cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

boot.c (46824B)


      1/*
      2 * ARM kernel loader.
      3 *
      4 * Copyright (c) 2006-2007 CodeSourcery.
      5 * Written by Paul Brook
      6 *
      7 * This code is licensed under the GPL.
      8 */
      9
     10#include "qemu/osdep.h"
     11#include "qemu-common.h"
     12#include "qemu/datadir.h"
     13#include "qemu/error-report.h"
     14#include "qapi/error.h"
     15#include <libfdt.h>
     16#include "hw/arm/boot.h"
     17#include "hw/arm/linux-boot-if.h"
     18#include "sysemu/kvm.h"
     19#include "sysemu/sysemu.h"
     20#include "sysemu/numa.h"
     21#include "hw/boards.h"
     22#include "sysemu/reset.h"
     23#include "hw/loader.h"
     24#include "elf.h"
     25#include "sysemu/device_tree.h"
     26#include "qemu/config-file.h"
     27#include "qemu/option.h"
     28#include "qemu/units.h"
     29
     30/* Kernel boot protocol is specified in the kernel docs
     31 * Documentation/arm/Booting and Documentation/arm64/booting.txt
     32 * They have different preferred image load offsets from system RAM base.
     33 */
     34#define KERNEL_ARGS_ADDR   0x100
     35#define KERNEL_NOLOAD_ADDR 0x02000000
     36#define KERNEL_LOAD_ADDR   0x00010000
     37#define KERNEL64_LOAD_ADDR 0x00080000
     38
     39#define ARM64_TEXT_OFFSET_OFFSET    8
     40#define ARM64_MAGIC_OFFSET          56
     41
     42#define BOOTLOADER_MAX_SIZE         (4 * KiB)
     43
     44AddressSpace *arm_boot_address_space(ARMCPU *cpu,
     45                                     const struct arm_boot_info *info)
     46{
     47    /* Return the address space to use for bootloader reads and writes.
     48     * We prefer the secure address space if the CPU has it and we're
     49     * going to boot the guest into it.
     50     */
     51    int asidx;
     52    CPUState *cs = CPU(cpu);
     53
     54    if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
     55        asidx = ARMASIdx_S;
     56    } else {
     57        asidx = ARMASIdx_NS;
     58    }
     59
     60    return cpu_get_address_space(cs, asidx);
     61}
     62
     63typedef enum {
     64    FIXUP_NONE = 0,     /* do nothing */
     65    FIXUP_TERMINATOR,   /* end of insns */
     66    FIXUP_BOARDID,      /* overwrite with board ID number */
     67    FIXUP_BOARD_SETUP,  /* overwrite with board specific setup code address */
     68    FIXUP_ARGPTR_LO,    /* overwrite with pointer to kernel args */
     69    FIXUP_ARGPTR_HI,    /* overwrite with pointer to kernel args (high half) */
     70    FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
     71    FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
     72    FIXUP_GIC_CPU_IF,   /* overwrite with GIC CPU interface address */
     73    FIXUP_BOOTREG,      /* overwrite with boot register address */
     74    FIXUP_DSB,          /* overwrite with correct DSB insn for cpu */
     75    FIXUP_MAX,
     76} FixupType;
     77
     78typedef struct ARMInsnFixup {
     79    uint32_t insn;
     80    FixupType fixup;
     81} ARMInsnFixup;
     82
     83static const ARMInsnFixup bootloader_aarch64[] = {
     84    { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
     85    { 0xaa1f03e1 }, /* mov x1, xzr */
     86    { 0xaa1f03e2 }, /* mov x2, xzr */
     87    { 0xaa1f03e3 }, /* mov x3, xzr */
     88    { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
     89    { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
     90    { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
     91    { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
     92    { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
     93    { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
     94    { 0, FIXUP_TERMINATOR }
     95};
     96
     97/* A very small bootloader: call the board-setup code (if needed),
     98 * set r0-r2, then jump to the kernel.
     99 * If we're not calling boot setup code then we don't copy across
    100 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
    101 */
    102
    103static const ARMInsnFixup bootloader[] = {
    104    { 0xe28fe004 }, /* add     lr, pc, #4 */
    105    { 0xe51ff004 }, /* ldr     pc, [pc, #-4] */
    106    { 0, FIXUP_BOARD_SETUP },
    107#define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
    108    { 0xe3a00000 }, /* mov     r0, #0 */
    109    { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
    110    { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
    111    { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
    112    { 0, FIXUP_BOARDID },
    113    { 0, FIXUP_ARGPTR_LO },
    114    { 0, FIXUP_ENTRYPOINT_LO },
    115    { 0, FIXUP_TERMINATOR }
    116};
    117
    118/* Handling for secondary CPU boot in a multicore system.
    119 * Unlike the uniprocessor/primary CPU boot, this is platform
    120 * dependent. The default code here is based on the secondary
    121 * CPU boot protocol used on realview/vexpress boards, with
    122 * some parameterisation to increase its flexibility.
    123 * QEMU platform models for which this code is not appropriate
    124 * should override write_secondary_boot and secondary_cpu_reset_hook
    125 * instead.
    126 *
    127 * This code enables the interrupt controllers for the secondary
    128 * CPUs and then puts all the secondary CPUs into a loop waiting
    129 * for an interprocessor interrupt and polling a configurable
    130 * location for the kernel secondary CPU entry point.
    131 */
    132#define DSB_INSN 0xf57ff04f
    133#define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
    134
    135static const ARMInsnFixup smpboot[] = {
    136    { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
    137    { 0xe59f0028 }, /* ldr r0, bootreg_addr */
    138    { 0xe3a01001 }, /* mov r1, #1 */
    139    { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
    140    { 0xe3a010ff }, /* mov r1, #0xff */
    141    { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
    142    { 0, FIXUP_DSB },   /* dsb */
    143    { 0xe320f003 }, /* wfi */
    144    { 0xe5901000 }, /* ldr     r1, [r0] */
    145    { 0xe1110001 }, /* tst     r1, r1 */
    146    { 0x0afffffb }, /* beq     <wfi> */
    147    { 0xe12fff11 }, /* bx      r1 */
    148    { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
    149    { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
    150    { 0, FIXUP_TERMINATOR }
    151};
    152
    153static void write_bootloader(const char *name, hwaddr addr,
    154                             const ARMInsnFixup *insns, uint32_t *fixupcontext,
    155                             AddressSpace *as)
    156{
    157    /* Fix up the specified bootloader fragment and write it into
    158     * guest memory using rom_add_blob_fixed(). fixupcontext is
    159     * an array giving the values to write in for the fixup types
    160     * which write a value into the code array.
