cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

armv7m.c (21680B)


      1/*
      2 * ARMV7M System emulation.
      3 *
      4 * Copyright (c) 2006-2007 CodeSourcery.
      5 * Written by Paul Brook
      6 *
      7 * This code is licensed under the GPL.
      8 */
      9
     10#include "qemu/osdep.h"
     11#include "hw/arm/armv7m.h"
     12#include "qapi/error.h"
     13#include "hw/sysbus.h"
     14#include "hw/arm/boot.h"
     15#include "hw/loader.h"
     16#include "hw/qdev-properties.h"
     17#include "hw/qdev-clock.h"
     18#include "elf.h"
     19#include "sysemu/reset.h"
     20#include "qemu/error-report.h"
     21#include "qemu/module.h"
     22#include "qemu/log.h"
     23#include "target/arm/idau.h"
     24#include "migration/vmstate.h"
     25
     26/* Bitbanded IO.  Each word corresponds to a single bit.  */
     27
     28/* Get the byte address of the real memory for a bitband access.  */
     29static inline hwaddr bitband_addr(BitBandState *s, hwaddr offset)
     30{
     31    return s->base | (offset & 0x1ffffff) >> 5;
     32}
     33
     34static MemTxResult bitband_read(void *opaque, hwaddr offset,
     35                                uint64_t *data, unsigned size, MemTxAttrs attrs)
     36{
     37    BitBandState *s = opaque;
     38    uint8_t buf[4];
     39    MemTxResult res;
     40    int bitpos, bit;
     41    hwaddr addr;
     42
     43    assert(size <= 4);
     44
     45    /* Find address in underlying memory and round down to multiple of size */
     46    addr = bitband_addr(s, offset) & (-size);
     47    res = address_space_read(&s->source_as, addr, attrs, buf, size);
     48    if (res) {
     49        return res;
     50    }
     51    /* Bit position in the N bytes read... */
     52    bitpos = (offset >> 2) & ((size * 8) - 1);
     53    /* ...converted to byte in buffer and bit in byte */
     54    bit = (buf[bitpos >> 3] >> (bitpos & 7)) & 1;
     55    *data = bit;
     56    return MEMTX_OK;
     57}
     58
     59static MemTxResult bitband_write(void *opaque, hwaddr offset, uint64_t value,
     60                                 unsigned size, MemTxAttrs attrs)
     61{
     62    BitBandState *s = opaque;
     63    uint8_t buf[4];
     64    MemTxResult res;
     65    int bitpos, bit;
     66    hwaddr addr;
     67
     68    assert(size <= 4);
     69
     70    /* Find address in underlying memory and round down to multiple of size */
     71    addr = bitband_addr(s, offset) & (-size);
     72    res = address_space_read(&s->source_as, addr, attrs, buf, size);
     73    if (res) {
     74        return res;
     75    }
     76    /* Bit position in the N bytes read... */
     77    bitpos = (offset >> 2) & ((size * 8) - 1);
     78    /* ...converted to byte in buffer and bit in byte */
     79    bit = 1 << (bitpos & 7);
     80    if (value & 1) {
     81        buf[bitpos >> 3] |= bit;
     82    } else {
     83        buf[bitpos >> 3] &= ~bit;
     84    }
     85    return address_space_write(&s->source_as, addr, attrs, buf, size);
     86}
     87
     88static const MemoryRegionOps bitband_ops = {
     89    .read_with_attrs = bitband_read,
     90    .write_with_attrs = bitband_write,
     91    .endianness = DEVICE_NATIVE_ENDIAN,
     92    .impl.min_access_size = 1,
     93    .impl.max_access_size = 4,
     94    .valid.min_access_size = 1,
     95    .valid.max_access_size = 4,
     96};
     97
     98static void bitband_init(Object *obj)
     99{
    100    BitBandState *s = BITBAND(obj);
    101    SysBusDevice *dev = SYS_BUS_DEVICE(obj);
    102
    103    memory_region_init_io(&s->iomem, obj, &bitband_ops, s,
    104                          "bitband", 0x02000000);
    105    sysbus_init_mmio(dev, &s->iomem);
    106}
    107
    108static void bitband_realize(DeviceState *dev, Error **errp)
    109{
    110    BitBandState *s = BITBAND(dev);
