // Three-element single structure load to all lanes.
   2841  void ld3r(const VRegister& vt,
   2842            const VRegister& vt2,
   2843            const VRegister& vt3,
   2844            const MemOperand& src);
   2845
   2846  // Four-element structure load.
   2847  void ld4(const VRegister& vt,
   2848           const VRegister& vt2,
   2849           const VRegister& vt3,
   2850           const VRegister& vt4,
   2851           const MemOperand& src);
   2852
   2853  // Four-element single structure load to one lane.
   2854  void ld4(const VRegister& vt,
   2855           const VRegister& vt2,
   2856           const VRegister& vt3,
   2857           const VRegister& vt4,
   2858           int lane,
   2859           const MemOperand& src);
   2860
   2861  // Four-element single structure load to all lanes.
   2862  void ld4r(const VRegister& vt,
   2863            const VRegister& vt2,
   2864            const VRegister& vt3,
   2865            const VRegister& vt4,
   2866            const MemOperand& src);
   2867
   2868  // Count leading sign bits.
   2869  void cls(const VRegister& vd,
   2870           const VRegister& vn);
   2871
   2872  // Count leading zero bits (vector).
   2873  void clz(const VRegister& vd,
   2874           const VRegister& vn);
   2875
   2876  // Population count per byte.
   2877  void cnt(const VRegister& vd,
   2878           const VRegister& vn);
   2879
   2880  // Reverse bit order.
   2881  void rbit(const VRegister& vd,
   2882            const VRegister& vn);
   2883
   2884  // Reverse elements in 16-bit halfwords.
   2885  void rev16(const VRegister& vd,
   2886             const VRegister& vn);
   2887
   2888  // Reverse elements in 32-bit words.
   2889  void rev32(const VRegister& vd,
   2890             const VRegister& vn);
   2891
   2892  // Reverse elements in 64-bit doublewords.
   2893  void rev64(const VRegister& vd,
   2894             const VRegister& vn);
   2895
   2896  // Unsigned reciprocal square root estimate.
   2897  void ursqrte(const VRegister& vd,
   2898               const VRegister& vn);
   2899
   2900  // Unsigned reciprocal estimate.
   2901  void urecpe(const VRegister& vd,
   2902              const VRegister& vn);
   2903
   2904  // Signed pairwise long add.
   2905  void saddlp(const VRegister& vd,
   2906              const VRegister& vn);
   2907
   2908  // Unsigned pairwise long add.
   2909  void uaddlp(const VRegister& vd,
   2910              const VRegister& vn);
   2911
   2912  // Signed pairwise long add and accumulate.
   2913  void sadalp(const VRegister& vd,
   2914              const VRegister& vn);
   2915
   2916  // Unsigned pairwise long add and accumulate.
   2917  void uadalp(const VRegister& vd,
   2918              const VRegister& vn);
   2919
   2920  // Shift left by immediate.
   2921  void shl(const VRegister& vd,
   2922           const VRegister& vn,
   2923           int shift);
   2924
   2925  // Signed saturating shift left by immediate.
   2926  void sqshl(const VRegister& vd,
   2927             const VRegister& vn,
   2928             int shift);
   2929
   2930  // Signed saturating shift left unsigned by immediate.
   2931  void sqshlu(const VRegister& vd,
   2932              const VRegister& vn,
   2933              int shift);
   2934
   2935  // Unsigned saturating shift left by immediate.
   2936  void uqshl(const VRegister& vd,
   2937             const VRegister& vn,
   2938             int shift);
   2939
   2940  // Signed shift left long by immediate.
   2941  void sshll(const VRegister& vd,
   2942             const VRegister& vn,
   2943             int shift);
   2944
   2945  // Signed shift left long by immediate (second part).
   2946  void sshll2(const VRegister& vd,
   2947              const VRegister& vn,
   2948              int shift);
   2949
   2950  // Signed extend long.
   2951  void sxtl(const VRegister& vd,
   2952            const VRegister& vn);
   2953
   2954  // Signed extend long (second part).
   2955  void sxtl2(const VRegister& vd,
   2956             const VRegister& vn);
   2957
   2958  // Unsigned shift left long by immediate.
   2959  void ushll(const VRegister& vd,
   2960             const VRegister& vn,
   2961             int shift);
   2962
   2963  // Unsigned shift left long by immediate (second part).
   2964  void ushll2(const VRegister& vd,
   2965              const VRegister& vn,
   2966              int shift);
   2967
   2968  // Shift left long by element size.
   2969  void shll(const VRegister& vd,
   2970            const VRegister& vn,
   2971            int shift);
   2972
   2973  // Shift left long by element size (second part).
   2974  void shll2(const VRegister& vd,
   2975             const VRegister& vn,
   2976             int shift);
   2977
   2978  // Unsigned extend long.
   2979  void uxtl(const VRegister& vd,
   2980            const VRegister& vn);
   2981
   2982  // Unsigned extend long (second part).
   2983  void uxtl2(const VRegister& vd,
   2984             const VRegister& vn);
   2985
   2986  // Shift left by immediate and insert.
   2987  void sli(const VRegister& vd,
   2988           const VRegister& vn,
   2989           int shift);
   2990
   2991  // Shift right by immediate and insert.
   2992  void sri(const VRegister& vd,
   2993           const VRegister& vn,
   2994           int shift);
   2995
   2996  // Signed maximum.
   2997  void smax(const VRegister& vd,
   2998            const VRegister& vn,
   2999            const VRegister& vm);
   3000
   3001  // Signed pairwise maximum.
   3002  void smaxp(const VRegister& vd,
   3003             const VRegister& vn,
   3004             const VRegister& vm);
   3005
   3006  // Add across vector.
   3007  void addv(const VRegister& vd,
   3008            const VRegister& vn);
   3009
   3010  // Signed add long across vector.
   3011  void saddlv(const VRegister& vd,
   3012              const VRegister& vn);
   3013
   3014  // Unsigned add long across vector.
   3015  void uaddlv(const VRegister& vd,
   3016              const VRegister& vn);
   3017
   3018  // FP maximum number across vector.
   3019  void fmaxnmv(const VRegister& vd,
   3020               const VRegister& vn);
   3021
   3022  // FP maximum across vector.
   3023  void fmaxv(const VRegister& vd,
   3024             const VRegister& vn);
   3025
   3026  // FP minimum number across vector.
   3027  void fminnmv(const VRegister& vd,
   3028               const VRegister& vn);
   3029
   3030  // FP minimum across vector.
   3031  void fminv(const VRegister& vd,
   3032             const VRegister& vn);
   3033
   3034  // Signed maximum across vector.
   3035  void smaxv(const VRegister& vd,
   3036             const VRegister& vn);
   3037
   3038  // Signed minimum.
   3039  void smin(const VRegister& vd,
   3040            const VRegister& vn,
   3041            const VRegister& vm);
   3042
   3043  // Signed minimum pairwise.
   3044  void sminp(const VRegister& vd,
   3045             const VRegister& vn,
   3046             const VRegister& vm);
   3047
   3048  // Signed minimum across vector.
   3049  void sminv(const VRegister& vd,
   3050             const VRegister& vn);
   3051
   3052  // One-element structure store from one register.
   3053  void st1(const VRegister& vt,
   3054           const MemOperand& src);
   3055
   3056  // One-element structure store from two registers.
   3057  void st1(const VRegister& vt,
   3058           const VRegister& vt2,
   3059           const MemOperand& src);
   3060
   3061  // One-element structure store from three registers.
   3062  void st1(const VRegister& vt,
   3063           const VRegister& vt2,
   3064           const VRegister& vt3,
   3065           const MemOperand& src);
   3066
   3067  // One-element structure store from four registers.
   3068  void st1(const VRegister& vt,
   3069           const VRegister& vt2,
   3070           const VRegister& vt3,
   3071           const VRegister& vt4,
   3072           const MemOperand& src);
   3073
   3074  // One-element single structure store from one lane.
   3075  void st1(const VRegister& vt,
   3076           int lane,
   3077           const MemOperand& src);
   3078
   3079  // Two-element structure store from two registers.
   3080  void st2(const VRegister& vt,
   3081           const VRegister& vt2,
   3082           const MemOperand& src);
   3083
   3084  // Two-element single structure store from two lanes.
   3085  void st2(const VRegister& vt,
   3086           const VRegister& vt2,
   3087           int lane,
   3088           const MemOperand& src);
   3089
   3090  // Three-element structure store from three registers.