    161     */
    162    int i, len;
    163    uint32_t *code;
    164
    165    len = 0;
    166    while (insns[len].fixup != FIXUP_TERMINATOR) {
    167        len++;
    168    }
    169
    170    code = g_new0(uint32_t, len);
    171
    172    for (i = 0; i < len; i++) {
    173        uint32_t insn = insns[i].insn;
    174        FixupType fixup = insns[i].fixup;
    175
    176        switch (fixup) {
    177        case FIXUP_NONE:
    178            break;
    179        case FIXUP_BOARDID:
    180        case FIXUP_BOARD_SETUP:
    181        case FIXUP_ARGPTR_LO:
    182        case FIXUP_ARGPTR_HI:
    183        case FIXUP_ENTRYPOINT_LO:
    184        case FIXUP_ENTRYPOINT_HI:
    185        case FIXUP_GIC_CPU_IF:
    186        case FIXUP_BOOTREG:
    187        case FIXUP_DSB:
    188            insn = fixupcontext[fixup];
    189            break;
    190        default:
    191            abort();
    192        }
    193        code[i] = tswap32(insn);
    194    }
    195
    196    assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
    197
    198    rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
    199
    200    g_free(code);
    201}
    202
    203static void default_write_secondary(ARMCPU *cpu,
    204                                    const struct arm_boot_info *info)
    205{
    206    uint32_t fixupcontext[FIXUP_MAX];
    207    AddressSpace *as = arm_boot_address_space(cpu, info);
    208
    209    fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
    210    fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
    211    if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
    212        fixupcontext[FIXUP_DSB] = DSB_INSN;
    213    } else {
    214        fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
    215    }
    216
    217    write_bootloader("smpboot", info->smp_loader_start,
    218                     smpboot, fixupcontext, as);
    219}
    220
    221void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
    222                                            const struct arm_boot_info *info,
    223                                            hwaddr mvbar_addr)
    224{
    225    AddressSpace *as = arm_boot_address_space(cpu, info);
    226    int n;
    227    uint32_t mvbar_blob[] = {
    228        /* mvbar_addr: secure monitor vectors
    229         * Default unimplemented and unused vectors to spin. Makes it
    230         * easier to debug (as opposed to the CPU running away).
    231         */
    232        0xeafffffe, /* (spin) */
    233        0xeafffffe, /* (spin) */
    234        0xe1b0f00e, /* movs pc, lr ;SMC exception return */
    235        0xeafffffe, /* (spin) */
    236        0xeafffffe, /* (spin) */
    237        0xeafffffe, /* (spin) */
    238        0xeafffffe, /* (spin) */
    239        0xeafffffe, /* (spin) */
    240    };
    241    uint32_t board_setup_blob[] = {
    242        /* board setup addr */
    243        0xee110f51, /* mrc     p15, 0, r0, c1, c1, 2  ;read NSACR */
    244        0xe3800b03, /* orr     r0, #0xc00             ;set CP11, CP10 */
    245        0xee010f51, /* mcr     p15, 0, r0, c1, c1, 2  ;write NSACR */
    246        0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
    247        0xee0c0f30, /* mcr     p15, 0, r0, c12, c0, 1 ;set MVBAR */
    248        0xee110f11, /* mrc     p15, 0, r0, c1 , c1, 0 ;read SCR */
    249        0xe3800031, /* orr     r0, #0x31              ;enable AW, FW, NS */
    250        0xee010f11, /* mcr     p15, 0, r0, c1, c1, 0  ;write SCR */
    251        0xe1a0100e, /* mov     r1, lr                 ;save LR across SMC */
    252        0xe1600070, /* smc     #0                     ;call monitor to flush SCR */
    253        0xe1a0f001, /* mov     pc, r1                 ;return */
    254    };
    255
    256    /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
    257    assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
    258
    259    /* check that these blobs don't overlap */
    260    assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
    261          || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
    262
    263    for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
    264        mvbar_blob[n] = tswap32(mvbar_blob[n]);
    265    }
    266    rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
    267                          mvbar_addr, as);
    268
    269    for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
    270        board_setup_blob[n] = tswap32(board_setup_blob[n]);
    271    }
    272    rom_add_blob_fixed_as("board-setup", board_setup_blob,
    273                          sizeof(board_setup_blob), info->board_setup_addr, as);
    274}
    275
    276static void default_reset_secondary(ARMCPU *cpu,
    277                                    const struct arm_boot_info *info)
    278{
    279    AddressSpace *as = arm_boot_address_space(cpu, info);
    280    CPUState *cs = CPU(cpu);
    281
    282    address_space_stl_notdirty(as, info->smp_bootreg_addr,
    283                               0, MEMTXATTRS_UNSPECIFIED, NULL);
    284    cpu_set_pc(cs, info->smp_loader_start);
    285}
    286
    287static inline bool have_dtb(const struct arm_boot_info *info)
    288{
    289    return info->dtb_filename || info->get_dtb;
    290}
    291
    292#define WRITE_WORD(p, value) do { \
    293    address_space_stl_notdirty(as, p, value, \
    294                               MEMTXATTRS_UNSPECIFIED, NULL);  \
    295    p += 4;                       \
    296} while (0)
    297
    298static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
    299{
    300    int initrd_size = info->initrd_size;
    301    hwaddr base = info->loader_start;
    302    hwaddr p;
    303
    304    p = base + KERNEL_ARGS_ADDR;
    305    /* ATAG_CORE */
    306    WRITE_WORD(p, 5);
    307    WRITE_WORD(p, 0x54410001);
    308    WRITE_WORD(p, 1);
    309    WRITE_WORD(p, 0x1000);
    310    WRITE_WORD(p, 0);
    311    /* ATAG_MEM */
    312    /* TODO: handle multiple chips on one ATAG list */
    313    WRITE_WORD(p, 4);
    314    WRITE_WORD(p, 0x54410002);
    315    WRITE_WORD(p, info->ram_size);
    316    WRITE_WORD(p, info->loader_start);
    317    if (initrd_size) {
    318        /* ATAG_INITRD2 */
    319        WRITE_WORD(p, 4);
    320        WRITE_WORD(p, 0x54420005);
    321        WRITE_WORD(p, info->initrd_start);
    322        WRITE_WORD(p, initrd_size);
    323    }
    324    if (info->kernel_cmdline && *info->kernel_cmdline) {
    325        /* ATAG_CMDLINE */
    326        int cmdline_size;
    327
    328        cmdline_size = strlen(info->kernel_cmdline);
    329        address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
    330                            info->kernel_cmdline, cmdline_size + 1);