    111
    112    if (!s->source_memory) {
    113        error_setg(errp, "source-memory property not set");
    114        return;
    115    }
    116
    117    address_space_init(&s->source_as, s->source_memory, "bitband-source");
    118}
    119
    120/* Board init.  */
    121
    122static const hwaddr bitband_input_addr[ARMV7M_NUM_BITBANDS] = {
    123    0x20000000, 0x40000000
    124};
    125
    126static const hwaddr bitband_output_addr[ARMV7M_NUM_BITBANDS] = {
    127    0x22000000, 0x42000000
    128};
    129
    130static MemTxResult v7m_sysreg_ns_write(void *opaque, hwaddr addr,
    131                                       uint64_t value, unsigned size,
    132                                       MemTxAttrs attrs)
    133{
    134    MemoryRegion *mr = opaque;
    135
    136    if (attrs.secure) {
    137        /* S accesses to the alias act like NS accesses to the real region */
    138        attrs.secure = 0;
    139        return memory_region_dispatch_write(mr, addr, value,
    140                                            size_memop(size) | MO_TE, attrs);
    141    } else {
    142        /* NS attrs are RAZ/WI for privileged, and BusFault for user */
    143        if (attrs.user) {
    144            return MEMTX_ERROR;
    145        }
    146        return MEMTX_OK;
    147    }
    148}
    149
    150static MemTxResult v7m_sysreg_ns_read(void *opaque, hwaddr addr,
    151                                      uint64_t *data, unsigned size,
    152                                      MemTxAttrs attrs)
    153{
    154    MemoryRegion *mr = opaque;
    155
    156    if (attrs.secure) {
    157        /* S accesses to the alias act like NS accesses to the real region */
    158        attrs.secure = 0;
    159        return memory_region_dispatch_read(mr, addr, data,
    160                                           size_memop(size) | MO_TE, attrs);
    161    } else {
    162        /* NS attrs are RAZ/WI for privileged, and BusFault for user */
    163        if (attrs.user) {
    164            return MEMTX_ERROR;
    165        }
    166        *data = 0;
    167        return MEMTX_OK;
    168    }
    169}
    170
    171static const MemoryRegionOps v7m_sysreg_ns_ops = {
    172    .read_with_attrs = v7m_sysreg_ns_read,
    173    .write_with_attrs = v7m_sysreg_ns_write,
    174    .endianness = DEVICE_NATIVE_ENDIAN,
    175};
    176
    177static MemTxResult v7m_systick_write(void *opaque, hwaddr addr,
    178                                     uint64_t value, unsigned size,
    179                                     MemTxAttrs attrs)
    180{
    181    ARMv7MState *s = opaque;
    182    MemoryRegion *mr;
    183
    184    /* Direct the access to the correct systick */
    185    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
    186    return memory_region_dispatch_write(mr, addr, value,
    187                                        size_memop(size) | MO_TE, attrs);
    188}
    189
    190static MemTxResult v7m_systick_read(void *opaque, hwaddr addr,
    191                                    uint64_t *data, unsigned size,
    192                                    MemTxAttrs attrs)
    193{
    194    ARMv7MState *s = opaque;
    195    MemoryRegion *mr;
    196
    197    /* Direct the access to the correct systick */
    198    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
    199    return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE,
    200                                       attrs);
    201}
    202
    203static const MemoryRegionOps v7m_systick_ops = {
    204    .read_with_attrs = v7m_systick_read,
    205    .write_with_attrs = v7m_systick_write,
    206    .endianness = DEVICE_NATIVE_ENDIAN,
    207};
    208
    209/*
    210 * Unassigned portions of the PPB space are RAZ/WI for privileged
    211 * accesses, and fault for non-privileged accesses.