   3091  void st3(const VRegister& vt,
   3092           const VRegister& vt2,
   3093           const VRegister& vt3,
   3094           const MemOperand& src);
   3095
   3096  // Three-element single structure store from three lanes.
   3097  void st3(const VRegister& vt,
   3098           const VRegister& vt2,
   3099           const VRegister& vt3,
   3100           int lane,
   3101           const MemOperand& src);
   3102
   3103  // Four-element structure store from four registers.
   3104  void st4(const VRegister& vt,
   3105           const VRegister& vt2,
   3106           const VRegister& vt3,
   3107           const VRegister& vt4,
   3108           const MemOperand& src);
   3109
   3110  // Four-element single structure store from four lanes.
   3111  void st4(const VRegister& vt,
   3112           const VRegister& vt2,
   3113           const VRegister& vt3,
   3114           const VRegister& vt4,
   3115           int lane,
   3116           const MemOperand& src);
   3117
   3118  // Unsigned add long.
   3119  void uaddl(const VRegister& vd,
   3120             const VRegister& vn,
   3121             const VRegister& vm);
   3122
   3123  // Unsigned add long (second part).
   3124  void uaddl2(const VRegister& vd,
   3125              const VRegister& vn,
   3126              const VRegister& vm);
   3127
   3128  // Unsigned add wide.
   3129  void uaddw(const VRegister& vd,
   3130             const VRegister& vn,
   3131             const VRegister& vm);
   3132
   3133  // Unsigned add wide (second part).
   3134  void uaddw2(const VRegister& vd,
   3135              const VRegister& vn,
   3136              const VRegister& vm);
   3137
   3138  // Signed add long.
   3139  void saddl(const VRegister& vd,
   3140             const VRegister& vn,
   3141             const VRegister& vm);
   3142
   3143  // Signed add long (second part).
   3144  void saddl2(const VRegister& vd,
   3145              const VRegister& vn,
   3146              const VRegister& vm);
   3147
   3148  // Signed add wide.
   3149  void saddw(const VRegister& vd,
   3150             const VRegister& vn,
   3151             const VRegister& vm);
   3152
   3153  // Signed add wide (second part).
   3154  void saddw2(const VRegister& vd,
   3155              const VRegister& vn,
   3156              const VRegister& vm);
   3157
   3158  // Unsigned subtract long.
   3159  void usubl(const VRegister& vd,
   3160             const VRegister& vn,
   3161             const VRegister& vm);
   3162
   3163  // Unsigned subtract long (second part).
   3164  void usubl2(const VRegister& vd,
   3165              const VRegister& vn,
   3166              const VRegister& vm);
   3167
   3168  // Unsigned subtract wide.
   3169  void usubw(const VRegister& vd,
   3170             const VRegister& vn,
   3171             const VRegister& vm);
   3172
   3173  // Unsigned subtract wide (second part).
   3174  void usubw2(const VRegister& vd,
   3175              const VRegister& vn,
   3176              const VRegister& vm);
   3177
   3178  // Signed subtract long.
   3179  void ssubl(const VRegister& vd,
   3180             const VRegister& vn,
   3181             const VRegister& vm);
   3182
   3183  // Signed subtract long (second part).
   3184  void ssubl2(const VRegister& vd,
   3185              const VRegister& vn,
   3186              const VRegister& vm);
   3187
   3188  // Signed integer subtract wide.
   3189  void ssubw(const VRegister& vd,
   3190             const VRegister& vn,
   3191             const VRegister& vm);
   3192
   3193  // Signed integer subtract wide (second part).
   3194  void ssubw2(const VRegister& vd,
   3195              const VRegister& vn,
   3196              const VRegister& vm);
   3197
   3198  // Unsigned maximum.
   3199  void umax(const VRegister& vd,
   3200            const VRegister& vn,
   3201            const VRegister& vm);
   3202
   3203  // Unsigned pairwise maximum.
   3204  void umaxp(const VRegister& vd,
   3205             const VRegister& vn,
   3206             const VRegister& vm);
   3207
   3208  // Unsigned maximum across vector.
   3209  void umaxv(const VRegister& vd,
   3210             const VRegister& vn);
   3211
   3212  // Unsigned minimum.
   3213  void umin(const VRegister& vd,
   3214            const VRegister& vn,
   3215            const VRegister& vm);
   3216
   3217  // Unsigned pairwise minimum.
   3218  void uminp(const VRegister& vd,
   3219             const VRegister& vn,
   3220             const VRegister& vm);
   3221
   3222  // Unsigned minimum across vector.
   3223  void uminv(const VRegister& vd,
   3224             const VRegister& vn);
   3225
   3226  // Transpose vectors (primary).
   3227  void trn1(const VRegister& vd,
   3228            const VRegister& vn,
   3229            const VRegister& vm);
   3230
   3231  // Transpose vectors (secondary).
   3232  void trn2(const VRegister& vd,
   3233            const VRegister& vn,
   3234            const VRegister& vm);
   3235
   3236  // Unzip vectors (primary).
   3237  void uzp1(const VRegister& vd,
   3238            const VRegister& vn,
   3239            const VRegister& vm);
   3240
   3241  // Unzip vectors (secondary).
   3242  void uzp2(const VRegister& vd,
   3243            const VRegister& vn,
   3244            const VRegister& vm);
   3245
   3246  // Zip vectors (primary).
   3247  void zip1(const VRegister& vd,
   3248            const VRegister& vn,
   3249            const VRegister& vm);
   3250
   3251  // Zip vectors (secondary).
   3252  void zip2(const VRegister& vd,
   3253            const VRegister& vn,
   3254            const VRegister& vm);
   3255
   3256  // Signed shift right by immediate.
   3257  void sshr(const VRegister& vd,
   3258            const VRegister& vn,
   3259            int shift);
   3260
   3261  // Unsigned shift right by immediate.
   3262  void ushr(const VRegister& vd,
   3263            const VRegister& vn,
   3264            int shift);
   3265
   3266  // Signed rounding shift right by immediate.
   3267  void srshr(const VRegister& vd,
   3268             const VRegister& vn,
   3269             int shift);
   3270
   3271  // Unsigned rounding shift right by immediate.
   3272  void urshr(const VRegister& vd,
   3273             const VRegister& vn,
   3274             int shift);
   3275
   3276  // Signed shift right by immediate and accumulate.
   3277  void ssra(const VRegister& vd,
   3278            const VRegister& vn,
   3279            int shift);
   3280
   3281  // Unsigned shift right by immediate and accumulate.
   3282  void usra(const VRegister& vd,
   3283            const VRegister& vn,
   3284            int shift);
   3285
   3286  // Signed rounding shift right by immediate and accumulate.
   3287  void srsra(const VRegister& vd,
   3288             const VRegister& vn,
   3289             int shift);
   3290
   3291  // Unsigned rounding shift right by immediate and accumulate.
   3292  void ursra(const VRegister& vd,
   3293             const VRegister& vn,
   3294             int shift);
   3295
   3296  // Shift right narrow by immediate.
   3297  void shrn(const VRegister& vd,
   3298            const VRegister& vn,
   3299            int shift);
   3300
   3301  // Shift right narrow by immediate (second part).
   3302  void shrn2(const VRegister& vd,
   3303             const VRegister& vn,
   3304             int shift);
   3305
   3306  // Rounding shift right narrow by immediate.
   3307  void rshrn(const VRegister& vd,
   3308             const VRegister& vn,
   3309             int shift);
   3310
   3311  // Rounding shift right narrow by immediate (second part).
   3312  void rshrn2(const VRegister& vd,
   3313              const VRegister& vn,
   3314              int shift);
   3315
   3316  // Unsigned saturating shift right narrow by immediate.
   3317  void uqshrn(const VRegister& vd,
   3318              const VRegister& vn,
   3319              int shift);
   3320
   3321  // Unsigned saturating shift right narrow by immediate (second part).
   3322  void uqshrn2(const VRegister& vd,
   3323               const VRegister& vn,
   3324               int shift);
   3325
   3326  // Unsigned saturating rounding shift right narrow by immediate.
   3327  void uqrshrn(const VRegister& vd,
   3328               const VRegister& vn,
   3329               int shift);
   3330
   3331  // Unsigned saturating rounding shift right narrow by immediate (second part).
   3332  void uqrshrn2(const VRegister& vd,
   3333                const VRegister& vn,
   3334                int shift);
   3335
   3336  // Signed saturating shift right narrow by immediate.
   3337  void sqshrn(const VRegister& vd,
   3338              const VRegister& vn,
   3339              int shift);
   3340
   3341  // Signed saturating shift right narrow by immediate (second part).
