cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

raspi.c (14161B)


      1/*
      2 * Raspberry Pi emulation (c) 2012 Gregory Estrade
      3 * Upstreaming code cleanup [including bcm2835_*] (c) 2013 Jan Petrous
      4 *
      5 * Rasperry Pi 2 emulation Copyright (c) 2015, Microsoft
      6 * Written by Andrew Baumann
      7 *
      8 * Raspberry Pi 3 emulation Copyright (c) 2018 Zoltán Baldaszti
      9 * Upstream code cleanup (c) 2018 Pekka Enberg
     10 *
     11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
     12 * See the COPYING file in the top-level directory.
     13 */
     14
     15#include "qemu/osdep.h"
     16#include "qemu/units.h"
     17#include "qemu/cutils.h"
     18#include "qapi/error.h"
     19#include "hw/arm/bcm2836.h"
     20#include "hw/registerfields.h"
     21#include "qemu/error-report.h"
     22#include "hw/boards.h"
     23#include "hw/loader.h"
     24#include "hw/arm/boot.h"
     25#include "qom/object.h"
     26
     27#define SMPBOOT_ADDR    0x300 /* this should leave enough space for ATAGS */
     28#define MVBAR_ADDR      0x400 /* secure vectors */
     29#define BOARDSETUP_ADDR (MVBAR_ADDR + 0x20) /* board setup code */
     30#define FIRMWARE_ADDR_2 0x8000 /* Pi 2 loads kernel.img here by default */
     31#define FIRMWARE_ADDR_3 0x80000 /* Pi 3 loads kernel.img here by default */
     32#define SPINTABLE_ADDR  0xd8 /* Pi 3 bootloader spintable */
     33
     34/* Registered machine type (matches RPi Foundation bootloader and U-Boot) */
     35#define MACH_TYPE_BCM2708   3138
     36
     37struct RaspiMachineState {
     38    /*< private >*/
     39    MachineState parent_obj;
     40    /*< public >*/
     41    BCM283XState soc;
     42    struct arm_boot_info binfo;
     43};
     44typedef struct RaspiMachineState RaspiMachineState;
     45
     46struct RaspiMachineClass {
     47    /*< private >*/
     48    MachineClass parent_obj;
     49    /*< public >*/
     50    uint32_t board_rev;
     51};
     52typedef struct RaspiMachineClass RaspiMachineClass;
     53
     54#define TYPE_RASPI_MACHINE       MACHINE_TYPE_NAME("raspi-common")
     55DECLARE_OBJ_CHECKERS(RaspiMachineState, RaspiMachineClass,
     56                     RASPI_MACHINE, TYPE_RASPI_MACHINE)
     57
     58
     59/*
     60 * Board revision codes:
     61 * www.raspberrypi.org/documentation/hardware/raspberrypi/revision-codes/
     62 */
     63FIELD(REV_CODE, REVISION,           0, 4);
     64FIELD(REV_CODE, TYPE,               4, 8);
     65FIELD(REV_CODE, PROCESSOR,         12, 4);
     66FIELD(REV_CODE, MANUFACTURER,      16, 4);
     67FIELD(REV_CODE, MEMORY_SIZE,       20, 3);
     68FIELD(REV_CODE, STYLE,             23, 1);
     69
     70typedef enum RaspiProcessorId {
     71    PROCESSOR_ID_BCM2835 = 0,
     72    PROCESSOR_ID_BCM2836 = 1,
     73    PROCESSOR_ID_BCM2837 = 2,
     74} RaspiProcessorId;
     75
     76static const struct {
     77    const char *type;
     78    int cores_count;
     79} soc_property[] = {
     80    [PROCESSOR_ID_BCM2835] = {TYPE_BCM2835, 1},
     81    [PROCESSOR_ID_BCM2836] = {TYPE_BCM2836, BCM283X_NCPUS},
     82    [PROCESSOR_ID_BCM2837] = {TYPE_BCM2837, BCM283X_NCPUS},
     83};
     84
     85static uint64_t board_ram_size(uint32_t board_rev)
     86{
     87    assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
     88    return 256 * MiB << FIELD_EX32(board_rev, REV_CODE, MEMORY_SIZE);
     89}
     90
     91static RaspiProcessorId board_processor_id(uint32_t board_rev)
     92{
     93    int proc_id = FIELD_EX32(board_rev, REV_CODE, PROCESSOR);
     94
     95    assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
     96    assert(proc_id < ARRAY_SIZE(soc_property) && soc_property[proc_id].type);
     97
     98    return proc_id;
     99}
    100
    101static const char *board_soc_type(uint32_t board_rev)
    102{
    103    return soc_property[board_processor_id(board_rev)].type;
    104}
    105
    106static int cores_count(uint32_t board_rev)
    107{
    108    return soc_property[board_processor_id(board_rev)].cores_count;
    109}
    110
    111static const char *board_type(uint32_t board_rev)
    112{
    113    static const char *types[] = {
    114        "A", "B", "A+", "B+", "2B", "Alpha", "CM1", NULL, "3B", "Zero",
    115        "CM3", NULL, "Zero W", "3B+", "3A+", NULL, "CM3+", "4B",
    116    };
    117    assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
    118    int bt = FIELD_EX32(board_rev, REV_CODE, TYPE);
    119    if (bt >= ARRAY_SIZE(types) || !types[bt]) {