    212 */
    213static MemTxResult ppb_default_read(void *opaque, hwaddr addr,
    214                                    uint64_t *data, unsigned size,
    215                                    MemTxAttrs attrs)
    216{
    217    qemu_log_mask(LOG_UNIMP, "Read of unassigned area of PPB: offset 0x%x\n",
    218                  (uint32_t)addr);
    219    if (attrs.user) {
    220        return MEMTX_ERROR;
    221    }
    222    *data = 0;
    223    return MEMTX_OK;
    224}
    225
    226static MemTxResult ppb_default_write(void *opaque, hwaddr addr,
    227                                     uint64_t value, unsigned size,
    228                                     MemTxAttrs attrs)
    229{
    230    qemu_log_mask(LOG_UNIMP, "Write of unassigned area of PPB: offset 0x%x\n",
    231                  (uint32_t)addr);
    232    if (attrs.user) {
    233        return MEMTX_ERROR;
    234    }
    235    return MEMTX_OK;
    236}
    237
    238static const MemoryRegionOps ppb_default_ops = {
    239    .read_with_attrs = ppb_default_read,
    240    .write_with_attrs = ppb_default_write,
    241    .endianness = DEVICE_NATIVE_ENDIAN,
    242    .valid.min_access_size = 1,
    243    .valid.max_access_size = 8,
    244};
    245
    246static void armv7m_instance_init(Object *obj)
    247{
    248    ARMv7MState *s = ARMV7M(obj);
    249    int i;
    250
    251    /* Can't init the cpu here, we don't yet know which model to use */
    252
    253    memory_region_init(&s->container, obj, "armv7m-container", UINT64_MAX);
    254
    255    object_initialize_child(obj, "nvic", &s->nvic, TYPE_NVIC);
    256    object_property_add_alias(obj, "num-irq",
    257                              OBJECT(&s->nvic), "num-irq");
    258
    259    object_initialize_child(obj, "systick-reg-ns", &s->systick[M_REG_NS],
    260                            TYPE_SYSTICK);
    261    /*
    262     * We can't initialize the secure systick here, as we don't know
    263     * yet if we need it.
    264     */
    265
    266    for (i = 0; i < ARRAY_SIZE(s->bitband); i++) {
    267        object_initialize_child(obj, "bitband[*]", &s->bitband[i],
    268                                TYPE_BITBAND);
    269    }
    270
    271    s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk", NULL, NULL, 0);
    272    s->cpuclk = qdev_init_clock_in(DEVICE(obj), "cpuclk", NULL, NULL, 0);
    273}
    274
    275static void armv7m_realize(DeviceState *dev, Error **errp)
    276{
    277    ARMv7MState *s = ARMV7M(dev);
    278    SysBusDevice *sbd;
    279    Error *err = NULL;
    280    int i;
    281
    282    if (!s->board_memory) {
    283        error_setg(errp, "memory property was not set");
    284        return;
    285    }
    286
    287    memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1);
    288
    289    s->cpu = ARM_CPU(object_new_with_props(s->cpu_type, OBJECT(s), "cpu",
    290                                           &err, NULL));
    291    if (err != NULL) {
    292        error_propagate(errp, err);
    293        return;
    294    }
    295
    296    object_property_set_link(OBJECT(s->cpu), "memory", OBJECT(&s->container),
    297                             &error_abort);
    298    if (object_property_find(OBJECT(s->cpu), "idau")) {
    299        object_property_set_link(OBJECT(s->cpu), "idau", s->idau,
    300                                 &error_abort);
    301    }
    302    if (object_property_find(OBJECT(s->cpu), "init-svtor")) {
    303        if (!object_property_set_uint(OBJECT(s->cpu), "init-svtor",
    304                                      s->init_svtor, errp)) {
    305            return;
    306        }
    307    }
    308    if (object_property_find(OBJECT(s->cpu), "init-nsvtor")) {
    309        if (!object_property_set_uint(OBJECT(s->cpu), "init-nsvtor",
    310                                      s->init_nsvtor, errp)) {
    311            return;
    312        }
    313    }
    314    if (object_property_find(OBJECT(s->cpu), "start-powered-off")) {
    315        if (!object_property_set_bool(OBJECT(s->cpu), "start-powered-off",
    316                                      s->start_powered_off, errp)) {
    317            return;
    318        }
    319    }
    320    if (object_property_find(OBJECT(s->cpu), "vfp")) {
    321        if (!object_property_set_bool(OBJECT(s->cpu), "vfp", s->vfp, errp)) {
    322            return;
    323        }
    324    }
    325    if (object_property_find(OBJECT(s->cpu), "dsp")) {
    326        if (!object_property_set_bool(OBJECT(s->cpu), "dsp", s->dsp, errp)) {
    327            return;
    328        }
    329    }
    330
    331    /*
    332     * Tell the CPU where the NVIC is; it will fail realize if it doesn't
    333     * have one. Similarly, tell the NVIC where its CPU is.