    331        cmdline_size = (cmdline_size >> 2) + 1;
    332        WRITE_WORD(p, cmdline_size + 2);
    333        WRITE_WORD(p, 0x54410009);
    334        p += cmdline_size * 4;
    335    }
    336    if (info->atag_board) {
    337        /* ATAG_BOARD */
    338        int atag_board_len;
    339        uint8_t atag_board_buf[0x1000];
    340
    341        atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
    342        WRITE_WORD(p, (atag_board_len + 8) >> 2);
    343        WRITE_WORD(p, 0x414f4d50);
    344        address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
    345                            atag_board_buf, atag_board_len);
    346        p += atag_board_len;
    347    }
    348    /* ATAG_END */
    349    WRITE_WORD(p, 0);
    350    WRITE_WORD(p, 0);
    351}
    352
    353static void set_kernel_args_old(const struct arm_boot_info *info,
    354                                AddressSpace *as)
    355{
    356    hwaddr p;
    357    const char *s;
    358    int initrd_size = info->initrd_size;
    359    hwaddr base = info->loader_start;
    360
    361    /* see linux/include/asm-arm/setup.h */
    362    p = base + KERNEL_ARGS_ADDR;
    363    /* page_size */
    364    WRITE_WORD(p, 4096);
    365    /* nr_pages */
    366    WRITE_WORD(p, info->ram_size / 4096);
    367    /* ramdisk_size */
    368    WRITE_WORD(p, 0);
    369#define FLAG_READONLY	1
    370#define FLAG_RDLOAD	4
    371#define FLAG_RDPROMPT	8
    372    /* flags */
    373    WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
    374    /* rootdev */
    375    WRITE_WORD(p, (31 << 8) | 0);	/* /dev/mtdblock0 */
    376    /* video_num_cols */
    377    WRITE_WORD(p, 0);
    378    /* video_num_rows */
    379    WRITE_WORD(p, 0);
    380    /* video_x */
    381    WRITE_WORD(p, 0);
    382    /* video_y */
    383    WRITE_WORD(p, 0);
    384    /* memc_control_reg */
    385    WRITE_WORD(p, 0);
    386    /* unsigned char sounddefault */
    387    /* unsigned char adfsdrives */
    388    /* unsigned char bytes_per_char_h */
    389    /* unsigned char bytes_per_char_v */
    390    WRITE_WORD(p, 0);
    391    /* pages_in_bank[4] */
    392    WRITE_WORD(p, 0);
    393    WRITE_WORD(p, 0);
    394    WRITE_WORD(p, 0);
    395    WRITE_WORD(p, 0);
    396    /* pages_in_vram */
    397    WRITE_WORD(p, 0);
    398    /* initrd_start */
    399    if (initrd_size) {
    400        WRITE_WORD(p, info->initrd_start);
    401    } else {
    402        WRITE_WORD(p, 0);
    403    }
    404    /* initrd_size */
    405    WRITE_WORD(p, initrd_size);
    406    /* rd_start */
    407    WRITE_WORD(p, 0);
    408    /* system_rev */
    409    WRITE_WORD(p, 0);
    410    /* system_serial_low */
    411    WRITE_WORD(p, 0);
    412    /* system_serial_high */
    413    WRITE_WORD(p, 0);
    414    /* mem_fclk_21285 */
    415    WRITE_WORD(p, 0);
    416    /* zero unused fields */
    417    while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
    418        WRITE_WORD(p, 0);
    419    }
    420    s = info->kernel_cmdline;
    421    if (s) {
    422        address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, s, strlen(s) + 1);
    423    } else {
    424        WRITE_WORD(p, 0);
    425    }
    426}
    427
    428static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
    429                               uint32_t scells, hwaddr mem_len,
    430                               int numa_node_id)
    431{
    432    char *nodename;
    433    int ret;
    434
    435    nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
    436    qemu_fdt_add_subnode(fdt, nodename);
    437    qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
    438    ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
    439                                       scells, mem_len);
    440    if (ret < 0) {
    441        goto out;
    442    }
    443
    444    /* only set the NUMA ID if it is specified */
    445    if (numa_node_id >= 0) {
    446        ret = qemu_fdt_setprop_cell(fdt, nodename,
    447                                    "numa-node-id", numa_node_id);
    448    }
    449out:
    450    g_free(nodename);
    451    return ret;
    452}
    453
    454static void fdt_add_psci_node(void *fdt)
    455{
    456    uint32_t cpu_suspend_fn;
    457    uint32_t cpu_off_fn;
    458    uint32_t cpu_on_fn;
    459    uint32_t migrate_fn;
    460    ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
    461    const char *psci_method;
    462    int64_t psci_conduit;
    463    int rc;
    464
    465    psci_conduit = object_property_get_int(OBJECT(armcpu),
    466                                           "psci-conduit",
    467                                           &error_abort);
    468    switch (psci_conduit) {
    469    case QEMU_PSCI_CONDUIT_DISABLED:
    470        return;
    471    case QEMU_PSCI_CONDUIT_HVC:
    472        psci_method = "hvc";
    473        break;
    474    case QEMU_PSCI_CONDUIT_SMC:
    475        psci_method = "smc";
    476        break;
    477    default:
    478        g_assert_not_reached();
    479    }
    480
    481    /*
    482     * If /psci node is present in provided DTB, assume that no fixup
    483     * is necessary and all PSCI configuration should be taken as-is
    484     */
    485    rc = fdt_path_offset(fdt, "/psci");
    486    if (rc >= 0) {
    487        return;
    488    }
    489
    490    qemu_fdt_add_subnode(fdt, "/psci");
    491    if (armcpu->psci_version == 2) {
    492        const char comp[] = "arm,psci-0.2\0arm,psci";
    493        qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
    494
    495        cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
    496        if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
    497            cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
    498            cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
    499            migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
    500        } else {
    501            cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
    502            cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
    503            migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
    504        }
    505    } else {
    506        qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
    507
    508        cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
    509        cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
    510        cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
    511        migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
    512    }
    513
    514    /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
    515     * to the instruction that should be used to invoke PSCI functions.