   3342  void sqshrn2(const VRegister& vd,
   3343               const VRegister& vn,
   3344               int shift);
   3345
   3346  // Signed saturating rounded shift right narrow by immediate.
   3347  void sqrshrn(const VRegister& vd,
   3348               const VRegister& vn,
   3349               int shift);
   3350
   3351  // Signed saturating rounded shift right narrow by immediate (second part).
   3352  void sqrshrn2(const VRegister& vd,
   3353                const VRegister& vn,
   3354                int shift);
   3355
   3356  // Signed saturating shift right unsigned narrow by immediate.
   3357  void sqshrun(const VRegister& vd,
   3358               const VRegister& vn,
   3359               int shift);
   3360
   3361  // Signed saturating shift right unsigned narrow by immediate (second part).
   3362  void sqshrun2(const VRegister& vd,
   3363                const VRegister& vn,
   3364                int shift);
   3365
   3366  // Signed sat rounded shift right unsigned narrow by immediate.
   3367  void sqrshrun(const VRegister& vd,
   3368                const VRegister& vn,
   3369                int shift);
   3370
   3371  // Signed sat rounded shift right unsigned narrow by immediate (second part).
   3372  void sqrshrun2(const VRegister& vd,
   3373                 const VRegister& vn,
   3374                 int shift);
   3375
   3376  // FP reciprocal step.
   3377  void frecps(const VRegister& vd,
   3378              const VRegister& vn,
   3379              const VRegister& vm);
   3380
   3381  // FP reciprocal estimate.
   3382  void frecpe(const VRegister& vd,
   3383              const VRegister& vn);
   3384
   3385  // FP reciprocal square root estimate.
   3386  void frsqrte(const VRegister& vd,
   3387               const VRegister& vn);
   3388
   3389  // FP reciprocal square root step.
   3390  void frsqrts(const VRegister& vd,
   3391               const VRegister& vn,
   3392               const VRegister& vm);
   3393
   3394  // Signed absolute difference and accumulate long.
   3395  void sabal(const VRegister& vd,
   3396             const VRegister& vn,
   3397             const VRegister& vm);
   3398
   3399  // Signed absolute difference and accumulate long (second part).
   3400  void sabal2(const VRegister& vd,
   3401              const VRegister& vn,
   3402              const VRegister& vm);
   3403
   3404  // Unsigned absolute difference and accumulate long.
   3405  void uabal(const VRegister& vd,
   3406             const VRegister& vn,
   3407             const VRegister& vm);
   3408
   3409  // Unsigned absolute difference and accumulate long (second part).
   3410  void uabal2(const VRegister& vd,
   3411              const VRegister& vn,
   3412              const VRegister& vm);
   3413
   3414  // Signed absolute difference long.
   3415  void sabdl(const VRegister& vd,
   3416             const VRegister& vn,
   3417             const VRegister& vm);
   3418
   3419  // Signed absolute difference long (second part).
   3420  void sabdl2(const VRegister& vd,
   3421              const VRegister& vn,
   3422              const VRegister& vm);
   3423
   3424  // Unsigned absolute difference long.
   3425  void uabdl(const VRegister& vd,
   3426             const VRegister& vn,
   3427             const VRegister& vm);
   3428
   3429  // Unsigned absolute difference long (second part).
   3430  void uabdl2(const VRegister& vd,
   3431              const VRegister& vn,
   3432              const VRegister& vm);
   3433
   3434  // Polynomial multiply long.
   3435  void pmull(const VRegister& vd,
   3436             const VRegister& vn,
   3437             const VRegister& vm);
   3438
   3439  // Polynomial multiply long (second part).
   3440  void pmull2(const VRegister& vd,
   3441              const VRegister& vn,
   3442              const VRegister& vm);
   3443
   3444  // Signed long multiply-add.
   3445  void smlal(const VRegister& vd,
   3446             const VRegister& vn,
   3447             const VRegister& vm);
   3448
   3449  // Signed long multiply-add (second part).
   3450  void smlal2(const VRegister& vd,
   3451              const VRegister& vn,
   3452              const VRegister& vm);
   3453
   3454  // Unsigned long multiply-add.
   3455  void umlal(const VRegister& vd,
   3456             const VRegister& vn,
   3457             const VRegister& vm);
   3458
   3459  // Unsigned long multiply-add (second part).
   3460  void umlal2(const VRegister& vd,
   3461              const VRegister& vn,
   3462              const VRegister& vm);
   3463
   3464  // Signed long multiply-sub.
   3465  void smlsl(const VRegister& vd,
   3466             const VRegister& vn,
   3467             const VRegister& vm);
   3468
   3469  // Signed long multiply-sub (second part).
   3470  void smlsl2(const VRegister& vd,
   3471              const VRegister& vn,
   3472              const VRegister& vm);
   3473
   3474  // Unsigned long multiply-sub.
   3475  void umlsl(const VRegister& vd,
   3476             const VRegister& vn,
   3477             const VRegister& vm);
   3478
   3479  // Unsigned long multiply-sub (second part).
   3480  void umlsl2(const VRegister& vd,
   3481              const VRegister& vn,
   3482              const VRegister& vm);
   3483
   3484  // Signed long multiply.
   3485  void smull(const VRegister& vd,
   3486             const VRegister& vn,
   3487             const VRegister& vm);
   3488
   3489  // Signed long multiply (second part).
   3490  void smull2(const VRegister& vd,
   3491              const VRegister& vn,
   3492              const VRegister& vm);
   3493
   3494  // Signed saturating doubling long multiply-add.
   3495  void sqdmlal(const VRegister& vd,
   3496               const VRegister& vn,
   3497               const VRegister& vm);
   3498
   3499  // Signed saturating doubling long multiply-add (second part).
   3500  void sqdmlal2(const VRegister& vd,
   3501                const VRegister& vn,
   3502                const VRegister& vm);
   3503
   3504  // Signed saturating doubling long multiply-subtract.
   3505  void sqdmlsl(const VRegister& vd,
   3506               const VRegister& vn,
   3507               const VRegister& vm);
   3508
   3509  // Signed saturating doubling long multiply-subtract (second part).
   3510  void sqdmlsl2(const VRegister& vd,
   3511                const VRegister& vn,
   3512                const VRegister& vm);
   3513
   3514  // Signed saturating doubling long multiply.
   3515  void sqdmull(const VRegister& vd,
   3516               const VRegister& vn,
   3517               const VRegister& vm);
   3518
   3519  // Signed saturating doubling long multiply (second part).
   3520  void sqdmull2(const VRegister& vd,
   3521                const VRegister& vn,
   3522                const VRegister& vm);
   3523
   3524  // Signed saturating doubling multiply returning high half.
   3525  void sqdmulh(const VRegister& vd,
   3526               const VRegister& vn,
   3527               const VRegister& vm);
   3528
   3529  // Signed saturating rounding doubling multiply returning high half.
   3530  void sqrdmulh(const VRegister& vd,
   3531                const VRegister& vn,
   3532                const VRegister& vm);
   3533
   3534  // Signed saturating doubling multiply element returning high half.
   3535  void sqdmulh(const VRegister& vd,
   3536               const VRegister& vn,
   3537               const VRegister& vm,
   3538               int vm_index);
   3539
   3540  // Signed saturating rounding doubling multiply element returning high half.
   3541  void sqrdmulh(const VRegister& vd,
   3542                const VRegister& vn,
   3543                const VRegister& vm,
   3544                int vm_index);
   3545
   3546  // Unsigned long multiply long.
   3547  void umull(const VRegister& vd,
   3548             const VRegister& vn,
   3549             const VRegister& vm);
   3550
   3551  // Unsigned long multiply (second part).
   3552  void umull2(const VRegister& vd,
   3553              const VRegister& vn,
   3554              const VRegister& vm);
   3555
   3556  // Add narrow returning high half.
   3557  void addhn(const VRegister& vd,
   3558             const VRegister& vn,
   3559             const VRegister& vm);
   3560
   3561  // Add narrow returning high half (second part).
   3562  void addhn2(const VRegister& vd,
   3563              const VRegister& vn,
   3564              const VRegister& vm);
   3565
   3566  // Rounding add narrow returning high half.
   3567  void raddhn(const VRegister& vd,
   3568              const VRegister& vn,
   3569              const VRegister& vm);
   3570
   3571  // Rounding add narrow returning high half (second part).
   3572  void raddhn2(const VRegister& vd,
   3573               const VRegister& vn,
   3574               const VRegister& vm);
   3575
   3576  // Subtract narrow returning high half.