    334     */
    335    s->cpu->env.nvic = &s->nvic;
    336    s->nvic.cpu = s->cpu;
    337
    338    if (!qdev_realize(DEVICE(s->cpu), NULL, errp)) {
    339        return;
    340    }
    341
    342    /* Note that we must realize the NVIC after the CPU */
    343    if (!sysbus_realize(SYS_BUS_DEVICE(&s->nvic), errp)) {
    344        return;
    345    }
    346
    347    /* Alias the NVIC's input and output GPIOs as our own so the board
    348     * code can wire them up. (We do this in realize because the
    349     * NVIC doesn't create the input GPIO array until realize.)
    350     */
    351    qdev_pass_gpios(DEVICE(&s->nvic), dev, NULL);
    352    qdev_pass_gpios(DEVICE(&s->nvic), dev, "SYSRESETREQ");
    353    qdev_pass_gpios(DEVICE(&s->nvic), dev, "NMI");
    354
    355    /*
    356     * We map various devices into the container MR at their architected
    357     * addresses. In particular, we map everything corresponding to the
    358     * "System PPB" space. This is the range from 0xe0000000 to 0xe00fffff
    359     * and includes the NVIC, the System Control Space (system registers),
    360     * the systick timer, and for CPUs with the Security extension an NS
    361     * banked version of all of these.
    362     *
    363     * The default behaviour for unimplemented registers/ranges
    364     * (for instance the Data Watchpoint and Trace unit at 0xe0001000)
    365     * is to RAZ/WI for privileged access and BusFault for non-privileged
    366     * access.
    367     *
    368     * The NVIC and System Control Space (SCS) starts at 0xe000e000
    369     * and looks like this:
    370     *  0x004 - ICTR
    371     *  0x010 - 0xff - systick
    372     *  0x100..0x7ec - NVIC
    373     *  0x7f0..0xcff - Reserved
    374     *  0xd00..0xd3c - SCS registers
    375     *  0xd40..0xeff - Reserved or Not implemented
    376     *  0xf00 - STIR
    377     *
    378     * Some registers within this space are banked between security states.
    379     * In v8M there is a second range 0xe002e000..0xe002efff which is the
    380     * NonSecure alias SCS; secure accesses to this behave like NS accesses
    381     * to the main SCS range, and non-secure accesses (including when
    382     * the security extension is not implemented) are RAZ/WI.
    383     * Note that both the main SCS range and the alias range are defined
    384     * to be exempt from memory attribution (R_BLJT) and so the memory
    385     * transaction attribute always matches the current CPU security
    386     * state (attrs.secure == env->v7m.secure). In the v7m_sysreg_ns_ops
    387     * wrappers we change attrs.secure to indicate the NS access; so
    388     * generally code determining which banked register to use should
    389     * use attrs.secure; code determining actual behaviour of the system
    390     * should use env->v7m.secure.
    391     *
    392     * Within the PPB space, some MRs overlap, and the priority
    393     * of overlapping regions is:
    394     *  - default region (for RAZ/WI and BusFault) : -1
    395     *  - system register regions (provided by the NVIC) : 0
    396     *  - systick : 1
    397     * This is because the systick device is a small block of registers
    398     * in the middle of the other system control registers.
    399     */
    400
    401    memory_region_init_io(&s->defaultmem, OBJECT(s), &ppb_default_ops, s,
    402                          "nvic-default", 0x100000);
    403    memory_region_add_subregion_overlap(&s->container, 0xe0000000,
    404                                        &s->defaultmem, -1);
    405
    406    /* Wire the NVIC up to the CPU */
    407    sbd = SYS_BUS_DEVICE(&s->nvic);
    408    sysbus_connect_irq(sbd, 0,
    409                       qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
    410
    411    memory_region_add_subregion(&s->container, 0xe000e000,
    412                                sysbus_mmio_get_region(sbd, 0));
    413    if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
    414        /* Create the NS alias region for the NVIC sysregs */
    415        memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
    416                              &v7m_sysreg_ns_ops,
    417                              sysbus_mmio_get_region(sbd, 0),
    418                              "nvic_sysregs_ns", 0x1000);
    419        memory_region_add_subregion(&s->container, 0xe002e000,
    420                                    &s->sysreg_ns_mem);
    421    }
    422
    423    /* Create and map the systick devices */
    424    qdev_connect_clock_in(DEVICE(&s->systick[M_REG_NS]), "refclk", s->refclk);
    425    qdev_connect_clock_in(DEVICE(&s->systick[M_REG_NS]), "cpuclk", s->cpuclk);
    426    if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) {
    427        return;
    428    }
    429    sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
    430                       qdev_get_gpio_in_named(DEVICE(&s->nvic),
    431                                              "systick-trigger", M_REG_NS));
    432
    433    if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
    434        /*
    435         * We couldn't init the secure systick device in instance_init
    436         * as we didn't know then if the CPU had the security extensions;
    437         * so we have to do it here.