    516     * However, the device tree binding uses 'method' instead, so that is
    517     * what we should use here.
    518     */
    519    qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
    520
    521    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
    522    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
    523    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
    524    qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
    525}
    526
    527int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
    528                 hwaddr addr_limit, AddressSpace *as, MachineState *ms)
    529{
    530    void *fdt = NULL;
    531    int size, rc, n = 0;
    532    uint32_t acells, scells;
    533    unsigned int i;
    534    hwaddr mem_base, mem_len;
    535    char **node_path;
    536    Error *err = NULL;
    537
    538    if (binfo->dtb_filename) {
    539        char *filename;
    540        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
    541        if (!filename) {
    542            fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
    543            goto fail;
    544        }
    545
    546        fdt = load_device_tree(filename, &size);
    547        if (!fdt) {
    548            fprintf(stderr, "Couldn't open dtb file %s\n", filename);
    549            g_free(filename);
    550            goto fail;
    551        }
    552        g_free(filename);
    553    } else {
    554        fdt = binfo->get_dtb(binfo, &size);
    555        if (!fdt) {
    556            fprintf(stderr, "Board was unable to create a dtb blob\n");
    557            goto fail;
    558        }
    559    }
    560
    561    if (addr_limit > addr && size > (addr_limit - addr)) {
    562        /* Installing the device tree blob at addr would exceed addr_limit.
    563         * Whether this constitutes failure is up to the caller to decide,
    564         * so just return 0 as size, i.e., no error.
    565         */
    566        g_free(fdt);
    567        return 0;
    568    }
    569
    570    acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
    571                                   NULL, &error_fatal);
    572    scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
    573                                   NULL, &error_fatal);
    574    if (acells == 0 || scells == 0) {
    575        fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
    576        goto fail;
    577    }
    578
    579    if (scells < 2 && binfo->ram_size >= 4 * GiB) {
    580        /* This is user error so deserves a friendlier error message
    581         * than the failure of setprop_sized_cells would provide
    582         */
    583        fprintf(stderr, "qemu: dtb file not compatible with "
    584                "RAM size > 4GB\n");
    585        goto fail;
    586    }
    587
    588    /* nop all root nodes matching /memory or /memory@unit-address */
    589    node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
    590    if (err) {
    591        error_report_err(err);
    592        goto fail;
    593    }
    594    while (node_path[n]) {
    595        if (g_str_has_prefix(node_path[n], "/memory")) {
    596            qemu_fdt_nop_node(fdt, node_path[n]);
    597        }
    598        n++;
    599    }
    600    g_strfreev(node_path);
    601
    602    if (ms->numa_state != NULL && ms->numa_state->num_nodes > 0) {
    603        mem_base = binfo->loader_start;
    604        for (i = 0; i < ms->numa_state->num_nodes; i++) {
    605            mem_len = ms->numa_state->nodes[i].node_mem;
    606            rc = fdt_add_memory_node(fdt, acells, mem_base,
    607                                     scells, mem_len, i);
    608            if (rc < 0) {
    609                fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
    610                        mem_base);
    611                goto fail;
    612            }
    613
    614            mem_base += mem_len;
    615        }
    616    } else {
    617        rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
    618                                 scells, binfo->ram_size, -1);
    619        if (rc < 0) {
    620            fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
    621                    binfo->loader_start);
    622            goto fail;
    623        }
    624    }
    625
    626    rc = fdt_path_offset(fdt, "/chosen");
    627    if (rc < 0) {
    628        qemu_fdt_add_subnode(fdt, "/chosen");
    629    }
    630
    631    if (ms->kernel_cmdline && *ms->kernel_cmdline) {
    632        rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
    633                                     ms->kernel_cmdline);
    634        if (rc < 0) {
    635            fprintf(stderr, "couldn't set /chosen/bootargs\n");
    636            goto fail;
    637        }
    638    }
    639
    640    if (binfo->initrd_size) {
    641        rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
    642                                   binfo->initrd_start);
    643        if (rc < 0) {
    644            fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
    645            goto fail;
    646        }
    647
    648        rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
    649                                   binfo->initrd_start + binfo->initrd_size);
    650        if (rc < 0) {
    651            fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
    652            goto fail;
    653        }
    654    }
    655
    656    fdt_add_psci_node(fdt);
    657
    658    if (binfo->modify_dtb) {
    659        binfo->modify_dtb(binfo, fdt);
    660    }
    661
    662    qemu_fdt_dumpdtb(fdt, size);
    663
    664    /* Put the DTB into the memory map as a ROM image: this will ensure
    665     * the DTB is copied again upon reset, even if addr points into RAM.