   3577  void subhn(const VRegister& vd,
   3578             const VRegister& vn,
   3579             const VRegister& vm);
   3580
   3581  // Subtract narrow returning high half (second part).
   3582  void subhn2(const VRegister& vd,
   3583              const VRegister& vn,
   3584              const VRegister& vm);
   3585
   3586  // Rounding subtract narrow returning high half.
   3587  void rsubhn(const VRegister& vd,
   3588              const VRegister& vn,
   3589              const VRegister& vm);
   3590
   3591  // Rounding subtract narrow returning high half (second part).
   3592  void rsubhn2(const VRegister& vd,
   3593               const VRegister& vn,
   3594               const VRegister& vm);
   3595
   3596  // FP vector multiply accumulate.
   3597  void fmla(const VRegister& vd,
   3598            const VRegister& vn,
   3599            const VRegister& vm);
   3600
   3601  // FP vector multiply subtract.
   3602  void fmls(const VRegister& vd,
   3603            const VRegister& vn,
   3604            const VRegister& vm);
   3605
   3606  // FP vector multiply extended.
   3607  void fmulx(const VRegister& vd,
   3608             const VRegister& vn,
   3609             const VRegister& vm);
   3610
   3611  // FP absolute greater than or equal.
   3612  void facge(const VRegister& vd,
   3613             const VRegister& vn,
   3614             const VRegister& vm);
   3615
   3616  // FP absolute greater than.
   3617  void facgt(const VRegister& vd,
   3618             const VRegister& vn,
   3619             const VRegister& vm);
   3620
   3621  // FP multiply by element.
   3622  void fmul(const VRegister& vd,
   3623            const VRegister& vn,
   3624            const VRegister& vm,
   3625            int vm_index);
   3626
   3627  // FP fused multiply-add to accumulator by element.
   3628  void fmla(const VRegister& vd,
   3629            const VRegister& vn,
   3630            const VRegister& vm,
   3631            int vm_index);
   3632
   3633  // FP fused multiply-sub from accumulator by element.
   3634  void fmls(const VRegister& vd,
   3635            const VRegister& vn,
   3636            const VRegister& vm,
   3637            int vm_index);
   3638
   3639  // FP multiply extended by element.
   3640  void fmulx(const VRegister& vd,
   3641             const VRegister& vn,
   3642             const VRegister& vm,
   3643             int vm_index);
   3644
   3645  // FP compare equal.
   3646  void fcmeq(const VRegister& vd,
   3647             const VRegister& vn,
   3648             const VRegister& vm);
   3649
   3650  // FP greater than.
   3651  void fcmgt(const VRegister& vd,
   3652             const VRegister& vn,
   3653             const VRegister& vm);
   3654
   3655  // FP greater than or equal.
   3656  void fcmge(const VRegister& vd,
   3657             const VRegister& vn,
   3658             const VRegister& vm);
   3659
   3660  // FP compare equal to zero.
   3661  void fcmeq(const VRegister& vd,
   3662             const VRegister& vn,
   3663             double imm);
   3664
   3665  // FP greater than zero.
   3666  void fcmgt(const VRegister& vd,
   3667             const VRegister& vn,
   3668             double imm);
   3669
   3670  // FP greater than or equal to zero.
   3671  void fcmge(const VRegister& vd,
   3672             const VRegister& vn,
   3673             double imm);
   3674
   3675  // FP less than or equal to zero.
   3676  void fcmle(const VRegister& vd,
   3677             const VRegister& vn,
   3678             double imm);
   3679
   3680  // FP less than to zero.
   3681  void fcmlt(const VRegister& vd,
   3682             const VRegister& vn,
   3683             double imm);
   3684
   3685  // FP absolute difference.
   3686  void fabd(const VRegister& vd,
   3687            const VRegister& vn,
   3688            const VRegister& vm);
   3689
   3690  // FP pairwise add vector.
   3691  void faddp(const VRegister& vd,
   3692             const VRegister& vn,
   3693             const VRegister& vm);
   3694
   3695  // FP pairwise add scalar.
   3696  void faddp(const VRegister& vd,
   3697             const VRegister& vn);
   3698
   3699  // FP pairwise maximum vector.
   3700  void fmaxp(const VRegister& vd,
   3701             const VRegister& vn,
   3702             const VRegister& vm);
   3703
   3704  // FP pairwise maximum scalar.
   3705  void fmaxp(const VRegister& vd,
   3706             const VRegister& vn);
   3707
   3708  // FP pairwise minimum vector.
   3709  void fminp(const VRegister& vd,
   3710             const VRegister& vn,
   3711             const VRegister& vm);
   3712
   3713  // FP pairwise minimum scalar.
   3714  void fminp(const VRegister& vd,
   3715             const VRegister& vn);
   3716
   3717  // FP pairwise maximum number vector.
   3718  void fmaxnmp(const VRegister& vd,
   3719               const VRegister& vn,
   3720               const VRegister& vm);
   3721
   3722  // FP pairwise maximum number scalar.
   3723  void fmaxnmp(const VRegister& vd,
   3724               const VRegister& vn);
   3725
   3726  // FP pairwise minimum number vector.
   3727  void fminnmp(const VRegister& vd,
   3728               const VRegister& vn,
   3729               const VRegister& vm);
   3730
   3731  // FP pairwise minimum number scalar.
   3732  void fminnmp(const VRegister& vd,
   3733               const VRegister& vn);
   3734
   3735  // Emit generic instructions.
   3736  // Emit raw instructions into the instruction stream.
   3737  void dci(Instr raw_inst) { Emit(raw_inst); }
   3738
   3739  // Emit 32 bits of data into the instruction stream.
   3740  void dc32(uint32_t data) {
   3741    VIXL_ASSERT(buffer_monitor_ > 0);
   3742    buffer_->Emit32(data);
   3743  }
   3744
   3745  // Emit 64 bits of data into the instruction stream.
   3746  void dc64(uint64_t data) {
   3747    VIXL_ASSERT(buffer_monitor_ > 0);
   3748    buffer_->Emit64(data);
   3749  }
   3750
   3751  // Copy a string into the instruction stream, including the terminating NULL
   3752  // character. The instruction pointer is then aligned correctly for
   3753  // subsequent instructions.
   3754  void EmitString(const char * string) {
   3755    VIXL_ASSERT(string != NULL);
   3756    VIXL_ASSERT(buffer_monitor_ > 0);
   3757
   3758    buffer_->EmitString(string);
   3759    buffer_->Align();
   3760  }
   3761
   3762  // Code generation helpers.
   3763
   3764  // Register encoding.
   3765  static Instr Rd(CPURegister rd) {
   3766    VIXL_ASSERT(rd.code() != kSPRegInternalCode);
   3767    return rd.code() << Rd_offset;
   3768  }
   3769
   3770  static Instr Rn(CPURegister rn) {
   3771    VIXL_ASSERT(rn.code() != kSPRegInternalCode);
   3772    return rn.code() << Rn_offset;
   3773  }
   3774
   3775  static Instr Rm(CPURegister rm) {
   3776    VIXL_ASSERT(rm.code() != kSPRegInternalCode);
   3777    return rm.code() << Rm_offset;
   3778  }
   3779
   3780  static Instr RmNot31(CPURegister rm) {
   3781    VIXL_ASSERT(rm.code() != kSPRegInternalCode);
   3782    VIXL_ASSERT(!rm.IsZero());
   3783    return Rm(rm);
   3784  }
   3785
   3786  static Instr Ra(CPURegister ra) {
   3787    VIXL_ASSERT(ra.code() != kSPRegInternalCode);
   3788    return ra.code() << Ra_offset;
   3789  }
   3790
   3791  static Instr Rt(CPURegister rt) {
   3792    VIXL_ASSERT(rt.code() != kSPRegInternalCode);
   3793    return rt.code() << Rt_offset;
   3794  }
   3795
   3796  static Instr Rt2(CPURegister rt2) {
   3797    VIXL_ASSERT(rt2.code() != kSPRegInternalCode);
   3798    return rt2.code() << Rt2_offset;
   3799  }
   3800
   3801  static Instr Rs(CPURegister rs) {
   3802    VIXL_ASSERT(rs.code() != kSPRegInternalCode);
   3803    return rs.code() << Rs_offset;
   3804  }
   3805
   3806  // These encoding functions allow the stack pointer to be encoded, and
   3807  // disallow the zero register.