    438         */
    439        object_initialize_child(OBJECT(dev), "systick-reg-s",
    440                                &s->systick[M_REG_S], TYPE_SYSTICK);
    441        qdev_connect_clock_in(DEVICE(&s->systick[M_REG_S]), "refclk",
    442                              s->refclk);
    443        qdev_connect_clock_in(DEVICE(&s->systick[M_REG_S]), "cpuclk",
    444                              s->cpuclk);
    445
    446        if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) {
    447            return;
    448        }
    449        sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
    450                           qdev_get_gpio_in_named(DEVICE(&s->nvic),
    451                                                  "systick-trigger", M_REG_S));
    452    }
    453
    454    memory_region_init_io(&s->systickmem, OBJECT(s),
    455                          &v7m_systick_ops, s,
    456                          "v7m_systick", 0xe0);
    457
    458    memory_region_add_subregion_overlap(&s->container, 0xe000e010,
    459                                        &s->systickmem, 1);
    460    if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
    461        memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
    462                              &v7m_sysreg_ns_ops, &s->systickmem,
    463                              "v7m_systick_ns", 0xe0);
    464        memory_region_add_subregion_overlap(&s->container, 0xe002e010,
    465                                            &s->systick_ns_mem, 1);
    466    }
    467
    468    /* If the CPU has RAS support, create the RAS register block */
    469    if (cpu_isar_feature(aa32_ras, s->cpu)) {
    470        object_initialize_child(OBJECT(dev), "armv7m-ras",
    471                                &s->ras, TYPE_ARMV7M_RAS);
    472        sbd = SYS_BUS_DEVICE(&s->ras);
    473        if (!sysbus_realize(sbd, errp)) {
    474            return;
    475        }
    476        memory_region_add_subregion_overlap(&s->container, 0xe0005000,
    477                                            sysbus_mmio_get_region(sbd, 0), 1);
    478    }
    479
    480    for (i = 0; i < ARRAY_SIZE(s->bitband); i++) {
    481        if (s->enable_bitband) {
    482            Object *obj = OBJECT(&s->bitband[i]);
    483            SysBusDevice *sbd = SYS_BUS_DEVICE(&s->bitband[i]);
    484
    485            if (!object_property_set_int(obj, "base",
    486                                         bitband_input_addr[i], errp)) {
    487                return;
    488            }
    489            object_property_set_link(obj, "source-memory",
    490                                     OBJECT(s->board_memory), &error_abort);
    491            if (!sysbus_realize(SYS_BUS_DEVICE(obj), errp)) {
    492                return;
    493            }
    494
    495            memory_region_add_subregion(&s->container, bitband_output_addr[i],
    496                                        sysbus_mmio_get_region(sbd, 0));
    497        } else {
    498            object_unparent(OBJECT(&s->bitband[i]));
    499        }
    500    }
    501}
    502
    503static Property armv7m_properties[] = {
    504    DEFINE_PROP_STRING("cpu-type", ARMv7MState, cpu_type),
    505    DEFINE_PROP_LINK("memory", ARMv7MState, board_memory, TYPE_MEMORY_REGION,
    506                     MemoryRegion *),
    507    DEFINE_PROP_LINK("idau", ARMv7MState, idau, TYPE_IDAU_INTERFACE, Object *),
    508    DEFINE_PROP_UINT32("init-svtor", ARMv7MState, init_svtor, 0),
    509    DEFINE_PROP_UINT32("init-nsvtor", ARMv7MState, init_nsvtor, 0),
    510    DEFINE_PROP_BOOL("enable-bitband", ARMv7MState, enable_bitband, false),
    511    DEFINE_PROP_BOOL("start-powered-off", ARMv7MState, start_powered_off,
    512                     false),
    513    DEFINE_PROP_BOOL("vfp", ARMv7MState, vfp, true),
    514    DEFINE_PROP_BOOL("dsp", ARMv7MState, dsp, true),
    515    DEFINE_PROP_END_OF_LIST(),