    666     */
    667    rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
    668
    669    g_free(fdt);
    670
    671    return size;
    672
    673fail:
    674    g_free(fdt);
    675    return -1;
    676}
    677
    678static void do_cpu_reset(void *opaque)
    679{
    680    ARMCPU *cpu = opaque;
    681    CPUState *cs = CPU(cpu);
    682    CPUARMState *env = &cpu->env;
    683    const struct arm_boot_info *info = env->boot_info;
    684
    685    cpu_reset(cs);
    686    if (info) {
    687        if (!info->is_linux) {
    688            int i;
    689            /* Jump to the entry point.  */
    690            uint64_t entry = info->entry;
    691
    692            switch (info->endianness) {
    693            case ARM_ENDIANNESS_LE:
    694                env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
    695                for (i = 1; i < 4; ++i) {
    696                    env->cp15.sctlr_el[i] &= ~SCTLR_EE;
    697                }
    698                env->uncached_cpsr &= ~CPSR_E;
    699                break;
    700            case ARM_ENDIANNESS_BE8:
    701                env->cp15.sctlr_el[1] |= SCTLR_E0E;
    702                for (i = 1; i < 4; ++i) {
    703                    env->cp15.sctlr_el[i] |= SCTLR_EE;
    704                }
    705                env->uncached_cpsr |= CPSR_E;
    706                break;
    707            case ARM_ENDIANNESS_BE32:
    708                env->cp15.sctlr_el[1] |= SCTLR_B;
    709                break;
    710            case ARM_ENDIANNESS_UNKNOWN:
    711                break; /* Board's decision */
    712            default:
    713                g_assert_not_reached();
    714            }
    715
    716            cpu_set_pc(cs, entry);
    717        } else {
    718            /* If we are booting Linux then we need to check whether we are
    719             * booting into secure or non-secure state and adjust the state
    720             * accordingly.  Out of reset, ARM is defined to be in secure state
    721             * (SCR.NS = 0), we change that here if non-secure boot has been
    722             * requested.
    723             */
    724            if (arm_feature(env, ARM_FEATURE_EL3)) {
    725                /* AArch64 is defined to come out of reset into EL3 if enabled.
    726                 * If we are booting Linux then we need to adjust our EL as
    727                 * Linux expects us to be in EL2 or EL1.  AArch32 resets into
    728                 * SVC, which Linux expects, so no privilege/exception level to
    729                 * adjust.
    730                 */
    731                if (env->aarch64) {
    732                    env->cp15.scr_el3 |= SCR_RW;
    733                    if (arm_feature(env, ARM_FEATURE_EL2)) {
    734                        env->cp15.hcr_el2 |= HCR_RW;
    735                        env->pstate = PSTATE_MODE_EL2h;
    736                    } else {
    737                        env->pstate = PSTATE_MODE_EL1h;
    738                    }
    739                    if (cpu_isar_feature(aa64_pauth, cpu)) {
    740                        env->cp15.scr_el3 |= SCR_API | SCR_APK;
    741                    }
    742                    if (cpu_isar_feature(aa64_mte, cpu)) {
    743                        env->cp15.scr_el3 |= SCR_ATA;
    744                    }
    745                    if (cpu_isar_feature(aa64_sve, cpu)) {
    746                        env->cp15.cptr_el[3] |= CPTR_EZ;
    747                    }
    748                    /* AArch64 kernels never boot in secure mode */
    749                    assert(!info->secure_boot);
    750                    /* This hook is only supported for AArch32 currently:
    751                     * bootloader_aarch64[] will not call the hook, and
    752                     * the code above has already dropped us into EL2 or EL1.
    753                     */
    754                    assert(!info->secure_board_setup);
    755                }
    756
    757                if (arm_feature(env, ARM_FEATURE_EL2)) {
    758                    /* If we have EL2 then Linux expects the HVC insn to work */
    759                    env->cp15.scr_el3 |= SCR_HCE;
    760                }
    761
    762                /* Set to non-secure if not a secure boot */
    763                if (!info->secure_boot &&
    764                    (cs != first_cpu || !info->secure_board_setup)) {
    765                    /* Linux expects non-secure state */
    766                    env->cp15.scr_el3 |= SCR_NS;
    767                    /* Set NSACR.{CP11,CP10} so NS can access the FPU */
    768                    env->cp15.nsacr |= 3 << 10;
    769                }
    770            }
    771
    772            if (!env->aarch64 && !info->secure_boot &&
    773                arm_feature(env, ARM_FEATURE_EL2)) {
    774                /*
    775                 * This is an AArch32 boot not to Secure state, and
    776                 * we have Hyp mode available, so boot the kernel into
    777                 * Hyp mode. This is not how the CPU comes out of reset,
    778                 * so we need to manually put it there.
    779                 */
    780                cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
    781            }
    782
    783            if (cs == first_cpu) {
    784                AddressSpace *as = arm_boot_address_space(cpu, info);
    785
    786                cpu_set_pc(cs, info->loader_start);
    787
    788                if (!have_dtb(info)) {
    789                    if (old_param) {
    790                        set_kernel_args_old(info, as);
    791                    } else {
    792                        set_kernel_args(info, as);
    793                    }
    794                }
    795            } else {
    796                info->secondary_cpu_reset_hook(cpu, info);
    797            }
    798        }
    799        arm_rebuild_hflags(env);
    800    }
    801}
    802
    803/**
    804 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
    805 *                          by key.
    806 * @fw_cfg:         The firmware config instance to store the data in.
    807 * @size_key:       The firmware config key to store the size of the loaded
    808 *                  data under, with fw_cfg_add_i32().
    809 * @data_key:       The firmware config key to store the loaded data under,
    810 *                  with fw_cfg_add_bytes().
    811 * @image_name:     The name of the image file to load. If it is NULL, the
    812 *                  function returns without doing anything.
    813 * @try_decompress: Whether the image should be decompressed (gunzipped) before
    814 *                  adding it to fw_cfg. If decompression fails, the image is
    815 *                  loaded as-is.
    816 *
    817 * In case of failure, the function prints an error message to stderr and the
    818 * process exits with status 1.
