cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

utils.h (9639B)


      1// Copyright 2015, ARM Limited
      2// All rights reserved.
      3//
      4// Redistribution and use in source and binary forms, with or without
      5// modification, are permitted provided that the following conditions are met:
      6//
      7//   * Redistributions of source code must retain the above copyright notice,
      8//     this list of conditions and the following disclaimer.
      9//   * Redistributions in binary form must reproduce the above copyright notice,
     10//     this list of conditions and the following disclaimer in the documentation
     11//     and/or other materials provided with the distribution.
     12//   * Neither the name of ARM Limited nor the names of its contributors may be
     13//     used to endorse or promote products derived from this software without
     14//     specific prior written permission.
     15//
     16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
     17// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     18// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     19// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
     20// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     22// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
     23// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     25// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26
     27#ifndef VIXL_UTILS_H
     28#define VIXL_UTILS_H
     29
     30#include <cmath>
     31#include <cstring>
     32#include "vixl/globals.h"
     33#include "vixl/compiler-intrinsics.h"
     34
     35namespace vixl {
     36
     37// Macros for compile-time format checking.
     38#if GCC_VERSION_OR_NEWER(4, 4, 0)
     39#define PRINTF_CHECK(format_index, varargs_index) \
     40  __attribute__((format(gnu_printf, format_index, varargs_index)))
     41#else
     42#define PRINTF_CHECK(format_index, varargs_index)
     43#endif
     44
     45// Check number width.
     46inline bool is_intn(unsigned n, int64_t x) {
     47  VIXL_ASSERT((0 < n) && (n < 64));
     48  int64_t limit = INT64_C(1) << (n - 1);
     49  return (-limit <= x) && (x < limit);
     50}
     51
     52inline bool is_uintn(unsigned n, int64_t x) {
     53  VIXL_ASSERT((0 < n) && (n < 64));
     54  return !(x >> n);
     55}
     56
     57inline uint32_t truncate_to_intn(unsigned n, int64_t x) {
     58  VIXL_ASSERT((0 < n) && (n < 64));
     59  return static_cast<uint32_t>(x & ((INT64_C(1) << n) - 1));
     60}
     61
     62#define INT_1_TO_63_LIST(V)                                                    \
     63V(1)  V(2)  V(3)  V(4)  V(5)  V(6)  V(7)  V(8)                                 \
     64V(9)  V(10) V(11) V(12) V(13) V(14) V(15) V(16)                                \
     65V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24)                                \
     66V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32)                                \
     67V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40)                                \
     68V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48)                                \
     69V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56)                                \
     70V(57) V(58) V(59) V(60) V(61) V(62) V(63)
     71
     72#define DECLARE_IS_INT_N(N)                                                    \
     73inline bool is_int##N(int64_t x) { return is_intn(N, x); }
     74#define DECLARE_IS_UINT_N(N)                                                   \
     75inline bool is_uint##N(int64_t x) { return is_uintn(N, x); }
     76#define DECLARE_TRUNCATE_TO_INT_N(N)                                           \
     77inline uint32_t truncate_to_int##N(int x) { return truncate_to_intn(N, x); }
     78INT_1_TO_63_LIST(DECLARE_IS_INT_N)
     79INT_1_TO_63_LIST(DECLARE_IS_UINT_N)
     80INT_1_TO_63_LIST(DECLARE_TRUNCATE_TO_INT_N)
     81#undef DECLARE_IS_INT_N
     82#undef DECLARE_IS_UINT_N
     83#undef DECLARE_TRUNCATE_TO_INT_N
     84
     85// Bit field extraction.
     86inline uint32_t unsigned_bitextract_32(int msb, int lsb, uint32_t x) {
     87  return (x >> lsb) & ((1 << (1 + msb - lsb)) - 1);
     88}
     89
     90inline uint64_t unsigned_bitextract_64(int msb, int lsb, uint64_t x) {
     91  return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1);
     92}
     93
     94inline int32_t signed_bitextract_32(int msb, int lsb, int32_t x) {
     95  return (x << (31 - msb)) >> (lsb + 31 - msb);
     96}
     97
     98inline int64_t signed_bitextract_64(int msb, int lsb, int64_t x) {
     99  return (x << (63 - msb)) >> (lsb + 63 - msb);
    100}
    101
    102// Floating point representation.
    103uint32_t float_to_rawbits(float value);
    104uint64_t double_to_rawbits(double value);
    105float rawbits_to_float(uint32_t bits);
    106double rawbits_to_double(uint64_t bits);
    107
    108uint32_t float_sign(float val);
    109uint32_t float_exp(float val);
    110uint32_t float_mantissa(float val);
    111uint32_t double_sign(double val);
    112uint32_t double_exp(double val);
    113uint64_t double_mantissa(double val);
    114
    115float float_pack(uint32_t sign, uint32_t exp, uint32_t mantissa);
    116double double_pack(uint64_t sign, uint64_t exp, uint64_t mantissa);
    117
    118// An fpclassify() function for 16-bit half-precision floats.
    119int float16classify(float16 value);
    120
    121// NaN tests.