    516};
    517
    518static const VMStateDescription vmstate_armv7m = {
    519    .name = "armv7m",
    520    .version_id = 1,
    521    .minimum_version_id = 1,
    522    .fields = (VMStateField[]) {
    523        VMSTATE_CLOCK(refclk, SysTickState),
    524        VMSTATE_CLOCK(cpuclk, SysTickState),
    525        VMSTATE_END_OF_LIST()
    526    }
    527};
    528
    529static void armv7m_class_init(ObjectClass *klass, void *data)
    530{
    531    DeviceClass *dc = DEVICE_CLASS(klass);
    532
    533    dc->realize = armv7m_realize;
    534    dc->vmsd = &vmstate_armv7m;
    535    device_class_set_props(dc, armv7m_properties);
    536}
    537
    538static const TypeInfo armv7m_info = {
    539    .name = TYPE_ARMV7M,
    540    .parent = TYPE_SYS_BUS_DEVICE,
    541    .instance_size = sizeof(ARMv7MState),
    542    .instance_init = armv7m_instance_init,
    543    .class_init = armv7m_class_init,
    544};
    545
    546static void armv7m_reset(void *opaque)
    547{
    548    ARMCPU *cpu = opaque;
    549
    550    cpu_reset(CPU(cpu));
    551}
    552
    553void armv7m_load_kernel(ARMCPU *cpu, const char *kernel_filename, int mem_size)
    554{
    555    int image_size;
    556    uint64_t entry;
    557    int big_endian;
    558    AddressSpace *as;
    559    int asidx;
    560    CPUState *cs = CPU(cpu);
    561
    562#ifdef TARGET_WORDS_BIGENDIAN
    563    big_endian = 1;
    564#else
    565    big_endian = 0;
    566#endif
    567
    568    if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
    569        asidx = ARMASIdx_S;
    570    } else {
    571        asidx = ARMASIdx_NS;
    572    }
    573    as = cpu_get_address_space(cs, asidx);
    574
    575    if (kernel_filename) {
    576        image_size = load_elf_as(kernel_filename, NULL, NULL, NULL,
    577                                 &entry, NULL, NULL,
    578                                 NULL, big_endian, EM_ARM, 1, 0, as);
    579        if (image_size < 0) {
    580            image_size = load_image_targphys_as(kernel_filename, 0,
    581                                                mem_size, as);
    582        }
    583        if (image_size < 0) {
    584            error_report("Could not load kernel '%s'", kernel_filename);
    585            exit(1);
    586        }
    587    }
    588
    589    /* CPU objects (unlike devices) are not automatically reset on system
    590     * reset, so we must always register a handler to do so. Unlike
    591     * A-profile CPUs, we don't need to do anything special in the
    592     * handler to arrange that it starts correctly.
    593     * This is arguably the wrong place to do this, but it matches the
    594     * way A-profile does it. Note that this means that every M profile
    595     * board must call this function!
    596     */
    597    qemu_register_reset(armv7m_reset, cpu);
    598}
    599
    600static Property bitband_properties[] = {
    601    DEFINE_PROP_UINT32("base", BitBandState, base, 0),
    602    DEFINE_PROP_LINK("source-memory", BitBandState, source_memory,
    603                     TYPE_MEMORY_REGION, MemoryRegion *),
    604    DEFINE_PROP_END_OF_LIST(),
    605};
    606
    607static void bitband_class_init(ObjectClass *klass, void *data)
    608{
    609    DeviceClass *dc = DEVICE_CLASS(klass);
    610
    611    dc->realize = bitband_realize;
    612    device_class_set_props(dc, bitband_properties);
    613}
    614
    615static const TypeInfo bitband_info = {
    616    .name          = TYPE_BITBAND,
    617    .parent        = TYPE_SYS_BUS_DEVICE,
    618    .instance_size = sizeof(BitBandState),
    619    .instance_init = bitband_init,
    620    .class_init    = bitband_class_init,
    621};
    622
    623static void armv7m_register_types(void)
    624{
    625    type_register_static(&bitband_info);
    626    type_register_static(&armv7m_info);
    627}
    628
    629type_init(armv7m_register_types)