   3808  static Instr RdSP(Register rd) {
   3809    VIXL_ASSERT(!rd.IsZero());
   3810    return (rd.code() & kRegCodeMask) << Rd_offset;
   3811  }
   3812
   3813  static Instr RnSP(Register rn) {
   3814    VIXL_ASSERT(!rn.IsZero());
   3815    return (rn.code() & kRegCodeMask) << Rn_offset;
   3816  }
   3817
   3818  // Flags encoding.
   3819  static Instr Flags(FlagsUpdate S) {
   3820    if (S == SetFlags) {
   3821      return 1 << FlagsUpdate_offset;
   3822    } else if (S == LeaveFlags) {
   3823      return 0 << FlagsUpdate_offset;
   3824    }
   3825    VIXL_UNREACHABLE();
   3826    return 0;
   3827  }
   3828
   3829  static Instr Cond(Condition cond) {
   3830    return cond << Condition_offset;
   3831  }
   3832
   3833  // PC-relative address encoding.
   3834  static Instr ImmPCRelAddress(int imm21) {
   3835    VIXL_ASSERT(is_int21(imm21));
   3836    Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
   3837    Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
   3838    Instr immlo = imm << ImmPCRelLo_offset;
   3839    return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
   3840  }
   3841
   3842  // Branch encoding.
   3843  static Instr ImmUncondBranch(int imm26) {
   3844    VIXL_ASSERT(is_int26(imm26));
   3845    return truncate_to_int26(imm26) << ImmUncondBranch_offset;
   3846  }
   3847
   3848  static Instr ImmCondBranch(int imm19) {
   3849    VIXL_ASSERT(is_int19(imm19));
   3850    return truncate_to_int19(imm19) << ImmCondBranch_offset;
   3851  }
   3852
   3853  static Instr ImmCmpBranch(int imm19) {
   3854    VIXL_ASSERT(is_int19(imm19));
   3855    return truncate_to_int19(imm19) << ImmCmpBranch_offset;
   3856  }
   3857
   3858  static Instr ImmTestBranch(int imm14) {
   3859    VIXL_ASSERT(is_int14(imm14));
   3860    return truncate_to_int14(imm14) << ImmTestBranch_offset;
   3861  }
   3862
   3863  static Instr ImmTestBranchBit(unsigned bit_pos) {
   3864    VIXL_ASSERT(is_uint6(bit_pos));
   3865    // Subtract five from the shift offset, as we need bit 5 from bit_pos.
   3866    unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
   3867    unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
   3868    b5 &= ImmTestBranchBit5_mask;
   3869    b40 &= ImmTestBranchBit40_mask;
   3870    return b5 | b40;
   3871  }
   3872
   3873  // Data Processing encoding.
   3874  static Instr SF(Register rd) {
   3875      return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
   3876  }
   3877
   3878  static Instr ImmAddSub(int imm) {
   3879    VIXL_ASSERT(IsImmAddSub(imm));
   3880    if (is_uint12(imm)) {  // No shift required.
   3881      imm <<= ImmAddSub_offset;
   3882    } else {
   3883      imm = ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
   3884    }
   3885    return imm;
   3886  }
   3887
   3888  static Instr ImmS(unsigned imms, unsigned reg_size) {
   3889    VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(imms)) ||
   3890           ((reg_size == kWRegSize) && is_uint5(imms)));
   3891    USE(reg_size);
   3892    return imms << ImmS_offset;
   3893  }
   3894
   3895  static Instr ImmR(unsigned immr, unsigned reg_size) {
   3896    VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
   3897           ((reg_size == kWRegSize) && is_uint5(immr)));
   3898    USE(reg_size);
   3899    VIXL_ASSERT(is_uint6(immr));
   3900    return immr << ImmR_offset;
   3901  }
   3902
   3903  static Instr ImmSetBits(unsigned imms, unsigned reg_size) {
   3904    VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
   3905    VIXL_ASSERT(is_uint6(imms));
   3906    VIXL_ASSERT((reg_size == kXRegSize) || is_uint6(imms + 3));
   3907    USE(reg_size);
   3908    return imms << ImmSetBits_offset;
   3909  }
   3910
   3911  static Instr ImmRotate(unsigned immr, unsigned reg_size) {
   3912    VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
   3913    VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
   3914           ((reg_size == kWRegSize) && is_uint5(immr)));
   3915    USE(reg_size);
   3916    return immr << ImmRotate_offset;
   3917  }
   3918
   3919  static Instr ImmLLiteral(int imm19) {
   3920    VIXL_ASSERT(is_int19(imm19));
   3921    return truncate_to_int19(imm19) << ImmLLiteral_offset;
   3922  }
   3923
   3924  static Instr BitN(unsigned bitn, unsigned reg_size) {
   3925    VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
   3926    VIXL_ASSERT((reg_size == kXRegSize) || (bitn == 0));
   3927    USE(reg_size);
   3928    return bitn << BitN_offset;
   3929  }
   3930
   3931  static Instr ShiftDP(Shift shift) {
   3932    VIXL_ASSERT(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
   3933    return shift << ShiftDP_offset;
   3934  }
   3935
   3936  static Instr ImmDPShift(unsigned amount) {
   3937    VIXL_ASSERT(is_uint6(amount));
   3938    return amount << ImmDPShift_offset;
   3939  }
   3940
   3941  static Instr ExtendMode(Extend extend) {
   3942    return extend << ExtendMode_offset;
   3943  }
   3944
   3945  static Instr ImmExtendShift(unsigned left_shift) {
   3946    VIXL_ASSERT(left_shift <= 4);
   3947    return left_shift << ImmExtendShift_offset;
   3948  }
   3949
   3950  static Instr ImmCondCmp(unsigned imm) {
   3951    VIXL_ASSERT(is_uint5(imm));
   3952    return imm << ImmCondCmp_offset;
   3953  }
   3954
   3955  static Instr Nzcv(StatusFlags nzcv) {
   3956    return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
   3957  }
   3958
   3959  // MemOperand offset encoding.
   3960  static Instr ImmLSUnsigned(int imm12) {
   3961    VIXL_ASSERT(is_uint12(imm12));
   3962    return imm12 << ImmLSUnsigned_offset;
   3963  }
   3964
   3965  static Instr ImmLS(int imm9) {
   3966    VIXL_ASSERT(is_int9(imm9));
   3967    return truncate_to_int9(imm9) << ImmLS_offset;
   3968  }
   3969
   3970  static Instr ImmLSPair(int imm7, unsigned access_size) {
   3971    VIXL_ASSERT(((imm7 >> access_size) << access_size) == imm7);
   3972    int scaled_imm7 = imm7 >> access_size;
   3973    VIXL_ASSERT(is_int7(scaled_imm7));
   3974    return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
   3975  }
   3976
   3977  static Instr ImmShiftLS(unsigned shift_amount) {
   3978    VIXL_ASSERT(is_uint1(shift_amount));
   3979    return shift_amount << ImmShiftLS_offset;
   3980  }
   3981
   3982  static Instr ImmPrefetchOperation(int imm5) {
   3983    VIXL_ASSERT(is_uint5(imm5));
   3984    return imm5 << ImmPrefetchOperation_offset;
   3985  }
   3986
   3987  static Instr ImmException(int imm16) {
   3988    VIXL_ASSERT(is_uint16(imm16));
   3989    return imm16 << ImmException_offset;
   3990  }
   3991
   3992  static Instr ImmSystemRegister(int imm15) {
   3993    VIXL_ASSERT(is_uint15(imm15));
   3994    return imm15 << ImmSystemRegister_offset;
   3995  }
   3996
   3997  static Instr ImmHint(int imm7) {
   3998    VIXL_ASSERT(is_uint7(imm7));
   3999    return imm7 << ImmHint_offset;
   4000  }
   4001
   4002  static Instr CRm(int imm4) {
   4003    VIXL_ASSERT(is_uint4(imm4));
   4004    return imm4 << CRm_offset;
   4005  }
   4006
   4007  static Instr CRn(int imm4) {
   4008    VIXL_ASSERT(is_uint4(imm4));
   4009    return imm4 << CRn_offset;
   4010  }
   4011
   4012  static Instr SysOp(int imm14) {
   4013    VIXL_ASSERT(is_uint14(imm14));
   4014    return imm14 << SysOp_offset;
   4015  }
   4016
   4017  static Instr ImmSysOp1(int imm3) {
   4018    VIXL_ASSERT(is_uint3(imm3));
   4019    return imm3 << SysOp1_offset;
   4020  }
   4021
   4022  static Instr ImmSysOp2(int imm3) {
   4023    VIXL_ASSERT(is_uint3(imm3));
   4024    return imm3 << SysOp2_offset;
   4025  }
   4026
   4027  static Instr ImmBarrierDomain(int imm2) {
   4028    VIXL_ASSERT(is_uint2(imm2));
   4029    return imm2 << ImmBarrierDomain_offset;
   4030  }
   4031
   4032  static Instr ImmBarrierType(int imm2) {
   4033    VIXL_ASSERT(is_uint2(imm2));
   4034    return imm2 << ImmBarrierType_offset;
   4035  }
   4036
   4037  // Move immediates encoding.