    122inline bool IsSignallingNaN(double num) {
    123  const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
    124  uint64_t raw = double_to_rawbits(num);
    125  if (std::isnan(num) && ((raw & kFP64QuietNaNMask) == 0)) {
    126    return true;
    127  }
    128  return false;
    129}
    130
    131
    132inline bool IsSignallingNaN(float num) {
    133  const uint32_t kFP32QuietNaNMask = 0x00400000;
    134  uint32_t raw = float_to_rawbits(num);
    135  if (std::isnan(num) && ((raw & kFP32QuietNaNMask) == 0)) {
    136    return true;
    137  }
    138  return false;
    139}
    140
    141
    142inline bool IsSignallingNaN(float16 num) {
    143  const uint16_t kFP16QuietNaNMask = 0x0200;
    144  return (float16classify(num) == FP_NAN) &&
    145         ((num & kFP16QuietNaNMask) == 0);
    146}
    147
    148
    149template <typename T>
    150inline bool IsQuietNaN(T num) {
    151  return std::isnan(num) && !IsSignallingNaN(num);
    152}
    153
    154
    155// Convert the NaN in 'num' to a quiet NaN.
    156inline double ToQuietNaN(double num) {
    157  const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
    158  VIXL_ASSERT(std::isnan(num));
    159  return rawbits_to_double(double_to_rawbits(num) | kFP64QuietNaNMask);
    160}
    161
    162
    163inline float ToQuietNaN(float num) {
    164  const uint32_t kFP32QuietNaNMask = 0x00400000;
    165  VIXL_ASSERT(std::isnan(num));
    166  return rawbits_to_float(float_to_rawbits(num) | kFP32QuietNaNMask);
    167}
    168
    169
    170// Fused multiply-add.
    171inline double FusedMultiplyAdd(double op1, double op2, double a) {
    172  return fma(op1, op2, a);
    173}
    174
    175
    176inline float FusedMultiplyAdd(float op1, float op2, float a) {
    177  return fmaf(op1, op2, a);
    178}
    179
    180
    181inline uint64_t LowestSetBit(uint64_t value) {
    182  return value & -value;
    183}
    184
    185
    186template<typename T>
    187inline int HighestSetBitPosition(T value) {
    188  VIXL_ASSERT(value != 0);
    189  return (sizeof(value) * 8 - 1) - CountLeadingZeros(value);
    190}
    191
    192
    193template<typename V>
    194inline int WhichPowerOf2(V value) {
    195  VIXL_ASSERT(IsPowerOf2(value));
    196  return CountTrailingZeros(value);
    197}
    198
    199
    200unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
    201
    202
    203template <typename T>
    204T ReverseBits(T value) {
    205  VIXL_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
    206              (sizeof(value) == 4) || (sizeof(value) == 8));
    207  T result = 0;
    208  for (unsigned i = 0; i < (sizeof(value) * 8); i++) {
    209    result = (result << 1) | (value & 1);
    210    value >>= 1;
    211  }
    212  return result;
    213}
    214
    215
    216template <typename T>
    217T ReverseBytes(T value, int block_bytes_log2) {
    218  VIXL_ASSERT((sizeof(value) == 4) || (sizeof(value) == 8));
    219  VIXL_ASSERT((1U << block_bytes_log2) <= sizeof(value));
    220  // Split the 64-bit value into an 8-bit array, where b[0] is the least
    221  // significant byte, and b[7] is the most significant.
    222  uint8_t bytes[8];
    223  uint64_t mask = UINT64_C(0xff00000000000000);
    224  for (int i = 7; i >= 0; i--) {
    225    bytes[i] = (static_cast<uint64_t>(value) & mask) >> (i * 8);
    226    mask >>= 8;
    227  }
    228
    229  // Permutation tables for REV instructions.
    230  //  permute_table[0] is used by REV16_x, REV16_w
    231  //  permute_table[1] is used by REV32_x, REV_w
    232  //  permute_table[2] is used by REV_x
    233  VIXL_ASSERT((0 < block_bytes_log2) && (block_bytes_log2 < 4));
    234  static const uint8_t permute_table[3][8] = { {6, 7, 4, 5, 2, 3, 0, 1},
    235                                               {4, 5, 6, 7, 0, 1, 2, 3},
    236                                               {0, 1, 2, 3, 4, 5, 6, 7} };
    237  T result = 0;
    238  for (int i = 0; i < 8; i++) {
    239    result <<= 8;
    240    result |= bytes[permute_table[block_bytes_log2 - 1][i]];
    241  }
    242  return result;
    243}
    244
    245
    246// Pointer alignment
    247// TODO: rename/refactor to make it specific to instructions.
    248template<typename T>
    249bool IsWordAligned(T pointer) {
    250  VIXL_ASSERT(sizeof(pointer) == sizeof(intptr_t));   // NOLINT(runtime/sizeof)
    251  return ((intptr_t)(pointer) & 3) == 0;
    252}
    253
    254// Increment a pointer (up to 64 bits) until it has the specified alignment.
    255template<class T>
    256T AlignUp(T pointer, size_t alignment) {
    257  // Use C-style casts to get static_cast behaviour for integral types (T), and
    258  // reinterpret_cast behaviour for other types.
    259
    260  uint64_t pointer_raw = (uint64_t)pointer;
    261  VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));
    262
    263  size_t align_step = (alignment - pointer_raw) % alignment;
    264  VIXL_ASSERT((pointer_raw + align_step) % alignment == 0);
    265
    266  return (T)(pointer_raw + align_step);
    267}
    268
    269// Decrement a pointer (up to 64 bits) until it has the specified alignment.
    270template<class T>
    271T AlignDown(T pointer, size_t alignment) {
    272  // Use C-style casts to get static_cast behaviour for integral types (T), and
    273  // reinterpret_cast behaviour for other types.
    274
    275  uint64_t pointer_raw = (uint64_t)pointer;
    276  VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));
    277
    278  size_t align_step = pointer_raw % alignment;
    279  VIXL_ASSERT((pointer_raw - align_step) % alignment == 0);
    280
    281  return (T)(pointer_raw - align_step);
    282}
    283
    284}  // namespace vixl
    285
    286#endif  // VIXL_UTILS_H