    819 */
    820static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
    821                                 uint16_t data_key, const char *image_name,
    822                                 bool try_decompress)
    823{
    824    size_t size = -1;
    825    uint8_t *data;
    826
    827    if (image_name == NULL) {
    828        return;
    829    }
    830
    831    if (try_decompress) {
    832        size = load_image_gzipped_buffer(image_name,
    833                                         LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
    834    }
    835
    836    if (size == (size_t)-1) {
    837        gchar *contents;
    838        gsize length;
    839
    840        if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
    841            error_report("failed to load \"%s\"", image_name);
    842            exit(1);
    843        }
    844        size = length;
    845        data = (uint8_t *)contents;
    846    }
    847
    848    fw_cfg_add_i32(fw_cfg, size_key, size);
    849    fw_cfg_add_bytes(fw_cfg, data_key, data, size);
    850}
    851
    852static int do_arm_linux_init(Object *obj, void *opaque)
    853{
    854    if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
    855        ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
    856        ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
    857        struct arm_boot_info *info = opaque;
    858
    859        if (albifc->arm_linux_init) {
    860            albifc->arm_linux_init(albif, info->secure_boot);
    861        }
    862    }
    863    return 0;
    864}
    865
    866static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
    867                            uint64_t *lowaddr, uint64_t *highaddr,
    868                            int elf_machine, AddressSpace *as)
    869{
    870    bool elf_is64;
    871    union {
    872        Elf32_Ehdr h32;
    873        Elf64_Ehdr h64;
    874    } elf_header;
    875    int data_swab = 0;
    876    bool big_endian;
    877    int64_t ret = -1;
    878    Error *err = NULL;
    879
    880
    881    load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
    882    if (err) {
    883        error_free(err);
    884        return ret;
    885    }
    886
    887    if (elf_is64) {
    888        big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
    889        info->endianness = big_endian ? ARM_ENDIANNESS_BE8
    890                                      : ARM_ENDIANNESS_LE;
    891    } else {
    892        big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
    893        if (big_endian) {
    894            if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
    895                info->endianness = ARM_ENDIANNESS_BE8;
    896            } else {
    897                info->endianness = ARM_ENDIANNESS_BE32;
    898                /* In BE32, the CPU has a different view of the per-byte
    899                 * address map than the rest of the system. BE32 ELF files
    900                 * are organised such that they can be programmed through
    901                 * the CPU's per-word byte-reversed view of the world. QEMU
    902                 * however loads ELF files independently of the CPU. So
    903                 * tell the ELF loader to byte reverse the data for us.
    904                 */
    905                data_swab = 2;
    906            }
    907        } else {
    908            info->endianness = ARM_ENDIANNESS_LE;
    909        }
    910    }
    911
    912    ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
    913                      pentry, lowaddr, highaddr, NULL, big_endian, elf_machine,
    914                      1, data_swab, as);
    915    if (ret <= 0) {
    916        /* The header loaded but the image didn't */
    917        exit(1);
    918    }
    919
    920    return ret;
    921}
    922
    923static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
    924                                   hwaddr *entry, AddressSpace *as)
    925{
    926    hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
    927    uint64_t kernel_size = 0;
    928    uint8_t *buffer;
    929    int size;
    930
    931    /* On aarch64, it's the bootloader's job to uncompress the kernel. */
    932    size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
    933                                     &buffer);
    934
    935    if (size < 0) {
    936        gsize len;
    937
    938        /* Load as raw file otherwise */
    939        if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
    940            return -1;
    941        }
    942        size = len;
    943    }
    944
    945    /* check the arm64 magic header value -- very old kernels may not have it */
    946    if (size > ARM64_MAGIC_OFFSET + 4 &&
    947        memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
    948        uint64_t hdrvals[2];
    949
    950        /* The arm64 Image header has text_offset and image_size fields at 8 and
    951         * 16 bytes into the Image header, respectively. The text_offset field
    952         * is only valid if the image_size is non-zero.
    953         */
    954        memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
    955
    956        kernel_size = le64_to_cpu(hdrvals[1]);
    957
    958        if (kernel_size != 0) {
    959            kernel_load_offset = le64_to_cpu(hdrvals[0]);
    960
    961            /*
    962             * We write our startup "bootloader" at the very bottom of RAM,
    963             * so that bit can't be used for the image. Luckily the Image
    964             * format specification is that the image requests only an offset
    965             * from a 2MB boundary, not an absolute load address. So if the
    966             * image requests an offset that might mean it overlaps with the
    967             * bootloader, we can just load it starting at 2MB+offset rather
    968             * than 0MB + offset.
    969             */
    970            if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
    971                kernel_load_offset += 2 * MiB;
    972            }
    973        }
    974    }
    975
    976    /*
    977     * Kernels before v3.17 don't populate the image_size field, and
    978     * raw images have no header. For those our best guess at the size
    979     * is the size of the Image file itself.
    980     */
    981    if (kernel_size == 0) {
    982        kernel_size = size;
    983    }
    984
    985    *entry = mem_base + kernel_load_offset;
    986    rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
    987
    988    g_free(buffer);
    989
    990    return kernel_size;
    991}
    992
    993static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
    994                                         struct arm_boot_info *info)
    995{
    996    /* Set up for a direct boot of a kernel image file. */
    997    CPUState *cs;
    998    AddressSpace *as = arm_boot_address_space(cpu, info);
    999    int kernel_size;
   1000    int initrd_size;
   1001    int is_linux = 0;
   1002    uint64_t elf_entry;
   1003    /* Addresses of first byte used and first byte not used by the image */
   1004    uint64_t image_low_addr = 0, image_high_addr = 0;
   1005    int elf_machine;
   1006    hwaddr entry;
   1007    static const ARMInsnFixup *primary_loader;
   1008    uint64_t ram_end = info->loader_start + info->ram_size;
   1009
   1010    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
   1011        primary_loader = bootloader_aarch64;
   1012        elf_machine = EM_AARCH64;
   1013    } else {
   1014        primary_loader = bootloader;
   1015        if (!info->write_board_setup) {
   1016            primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
   1017        }
   1018        elf_machine = EM_ARM;
   1019    }
   1020
   1021    if (!info->secondary_cpu_reset_hook) {
   1022        info->secondary_cpu_reset_hook = default_reset_secondary;
   1023    }
   1024    if (!info->write_secondary_boot) {
   1025        info->write_secondary_boot = default_write_secondary;
   1026    }
   1027
   1028    if (info->nb_cpus == 0)
   1029        info->nb_cpus = 1;
   1030
   1031    /* Assume that raw images are linux kernels, and ELF images are not.  */
   1032    kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
   1033                               &image_high_addr, elf_machine, as);
   1034    if (kernel_size > 0 && have_dtb(info)) {
   1035        /*
   1036         * If there is still some room left at the base of RAM, try and put
   1037         * the DTB there like we do for images loaded with -bios or -pflash.