   4038  static Instr ImmMoveWide(uint64_t imm) {
   4039    VIXL_ASSERT(is_uint16(imm));
   4040    return static_cast<Instr>(imm << ImmMoveWide_offset);
   4041  }
   4042
   4043  static Instr ShiftMoveWide(int64_t shift) {
   4044    VIXL_ASSERT(is_uint2(shift));
   4045    return static_cast<Instr>(shift << ShiftMoveWide_offset);
   4046  }
   4047
   4048  // FP Immediates.
   4049  static Instr ImmFP32(float imm);
   4050  static Instr ImmFP64(double imm);
   4051
   4052  // FP register type.
   4053  static Instr FPType(FPRegister fd) {
   4054    return fd.Is64Bits() ? FP64 : FP32;
   4055  }
   4056
   4057  static Instr FPScale(unsigned scale) {
   4058    VIXL_ASSERT(is_uint6(scale));
   4059    return scale << FPScale_offset;
   4060  }
   4061
   4062  // Immediate field checking helpers.
   4063  static bool IsImmAddSub(int64_t immediate);
   4064  static bool IsImmConditionalCompare(int64_t immediate);
   4065  static bool IsImmFP32(float imm);
   4066  static bool IsImmFP64(double imm);
   4067  static bool IsImmLogical(uint64_t value,
   4068                           unsigned width,
   4069                           unsigned* n = NULL,
   4070                           unsigned* imm_s = NULL,
   4071                           unsigned* imm_r = NULL);
   4072  static bool IsImmLSPair(int64_t offset, unsigned access_size);
   4073  static bool IsImmLSScaled(int64_t offset, unsigned access_size);
   4074  static bool IsImmLSUnscaled(int64_t offset);
   4075  static bool IsImmMovn(uint64_t imm, unsigned reg_size);
   4076  static bool IsImmMovz(uint64_t imm, unsigned reg_size);
   4077
   4078  // Instruction bits for vector format in data processing operations.
   4079  static Instr VFormat(VRegister vd) {
   4080    if (vd.Is64Bits()) {
   4081      switch (vd.lanes()) {
   4082        case 2: return NEON_2S;
   4083        case 4: return NEON_4H;
   4084        case 8: return NEON_8B;
   4085        default: return 0xffffffff;
   4086      }
   4087    } else {
   4088      VIXL_ASSERT(vd.Is128Bits());
   4089      switch (vd.lanes()) {
   4090        case 2: return NEON_2D;
   4091        case 4: return NEON_4S;
   4092        case 8: return NEON_8H;
   4093        case 16: return NEON_16B;
   4094        default: return 0xffffffff;
   4095      }
   4096    }
   4097  }
   4098
   4099  // Instruction bits for vector format in floating point data processing
   4100  // operations.
   4101  static Instr FPFormat(VRegister vd) {
   4102    if (vd.lanes() == 1) {
   4103      // Floating point scalar formats.
   4104      VIXL_ASSERT(vd.Is32Bits() || vd.Is64Bits());
   4105      return vd.Is64Bits() ? FP64 : FP32;
   4106    }
   4107
   4108    // Two lane floating point vector formats.
   4109    if (vd.lanes() == 2) {
   4110      VIXL_ASSERT(vd.Is64Bits() || vd.Is128Bits());
   4111      return vd.Is128Bits() ? NEON_FP_2D : NEON_FP_2S;
   4112    }
   4113
   4114    // Four lane floating point vector format.
   4115    VIXL_ASSERT((vd.lanes() == 4) && vd.Is128Bits());
   4116    return NEON_FP_4S;
   4117  }
   4118
   4119  // Instruction bits for vector format in load and store operations.
   4120  static Instr LSVFormat(VRegister vd) {
   4121    if (vd.Is64Bits()) {
   4122      switch (vd.lanes()) {
   4123        case 1: return LS_NEON_1D;
   4124        case 2: return LS_NEON_2S;
   4125        case 4: return LS_NEON_4H;
   4126        case 8: return LS_NEON_8B;
   4127        default: return 0xffffffff;
   4128      }
   4129    } else {
   4130      VIXL_ASSERT(vd.Is128Bits());
   4131      switch (vd.lanes()) {
   4132        case 2: return LS_NEON_2D;
   4133        case 4: return LS_NEON_4S;
   4134        case 8: return LS_NEON_8H;
   4135        case 16: return LS_NEON_16B;
   4136        default: return 0xffffffff;
   4137      }
   4138    }
   4139  }
   4140
   4141  // Instruction bits for scalar format in data processing operations.
   4142  static Instr SFormat(VRegister vd) {
   4143    VIXL_ASSERT(vd.lanes() == 1);
   4144    switch (vd.SizeInBytes()) {
   4145      case 1: return NEON_B;
   4146      case 2: return NEON_H;
   4147      case 4: return NEON_S;
   4148      case 8: return NEON_D;
   4149      default: return 0xffffffff;
   4150    }
   4151  }
   4152
   4153  static Instr ImmNEONHLM(int index, int num_bits) {
   4154    int h, l, m;
   4155    if (num_bits == 3) {
   4156      VIXL_ASSERT(is_uint3(index));
   4157      h  = (index >> 2) & 1;
   4158      l  = (index >> 1) & 1;
   4159      m  = (index >> 0) & 1;
   4160    } else if (num_bits == 2) {
   4161      VIXL_ASSERT(is_uint2(index));
   4162      h  = (index >> 1) & 1;
   4163      l  = (index >> 0) & 1;
   4164      m  = 0;
   4165    } else {
   4166      VIXL_ASSERT(is_uint1(index) && (num_bits == 1));
   4167      h  = (index >> 0) & 1;
   4168      l  = 0;
   4169      m  = 0;
   4170    }
   4171    return (h << NEONH_offset) | (l << NEONL_offset) | (m << NEONM_offset);
   4172  }
   4173
   4174  static Instr ImmNEONExt(int imm4) {
   4175    VIXL_ASSERT(is_uint4(imm4));
   4176    return imm4 << ImmNEONExt_offset;
   4177  }
   4178
   4179  static Instr ImmNEON5(Instr format, int index) {
   4180    VIXL_ASSERT(is_uint4(index));
   4181    int s = LaneSizeInBytesLog2FromFormat(static_cast<VectorFormat>(format));
   4182    int imm5 = (index << (s + 1)) | (1 << s);
   4183    return imm5 << ImmNEON5_offset;
   4184  }
   4185
   4186  static Instr ImmNEON4(Instr format, int index) {
   4187    VIXL_ASSERT(is_uint4(index));
   4188    int s = LaneSizeInBytesLog2FromFormat(static_cast<VectorFormat>(format));
   4189    int imm4 = index << s;
   4190    return imm4 << ImmNEON4_offset;
   4191  }
   4192
   4193  static Instr ImmNEONabcdefgh(int imm8) {
   4194    VIXL_ASSERT(is_uint8(imm8));
   4195    Instr instr;
   4196    instr  = ((imm8 >> 5) & 7) << ImmNEONabc_offset;
   4197    instr |= (imm8 & 0x1f) << ImmNEONdefgh_offset;
   4198    return instr;
   4199  }
   4200
   4201  static Instr NEONCmode(int cmode) {
   4202    VIXL_ASSERT(is_uint4(cmode));
   4203    return cmode << NEONCmode_offset;
   4204  }
   4205
   4206  static Instr NEONModImmOp(int op) {
   4207    VIXL_ASSERT(is_uint1(op));
   4208    return op << NEONModImmOp_offset;
   4209  }
   4210
   4211  // Size of the code generated since label to the current position.
   4212  size_t SizeOfCodeGeneratedSince(Label* label) const {
   4213    VIXL_ASSERT(label->IsBound());
   4214    return buffer_->OffsetFrom(label->location());
   4215  }
   4216
   4217  size_t SizeOfCodeGenerated() const {
   4218    return buffer_->CursorOffset();
   4219  }
   4220
   4221  size_t BufferCapacity() const { return buffer_->capacity(); }
   4222
   4223  size_t RemainingBufferSpace() const { return buffer_->RemainingBytes(); }
   4224
   4225  void EnsureSpaceFor(size_t amount) {
   4226    if (buffer_->RemainingBytes() < amount) {
   4227      size_t capacity = buffer_->capacity();
   4228      size_t size = buffer_->CursorOffset();
   4229      do {
   4230        // TODO(all): refine.