    120        return "Unknown";
    121    }
    122    return types[bt];
    123}
    124
    125static void write_smpboot(ARMCPU *cpu, const struct arm_boot_info *info)
    126{
    127    static const uint32_t smpboot[] = {
    128        0xe1a0e00f, /*    mov     lr, pc */
    129        0xe3a0fe00 + (BOARDSETUP_ADDR >> 4), /* mov pc, BOARDSETUP_ADDR */
    130        0xee100fb0, /*    mrc     p15, 0, r0, c0, c0, 5;get core ID */
    131        0xe7e10050, /*    ubfx    r0, r0, #0, #2       ;extract LSB */
    132        0xe59f5014, /*    ldr     r5, =0x400000CC      ;load mbox base */
    133        0xe320f001, /* 1: yield */
    134        0xe7953200, /*    ldr     r3, [r5, r0, lsl #4] ;read mbox for our core*/
    135        0xe3530000, /*    cmp     r3, #0               ;spin while zero */
    136        0x0afffffb, /*    beq     1b */
    137        0xe7853200, /*    str     r3, [r5, r0, lsl #4] ;clear mbox */
    138        0xe12fff13, /*    bx      r3                   ;jump to target */
    139        0x400000cc, /* (constant: mailbox 3 read/clear base) */
    140    };
    141
    142    /* check that we don't overrun board setup vectors */
    143    QEMU_BUILD_BUG_ON(SMPBOOT_ADDR + sizeof(smpboot) > MVBAR_ADDR);
    144    /* check that board setup address is correctly relocated */
    145    QEMU_BUILD_BUG_ON((BOARDSETUP_ADDR & 0xf) != 0
    146                      || (BOARDSETUP_ADDR >> 4) >= 0x100);
    147
    148    rom_add_blob_fixed_as("raspi_smpboot", smpboot, sizeof(smpboot),
    149                          info->smp_loader_start,
    150                          arm_boot_address_space(cpu, info));
    151}
    152
    153static void write_smpboot64(ARMCPU *cpu, const struct arm_boot_info *info)
    154{
    155    AddressSpace *as = arm_boot_address_space(cpu, info);
    156    /* Unlike the AArch32 version we don't need to call the board setup hook.
    157     * The mechanism for doing the spin-table is also entirely different.
    158     * We must have four 64-bit fields at absolute addresses
    159     * 0xd8, 0xe0, 0xe8, 0xf0 in RAM, which are the flag variables for
    160     * our CPUs, and which we must ensure are zero initialized before
    161     * the primary CPU goes into the kernel. We put these variables inside
    162     * a rom blob, so that the reset for ROM contents zeroes them for us.
    163     */
    164    static const uint32_t smpboot[] = {
    165        0xd2801b05, /*        mov     x5, 0xd8 */
    166        0xd53800a6, /*        mrs     x6, mpidr_el1 */
    167        0x924004c6, /*        and     x6, x6, #0x3 */
    168        0xd503205f, /* spin:  wfe */
    169        0xf86678a4, /*        ldr     x4, [x5,x6,lsl #3] */
    170        0xb4ffffc4, /*        cbz     x4, spin */
    171        0xd2800000, /*        mov     x0, #0x0 */
    172        0xd2800001, /*        mov     x1, #0x0 */
    173        0xd2800002, /*        mov     x2, #0x0 */
    174        0xd2800003, /*        mov     x3, #0x0 */
    175        0xd61f0080, /*        br      x4 */
    176    };
    177
    178    static const uint64_t spintables[] = {
    179        0, 0, 0, 0
    180    };
    181
    182    rom_add_blob_fixed_as("raspi_smpboot", smpboot, sizeof(smpboot),
    183                          info->smp_loader_start, as);
    184    rom_add_blob_fixed_as("raspi_spintables", spintables, sizeof(spintables),
    185                          SPINTABLE_ADDR, as);
    186}
    187
    188static void write_board_setup(ARMCPU *cpu, const struct arm_boot_info *info)
    189{
    190    arm_write_secure_board_setup_dummy_smc(cpu, info, MVBAR_ADDR);
    191}
    192
    193static void reset_secondary(ARMCPU *cpu, const struct arm_boot_info *info)
    194{
    195    CPUState *cs = CPU(cpu);
    196    cpu_set_pc(cs, info->smp_loader_start);
    197}
    198
    199static void setup_boot(MachineState *machine, RaspiProcessorId processor_id,
    200                       size_t ram_size)
    201{
    202    RaspiMachineState *s = RASPI_MACHINE(machine);
    203    int r;
    204
    205    s->binfo.board_id = MACH_TYPE_BCM2708;
    206    s->binfo.ram_size = ram_size;
    207    s->binfo.nb_cpus = machine->smp.cpus;
    208
    209    if (processor_id <= PROCESSOR_ID_BCM2836) {
    210        /*
    211         * The BCM2835 and BCM2836 require some custom setup code to run
    212         * in Secure mode before booting a kernel (to set up the SMC vectors
    213         * so that we get a no-op SMC; this is used by Linux to call the
    214         * firmware for some cache maintenance operations.