   1038         */
   1039        if (image_low_addr > info->loader_start
   1040            || image_high_addr < info->loader_start) {
   1041            /*
   1042             * Set image_low_addr as address limit for arm_load_dtb if it may be
   1043             * pointing into RAM, otherwise pass '0' (no limit)
   1044             */
   1045            if (image_low_addr < info->loader_start) {
   1046                image_low_addr = 0;
   1047            }
   1048            info->dtb_start = info->loader_start;
   1049            info->dtb_limit = image_low_addr;
   1050        }
   1051    }
   1052    entry = elf_entry;
   1053    if (kernel_size < 0) {
   1054        uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
   1055        kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
   1056                                     &is_linux, NULL, NULL, as);
   1057        if (kernel_size >= 0) {
   1058            image_low_addr = loadaddr;
   1059            image_high_addr = image_low_addr + kernel_size;
   1060        }
   1061    }
   1062    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
   1063        kernel_size = load_aarch64_image(info->kernel_filename,
   1064                                         info->loader_start, &entry, as);
   1065        is_linux = 1;
   1066        if (kernel_size >= 0) {
   1067            image_low_addr = entry;
   1068            image_high_addr = image_low_addr + kernel_size;
   1069        }
   1070    } else if (kernel_size < 0) {
   1071        /* 32-bit ARM */
   1072        entry = info->loader_start + KERNEL_LOAD_ADDR;
   1073        kernel_size = load_image_targphys_as(info->kernel_filename, entry,
   1074                                             ram_end - KERNEL_LOAD_ADDR, as);
   1075        is_linux = 1;
   1076        if (kernel_size >= 0) {
   1077            image_low_addr = entry;
   1078            image_high_addr = image_low_addr + kernel_size;
   1079        }
   1080    }
   1081    if (kernel_size < 0) {
   1082        error_report("could not load kernel '%s'", info->kernel_filename);
   1083        exit(1);
   1084    }
   1085
   1086    if (kernel_size > info->ram_size) {
   1087        error_report("kernel '%s' is too large to fit in RAM "
   1088                     "(kernel size %d, RAM size %" PRId64 ")",
   1089                     info->kernel_filename, kernel_size, info->ram_size);
   1090        exit(1);
   1091    }
   1092
   1093    info->entry = entry;
   1094
   1095    /*
   1096     * We want to put the initrd far enough into RAM that when the
   1097     * kernel is uncompressed it will not clobber the initrd. However
   1098     * on boards without much RAM we must ensure that we still leave
   1099     * enough room for a decent sized initrd, and on boards with large
   1100     * amounts of RAM we must avoid the initrd being so far up in RAM
   1101     * that it is outside lowmem and inaccessible to the kernel.
   1102     * So for boards with less  than 256MB of RAM we put the initrd
   1103     * halfway into RAM, and for boards with 256MB of RAM or more we put
   1104     * the initrd at 128MB.
   1105     * We also refuse to put the initrd somewhere that will definitely
   1106     * overlay the kernel we just loaded, though for kernel formats which
   1107     * don't tell us their exact size (eg self-decompressing 32-bit kernels)
   1108     * we might still make a bad choice here.
   1109     */
   1110    info->initrd_start = info->loader_start +
   1111        MIN(info->ram_size / 2, 128 * MiB);
   1112    if (image_high_addr) {
   1113        info->initrd_start = MAX(info->initrd_start, image_high_addr);
   1114    }
   1115    info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
   1116
   1117    if (is_linux) {
   1118        uint32_t fixupcontext[FIXUP_MAX];
   1119
   1120        if (info->initrd_filename) {
   1121
   1122            if (info->initrd_start >= ram_end) {
   1123                error_report("not enough space after kernel to load initrd");
   1124                exit(1);
   1125            }
   1126
   1127            initrd_size = load_ramdisk_as(info->initrd_filename,
   1128                                          info->initrd_start,
   1129                                          ram_end - info->initrd_start, as);
   1130            if (initrd_size < 0) {
   1131                initrd_size = load_image_targphys_as(info->initrd_filename,
   1132                                                     info->initrd_start,
   1133                                                     ram_end -
   1134                                                     info->initrd_start,
   1135                                                     as);
   1136            }
   1137            if (initrd_size < 0) {
   1138                error_report("could not load initrd '%s'",
   1139                             info->initrd_filename);
   1140                exit(1);
   1141            }
   1142            if (info->initrd_start + initrd_size > ram_end) {
   1143                error_report("could not load initrd '%s': "
   1144                             "too big to fit into RAM after the kernel",
   1145                             info->initrd_filename);
   1146                exit(1);
   1147            }
   1148        } else {
   1149            initrd_size = 0;
   1150        }
   1151        info->initrd_size = initrd_size;
   1152
   1153        fixupcontext[FIXUP_BOARDID] = info->board_id;
   1154        fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
   1155
   1156        /*
   1157         * for device tree boot, we pass the DTB directly in r2. Otherwise
   1158         * we point to the kernel args.
   1159         */
   1160        if (have_dtb(info)) {
   1161            hwaddr align;
   1162
   1163            if (elf_machine == EM_AARCH64) {
   1164                /*
   1165                 * Some AArch64 kernels on early bootup map the fdt region as
   1166                 *
   1167                 *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
   1168                 *
   1169                 * Let's play safe and prealign it to 2MB to give us some space.
   1170                 */
   1171                align = 2 * MiB;
   1172            } else {
   1173                /*
   1174                 * Some 32bit kernels will trash anything in the 4K page the
   1175                 * initrd ends in, so make sure the DTB isn't caught up in that.