   4231        capacity *= 2;
   4232      } while ((capacity - size) <  amount);
   4233      buffer_->Grow(capacity);
   4234    }
   4235  }
   4236
   4237#ifdef VIXL_DEBUG
   4238  void AcquireBuffer() {
   4239    VIXL_ASSERT(buffer_monitor_ >= 0);
   4240    buffer_monitor_++;
   4241  }
   4242
   4243  void ReleaseBuffer() {
   4244    buffer_monitor_--;
   4245    VIXL_ASSERT(buffer_monitor_ >= 0);
   4246  }
   4247#endif
   4248
   4249  PositionIndependentCodeOption pic() const {
   4250    return pic_;
   4251  }
   4252
   4253  bool AllowPageOffsetDependentCode() const {
   4254    return (pic() == PageOffsetDependentCode) ||
   4255           (pic() == PositionDependentCode);
   4256  }
   4257
   4258  static const Register& AppropriateZeroRegFor(const CPURegister& reg) {
   4259    return reg.Is64Bits() ? xzr : wzr;
   4260  }
   4261
   4262
   4263 protected:
   4264  void LoadStore(const CPURegister& rt,
   4265                 const MemOperand& addr,
   4266                 LoadStoreOp op,
   4267                 LoadStoreScalingOption option = PreferScaledOffset);
   4268
   4269  void LoadStorePair(const CPURegister& rt,
   4270                     const CPURegister& rt2,
   4271                     const MemOperand& addr,
   4272                     LoadStorePairOp op);
   4273  void LoadStoreStruct(const VRegister& vt,
   4274                       const MemOperand& addr,
   4275                       NEONLoadStoreMultiStructOp op);
   4276  void LoadStoreStruct1(const VRegister& vt,
   4277                        int reg_count,
   4278                        const MemOperand& addr);
   4279  void LoadStoreStructSingle(const VRegister& vt,
   4280                             uint32_t lane,
   4281                             const MemOperand& addr,
   4282                             NEONLoadStoreSingleStructOp op);
   4283  void LoadStoreStructSingleAllLanes(const VRegister& vt,
   4284                                     const MemOperand& addr,
   4285                                     NEONLoadStoreSingleStructOp op);
   4286  void LoadStoreStructVerify(const VRegister& vt,
   4287                             const MemOperand& addr,
   4288                             Instr op);
   4289
   4290  void Prefetch(PrefetchOperation op,
   4291                const MemOperand& addr,
   4292                LoadStoreScalingOption option = PreferScaledOffset);
   4293
   4294  // TODO(all): The third parameter should be passed by reference but gcc 4.8.2
   4295  // reports a bogus uninitialised warning then.
   4296  void Logical(const Register& rd,
   4297               const Register& rn,
   4298               const Operand operand,
   4299               LogicalOp op);
   4300  void LogicalImmediate(const Register& rd,
   4301                        const Register& rn,
   4302                        unsigned n,
   4303                        unsigned imm_s,
   4304                        unsigned imm_r,
   4305                        LogicalOp op);
   4306
   4307  void ConditionalCompare(const Register& rn,
   4308                          const Operand& operand,
   4309                          StatusFlags nzcv,
   4310                          Condition cond,
   4311                          ConditionalCompareOp op);
   4312
   4313  void AddSubWithCarry(const Register& rd,
   4314                       const Register& rn,
   4315                       const Operand& operand,
   4316                       FlagsUpdate S,
   4317                       AddSubWithCarryOp op);
   4318
   4319
   4320  // Functions for emulating operands not directly supported by the instruction
   4321  // set.
   4322  void EmitShift(const Register& rd,
   4323                 const Register& rn,
   4324                 Shift shift,
   4325                 unsigned amount);
   4326  void EmitExtendShift(const Register& rd,
   4327                       const Register& rn,
   4328                       Extend extend,
   4329                       unsigned left_shift);
   4330
   4331  void AddSub(const Register& rd,
   4332              const Register& rn,
   4333              const Operand& operand,
   4334              FlagsUpdate S,
   4335              AddSubOp op);
   4336
   4337  void NEONTable(const VRegister& vd,
   4338                 const VRegister& vn,
   4339                 const VRegister& vm,
   4340                 NEONTableOp op);
   4341
   4342  // Find an appropriate LoadStoreOp or LoadStorePairOp for the specified
   4343  // registers. Only simple loads are supported; sign- and zero-extension (such
   4344  // as in LDPSW_x or LDRB_w) are not supported.
   4345  static LoadStoreOp LoadOpFor(const CPURegister& rt);
   4346  static LoadStorePairOp LoadPairOpFor(const CPURegister& rt,
   4347                                       const CPURegister& rt2);
   4348  static LoadStoreOp StoreOpFor(const CPURegister& rt);
   4349  static LoadStorePairOp StorePairOpFor(const CPURegister& rt,
   4350                                        const CPURegister& rt2);
   4351  static LoadStorePairNonTemporalOp LoadPairNonTemporalOpFor(
   4352    const CPURegister& rt, const CPURegister& rt2);
   4353  static LoadStorePairNonTemporalOp StorePairNonTemporalOpFor(
   4354    const CPURegister& rt, const CPURegister& rt2);
   4355  static LoadLiteralOp LoadLiteralOpFor(const CPURegister& rt);
   4356
   4357
   4358 private:
   4359  static uint32_t FP32ToImm8(float imm);
   4360  static uint32_t FP64ToImm8(double imm);
   4361
   4362  // Instruction helpers.
   4363  void MoveWide(const Register& rd,
   4364                uint64_t imm,
   4365                int shift,
   4366                MoveWideImmediateOp mov_op);
   4367  void DataProcShiftedRegister(const Register& rd,
   4368                               const Register& rn,
   4369                               const Operand& operand,
   4370                               FlagsUpdate S,
   4371                               Instr op);
   4372  void DataProcExtendedRegister(const Register& rd,
   4373                                const Register& rn,
   4374                                const Operand& operand,
   4375                                FlagsUpdate S,
   4376                                Instr op);
   4377  void LoadStorePairNonTemporal(const CPURegister& rt,
   4378                                const CPURegister& rt2,
   4379                                const MemOperand& addr,
   4380                                LoadStorePairNonTemporalOp op);
   4381  void LoadLiteral(const CPURegister& rt, uint64_t imm, LoadLiteralOp op);
   4382  void ConditionalSelect(const Register& rd,
   4383                         const Register& rn,
   4384                         const Register& rm,
   4385                         Condition cond,
   4386                         ConditionalSelectOp op);
   4387  void DataProcessing1Source(const Register& rd,
   4388                             const Register& rn,
   4389                             DataProcessing1SourceOp op);
   4390  void DataProcessing3Source(const Register& rd,
   4391                             const Register& rn,
   4392                             const Register& rm,
   4393                             const Register& ra,
   4394                             DataProcessing3SourceOp op);
   4395  void FPDataProcessing1Source(const VRegister& fd,
   4396                               const VRegister& fn,
   4397                               FPDataProcessing1SourceOp op);
   4398  void FPDataProcessing3Source(const VRegister& fd,
   4399                               const VRegister& fn,
   4400                               const VRegister& fm,
   4401                               const VRegister& fa,
   4402                               FPDataProcessing3SourceOp op);
   4403  void NEONAcrossLanesL(const VRegister& vd,
   4404                        const VRegister& vn,
   4405                        NEONAcrossLanesOp op);
   4406  void NEONAcrossLanes(const VRegister& vd,
   4407                       const VRegister& vn,
   4408                       NEONAcrossLanesOp op);
   4409  void NEONModifiedImmShiftLsl(const VRegister& vd,
   4410                               const int imm8,
   4411                               const int left_shift,
   4412                               NEONModifiedImmediateOp op);
   4413  void NEONModifiedImmShiftMsl(const VRegister& vd,
   4414                               const int imm8,
   4415                               const int shift_amount,
   4416                               NEONModifiedImmediateOp op);
   4417  void NEONFP2Same(const VRegister& vd,