    215         * The BCM2837 doesn't need this.
    216         */
    217        s->binfo.board_setup_addr = BOARDSETUP_ADDR;
    218        s->binfo.write_board_setup = write_board_setup;
    219        s->binfo.secure_board_setup = true;
    220        s->binfo.secure_boot = true;
    221    }
    222
    223    /* BCM2836 and BCM2837 requires SMP setup */
    224    if (processor_id >= PROCESSOR_ID_BCM2836) {
    225        s->binfo.smp_loader_start = SMPBOOT_ADDR;
    226        if (processor_id == PROCESSOR_ID_BCM2836) {
    227            s->binfo.write_secondary_boot = write_smpboot;
    228        } else {
    229            s->binfo.write_secondary_boot = write_smpboot64;
    230        }
    231        s->binfo.secondary_cpu_reset_hook = reset_secondary;
    232    }
    233
    234    /* If the user specified a "firmware" image (e.g. UEFI), we bypass
    235     * the normal Linux boot process
    236     */
    237    if (machine->firmware) {
    238        hwaddr firmware_addr = processor_id <= PROCESSOR_ID_BCM2836
    239                             ? FIRMWARE_ADDR_2 : FIRMWARE_ADDR_3;
    240        /* load the firmware image (typically kernel.img) */
    241        r = load_image_targphys(machine->firmware, firmware_addr,
    242                                ram_size - firmware_addr);
    243        if (r < 0) {
    244            error_report("Failed to load firmware from %s", machine->firmware);
    245            exit(1);
    246        }
    247
    248        s->binfo.entry = firmware_addr;
    249        s->binfo.firmware_loaded = true;
    250    }
    251
    252    arm_load_kernel(&s->soc.cpu[0].core, machine, &s->binfo);
    253}
    254
    255static void raspi_machine_init(MachineState *machine)
    256{
    257    RaspiMachineClass *mc = RASPI_MACHINE_GET_CLASS(machine);
    258    RaspiMachineState *s = RASPI_MACHINE(machine);
    259    uint32_t board_rev = mc->board_rev;
    260    uint64_t ram_size = board_ram_size(board_rev);
    261    uint32_t vcram_size;
    262    DriveInfo *di;
    263    BlockBackend *blk;
    264    BusState *bus;
    265    DeviceState *carddev;
    266
    267    if (machine->ram_size != ram_size) {
    268        char *size_str = size_to_str(ram_size);
    269        error_report("Invalid RAM size, should be %s", size_str);
    270        g_free(size_str);
    271        exit(1);
    272    }
    273
    274    /* FIXME: Remove when we have custom CPU address space support */
    275    memory_region_add_subregion_overlap(get_system_memory(), 0,
    276                                        machine->ram, 0);
    277
    278    /* Setup the SOC */
    279    object_initialize_child(OBJECT(machine), "soc", &s->soc,
    280                            board_soc_type(board_rev));
    281    object_property_add_const_link(OBJECT(&s->soc), "ram", OBJECT(machine->ram));
    282    object_property_set_int(OBJECT(&s->soc), "board-rev", board_rev,
    283                            &error_abort);
    284    qdev_realize(DEVICE(&s->soc), NULL, &error_fatal);
    285
    286    /* Create and plug in the SD cards */
    287    di = drive_get_next(IF_SD);
    288    blk = di ? blk_by_legacy_dinfo(di) : NULL;
    289    bus = qdev_get_child_bus(DEVICE(&s->soc), "sd-bus");
    290    if (bus == NULL) {
    291        error_report("No SD bus found in SOC object");
    292        exit(1);
    293    }
    294    carddev = qdev_new(TYPE_SD_CARD);
    295    qdev_prop_set_drive_err(carddev, "drive", blk, &error_fatal);
    296    qdev_realize_and_unref(carddev, bus, &error_fatal);
    297
    298    vcram_size = object_property_get_uint(OBJECT(&s->soc), "vcram-size",
    299                                          &error_abort);
    300    setup_boot(machine, board_processor_id(mc->board_rev),
    301               machine->ram_size - vcram_size);
    302}
    303