   1176                 */
   1177                align = 4 * KiB;
   1178            }
   1179
   1180            /* Place the DTB after the initrd in memory with alignment. */
   1181            info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
   1182                                           align);
   1183            if (info->dtb_start >= ram_end) {
   1184                error_report("Not enough space for DTB after kernel/initrd");
   1185                exit(1);
   1186            }
   1187            fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
   1188            fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
   1189        } else {
   1190            fixupcontext[FIXUP_ARGPTR_LO] =
   1191                info->loader_start + KERNEL_ARGS_ADDR;
   1192            fixupcontext[FIXUP_ARGPTR_HI] =
   1193                (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
   1194            if (info->ram_size >= 4 * GiB) {
   1195                error_report("RAM size must be less than 4GB to boot"
   1196                             " Linux kernel using ATAGS (try passing a device tree"
   1197                             " using -dtb)");
   1198                exit(1);
   1199            }
   1200        }
   1201        fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
   1202        fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
   1203
   1204        write_bootloader("bootloader", info->loader_start,
   1205                         primary_loader, fixupcontext, as);
   1206
   1207        if (info->nb_cpus > 1) {
   1208            info->write_secondary_boot(cpu, info);
   1209        }
   1210        if (info->write_board_setup) {
   1211            info->write_board_setup(cpu, info);
   1212        }
   1213
   1214        /*
   1215         * Notify devices which need to fake up firmware initialization
   1216         * that we're doing a direct kernel boot.
   1217         */
   1218        object_child_foreach_recursive(object_get_root(),
   1219                                       do_arm_linux_init, info);
   1220    }
   1221    info->is_linux = is_linux;
   1222
   1223    for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
   1224        ARM_CPU(cs)->env.boot_info = info;
   1225    }
   1226}
   1227
   1228static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
   1229{
   1230    /* Set up for booting firmware (which might load a kernel via fw_cfg) */
   1231
   1232    if (have_dtb(info)) {
   1233        /*
   1234         * If we have a device tree blob, but no kernel to supply it to (or
   1235         * the kernel is supposed to be loaded by the bootloader), copy the
   1236         * DTB to the base of RAM for the bootloader to pick up.
   1237         */
   1238        info->dtb_start = info->loader_start;
   1239    }
   1240
   1241    if (info->kernel_filename) {
   1242        FWCfgState *fw_cfg;
   1243        bool try_decompressing_kernel;
   1244
   1245        fw_cfg = fw_cfg_find();
   1246
   1247        if (!fw_cfg) {
   1248            error_report("This machine type does not support loading both "
   1249                         "a guest firmware/BIOS image and a guest kernel at "
   1250                         "the same time. You should change your QEMU command "
   1251                         "line to specify one or the other, but not both.");
   1252            exit(1);
   1253        }
   1254
   1255        try_decompressing_kernel = arm_feature(&cpu->env,
   1256                                               ARM_FEATURE_AARCH64);
   1257
   1258        /*
   1259         * Expose the kernel, the command line, and the initrd in fw_cfg.
   1260         * We don't process them here at all, it's all left to the
   1261         * firmware.
   1262         */
   1263        load_image_to_fw_cfg(fw_cfg,
   1264                             FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
   1265                             info->kernel_filename,
   1266                             try_decompressing_kernel);
   1267        load_image_to_fw_cfg(fw_cfg,
   1268                             FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
   1269                             info->initrd_filename, false);
   1270
   1271        if (info->kernel_cmdline) {
   1272            fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
   1273                           strlen(info->kernel_cmdline) + 1);
   1274            fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
   1275                              info->kernel_cmdline);
   1276        }
   1277    }
   1278
   1279    /*
   1280     * We will start from address 0 (typically a boot ROM image) in the
   1281     * same way as hardware. Leave env->boot_info NULL, so that
   1282     * do_cpu_reset() knows it does not need to alter the PC on reset.
   1283     */
   1284}
   1285
   1286void arm_load_kernel(ARMCPU *cpu, MachineState *ms, struct arm_boot_info *info)
   1287{
   1288    CPUState *cs;
   1289    AddressSpace *as = arm_boot_address_space(cpu, info);
   1290
   1291    /*
   1292     * CPU objects (unlike devices) are not automatically reset on system
   1293     * reset, so we must always register a handler to do so. If we're
   1294     * actually loading a kernel, the handler is also responsible for
   1295     * arranging that we start it correctly.
   1296     */
   1297    for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
   1298        qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
   1299    }
   1300
   1301    /*
   1302     * The board code is not supposed to set secure_board_setup unless
   1303     * running its code in secure mode is actually possible, and KVM
   1304     * doesn't support secure.
   1305     */
   1306    assert(!(info->secure_board_setup && kvm_enabled()));
   1307    info->kernel_filename = ms->kernel_filename;
   1308    info->kernel_cmdline = ms->kernel_cmdline;
   1309    info->initrd_filename = ms->initrd_filename;
   1310    info->dtb_filename = ms->dtb;
   1311    info->dtb_limit = 0;
   1312
   1313    /* Load the kernel.  */
   1314    if (!info->kernel_filename || info->firmware_loaded) {
   1315        arm_setup_firmware_boot(cpu, info);
   1316    } else {
   1317        arm_setup_direct_kernel_boot(cpu, info);
   1318    }
   1319
   1320    if (!info->skip_dtb_autoload && have_dtb(info)) {
   1321        if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
   1322            exit(1);
   1323        }
   1324    }
   1325}
   1326
   1327static const TypeInfo arm_linux_boot_if_info = {
   1328    .name = TYPE_ARM_LINUX_BOOT_IF,
   1329    .parent = TYPE_INTERFACE,
   1330    .class_size = sizeof(ARMLinuxBootIfClass),
   1331};
   1332
   1333static void arm_linux_boot_register_types(void)
   1334{
   1335    type_register_static(&arm_linux_boot_if_info);
   1336}
   1337
   1338type_init(arm_linux_boot_register_types)