   4418                   const VRegister& vn,
   4419                   Instr vop);
   4420  void NEON3Same(const VRegister& vd,
   4421                 const VRegister& vn,
   4422                 const VRegister& vm,
   4423                 NEON3SameOp vop);
   4424  void NEONFP3Same(const VRegister& vd,
   4425                   const VRegister& vn,
   4426                   const VRegister& vm,
   4427                   Instr op);
   4428  void NEON3DifferentL(const VRegister& vd,
   4429                       const VRegister& vn,
   4430                       const VRegister& vm,
   4431                       NEON3DifferentOp vop);
   4432  void NEON3DifferentW(const VRegister& vd,
   4433                       const VRegister& vn,
   4434                       const VRegister& vm,
   4435                       NEON3DifferentOp vop);
   4436  void NEON3DifferentHN(const VRegister& vd,
   4437                        const VRegister& vn,
   4438                        const VRegister& vm,
   4439                        NEON3DifferentOp vop);
   4440  void NEONFP2RegMisc(const VRegister& vd,
   4441                      const VRegister& vn,
   4442                      NEON2RegMiscOp vop,
   4443                      double value = 0.0);
   4444  void NEON2RegMisc(const VRegister& vd,
   4445                    const VRegister& vn,
   4446                    NEON2RegMiscOp vop,
   4447                    int value = 0);
   4448  void NEONFP2RegMisc(const VRegister& vd,
   4449                      const VRegister& vn,
   4450                      Instr op);
   4451  void NEONAddlp(const VRegister& vd,
   4452                 const VRegister& vn,
   4453                 NEON2RegMiscOp op);
   4454  void NEONPerm(const VRegister& vd,
   4455                const VRegister& vn,
   4456                const VRegister& vm,
   4457                NEONPermOp op);
   4458  void NEONFPByElement(const VRegister& vd,
   4459                       const VRegister& vn,
   4460                       const VRegister& vm,
   4461                       int vm_index,
   4462                       NEONByIndexedElementOp op);
   4463  void NEONByElement(const VRegister& vd,
   4464                     const VRegister& vn,
   4465                     const VRegister& vm,
   4466                     int vm_index,
   4467                     NEONByIndexedElementOp op);
   4468  void NEONByElementL(const VRegister& vd,
   4469                      const VRegister& vn,
   4470                      const VRegister& vm,
   4471                      int vm_index,
   4472                      NEONByIndexedElementOp op);
   4473  void NEONShiftImmediate(const VRegister& vd,
   4474                          const VRegister& vn,
   4475                          NEONShiftImmediateOp op,
   4476                          int immh_immb);
   4477  void NEONShiftLeftImmediate(const VRegister& vd,
   4478                              const VRegister& vn,
   4479                              int shift,
   4480                              NEONShiftImmediateOp op);
   4481  void NEONShiftRightImmediate(const VRegister& vd,
   4482                               const VRegister& vn,
   4483                               int shift,
   4484                               NEONShiftImmediateOp op);
   4485  void NEONShiftImmediateL(const VRegister& vd,
   4486                           const VRegister& vn,
   4487                           int shift,
   4488                           NEONShiftImmediateOp op);
   4489  void NEONShiftImmediateN(const VRegister& vd,
   4490                           const VRegister& vn,
   4491                           int shift,
   4492                           NEONShiftImmediateOp op);
   4493  void NEONXtn(const VRegister& vd,
   4494               const VRegister& vn,
   4495               NEON2RegMiscOp vop);
   4496
   4497  Instr LoadStoreStructAddrModeField(const MemOperand& addr);
   4498
   4499  // Encode the specified MemOperand for the specified access size and scaling
   4500  // preference.
   4501  Instr LoadStoreMemOperand(const MemOperand& addr,
   4502                            unsigned access_size,
   4503                            LoadStoreScalingOption option);
   4504
   4505  // Link the current (not-yet-emitted) instruction to the specified label, then
   4506  // return an offset to be encoded in the instruction. If the label is not yet
   4507  // bound, an offset of 0 is returned.
   4508  ptrdiff_t LinkAndGetByteOffsetTo(Label * label);
   4509  ptrdiff_t LinkAndGetInstructionOffsetTo(Label * label);
   4510  ptrdiff_t LinkAndGetPageOffsetTo(Label * label);
   4511
   4512  // A common implementation for the LinkAndGet<Type>OffsetTo helpers.
   4513  template <int element_shift>
   4514  ptrdiff_t LinkAndGetOffsetTo(Label* label);
   4515
   4516  // Literal load offset are in words (32-bit).
   4517  ptrdiff_t LinkAndGetWordOffsetTo(RawLiteral* literal);
   4518
   4519  // Emit the instruction in buffer_.
   4520  void Emit(Instr instruction) {
   4521    VIXL_STATIC_ASSERT(sizeof(instruction) == kInstructionSize);
   4522    VIXL_ASSERT(buffer_monitor_ > 0);
   4523    buffer_->Emit32(instruction);
   4524  }
   4525
   4526  // Buffer where the code is emitted.
   4527  CodeBuffer* buffer_;
   4528  PositionIndependentCodeOption pic_;
   4529
   4530#ifdef VIXL_DEBUG
   4531  int64_t buffer_monitor_;
   4532#endif
   4533};
   4534
   4535
   4536// All Assembler emits MUST acquire/release the underlying code buffer. The
   4537// helper scope below will do so and optionally ensure the buffer is big enough
   4538// to receive the emit. It is possible to request the scope not to perform any
   4539// checks (kNoCheck) if for example it is known in advance the buffer size is
   4540// adequate or there is some other size checking mechanism in place.
   4541class CodeBufferCheckScope {
   4542 public:
   4543  // Tell whether or not the scope needs to ensure the associated CodeBuffer
   4544  // has enough space for the requested size.
   4545  enum CheckPolicy {
   4546    kNoCheck,
   4547    kCheck
   4548  };
   4549
   4550  // Tell whether or not the scope should assert the amount of code emitted
   4551  // within the scope is consistent with the requested amount.
   4552  enum AssertPolicy {
   4553    kNoAssert,    // No assert required.
   4554    kExactSize,   // The code emitted must be exactly size bytes.
   4555    kMaximumSize  // The code emitted must be at most size bytes.
   4556  };
   4557
   4558  CodeBufferCheckScope(Assembler* assm,
   4559                       size_t size,
   4560                       CheckPolicy check_policy = kCheck,
   4561                       AssertPolicy assert_policy = kMaximumSize)
   4562      : assm_(assm) {
   4563    if (check_policy == kCheck) assm->EnsureSpaceFor(size);
   4564#ifdef VIXL_DEBUG
   4565    assm->bind(&start_);
   4566    size_ = size;
   4567    assert_policy_ = assert_policy;
   4568    assm->AcquireBuffer();
   4569#else
   4570    USE(assert_policy);
   4571#endif
   4572  }
   4573
   4574  // This is a shortcut for CodeBufferCheckScope(assm, 0, kNoCheck, kNoAssert).
   4575  explicit CodeBufferCheckScope(Assembler* assm) : assm_(assm) {
   4576#ifdef VIXL_DEBUG
   4577    size_ = 0;
   4578    assert_policy_ = kNoAssert;
   4579    assm->AcquireBuffer();
   4580#endif
   4581  }
   4582
   4583  ~CodeBufferCheckScope() {
   4584#ifdef VIXL_DEBUG
   4585    assm_->ReleaseBuffer();
   4586    switch (assert_policy_) {
   4587      case kNoAssert: break;
   4588      case kExactSize:
   4589        VIXL_ASSERT(assm_->SizeOfCodeGeneratedSince(&start_) == size_);
   4590        break;
   4591      case kMaximumSize:
   4592        VIXL_ASSERT(assm_->SizeOfCodeGeneratedSince(&start_) <= size_);
   4593        break;
   4594      default:
   4595        VIXL_UNREACHABLE();
   4596    }
   4597#endif
   4598  }
   4599
   4600 protected:
   4601  Assembler* assm_;
   4602#ifdef VIXL_DEBUG
   4603  Label start_;
   4604  size_t size_;
   4605  AssertPolicy assert_policy_;
   4606#endif
   4607};
   4608
   4609
   4610template <typename T>
   4611void Literal<T>::UpdateValue(T new_value, const Assembler* assembler) {
   4612  return UpdateValue(new_value, assembler->GetStartAddress<uint8_t*>());
   4613}
   4614
   4615
   4616template <typename T>
   4617void Literal<T>::UpdateValue(T high64, T low64, const Assembler* assembler) {
   4618  return UpdateValue(high64, low64, assembler->GetStartAddress<uint8_t*>());
   4619}
   4620
   4621
   4622}  // namespace vixl
   4623
   4624#endif  // VIXL_A64_ASSEMBLER_A64_H_