    304static void raspi_machine_class_common_init(MachineClass *mc,
    305                                            uint32_t board_rev)
    306{
    307    mc->desc = g_strdup_printf("Raspberry Pi %s (revision 1.%u)",
    308                               board_type(board_rev),
    309                               FIELD_EX32(board_rev, REV_CODE, REVISION));
    310    mc->init = raspi_machine_init;
    311    mc->block_default_type = IF_SD;
    312    mc->no_parallel = 1;
    313    mc->no_floppy = 1;
    314    mc->no_cdrom = 1;
    315    mc->default_cpus = mc->min_cpus = mc->max_cpus = cores_count(board_rev);
    316    mc->default_ram_size = board_ram_size(board_rev);
    317    mc->default_ram_id = "ram";
    318};
    319
    320static void raspi0_machine_class_init(ObjectClass *oc, void *data)
    321{
    322    MachineClass *mc = MACHINE_CLASS(oc);
    323    RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
    324
    325    rmc->board_rev = 0x920092; /* Revision 1.2 */
    326    raspi_machine_class_common_init(mc, rmc->board_rev);
    327};
    328
    329static void raspi1ap_machine_class_init(ObjectClass *oc, void *data)
    330{
    331    MachineClass *mc = MACHINE_CLASS(oc);
    332    RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
    333
    334    rmc->board_rev = 0x900021; /* Revision 1.1 */
    335    raspi_machine_class_common_init(mc, rmc->board_rev);
    336};
    337
    338static void raspi2b_machine_class_init(ObjectClass *oc, void *data)
    339{
    340    MachineClass *mc = MACHINE_CLASS(oc);
    341    RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
    342
    343    rmc->board_rev = 0xa21041;
    344    raspi_machine_class_common_init(mc, rmc->board_rev);
    345};
    346
    347#ifdef TARGET_AARCH64
    348static void raspi3ap_machine_class_init(ObjectClass *oc, void *data)
    349{
    350    MachineClass *mc = MACHINE_CLASS(oc);
    351    RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
    352
    353    rmc->board_rev = 0x9020e0; /* Revision 1.0 */
    354    raspi_machine_class_common_init(mc, rmc->board_rev);
    355};
    356
    357static void raspi3b_machine_class_init(ObjectClass *oc, void *data)
    358{
    359    MachineClass *mc = MACHINE_CLASS(oc);
    360    RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
    361
    362    rmc->board_rev = 0xa02082;
    363    raspi_machine_class_common_init(mc, rmc->board_rev);
    364};
    365#endif /* TARGET_AARCH64 */
    366
    367static const TypeInfo raspi_machine_types[] = {
    368    {
    369        .name           = MACHINE_TYPE_NAME("raspi0"),
    370        .parent         = TYPE_RASPI_MACHINE,
    371        .class_init     = raspi0_machine_class_init,
    372    }, {
    373        .name           = MACHINE_TYPE_NAME("raspi1ap"),
    374        .parent         = TYPE_RASPI_MACHINE,
    375        .class_init     = raspi1ap_machine_class_init,
    376    }, {
    377        .name           = MACHINE_TYPE_NAME("raspi2b"),
    378        .parent         = TYPE_RASPI_MACHINE,
    379        .class_init     = raspi2b_machine_class_init,
    380#ifdef TARGET_AARCH64
    381    }, {
    382        .name           = MACHINE_TYPE_NAME("raspi3ap"),
    383        .parent         = TYPE_RASPI_MACHINE,
    384        .class_init     = raspi3ap_machine_class_init,
    385    }, {
    386        .name           = MACHINE_TYPE_NAME("raspi3b"),
    387        .parent         = TYPE_RASPI_MACHINE,
    388        .class_init     = raspi3b_machine_class_init,
    389#endif
    390    }, {
    391        .name           = TYPE_RASPI_MACHINE,
    392        .parent         = TYPE_MACHINE,
    393        .instance_size  = sizeof(RaspiMachineState),
    394        .class_size     = sizeof(RaspiMachineClass),
    395        .abstract       = true,
    396    }
    397};
    398
    399DEFINE_TYPES(raspi_machine_types)