cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

stellaris.c (43543B)


      1/*
      2 * Luminary Micro Stellaris peripherals
      3 *
      4 * Copyright (c) 2006 CodeSourcery.
      5 * Written by Paul Brook
      6 *
      7 * This code is licensed under the GPL.
      8 */
      9
     10#include "qemu/osdep.h"
     11#include "qapi/error.h"
     12#include "hw/sysbus.h"
     13#include "hw/ssi/ssi.h"
     14#include "hw/arm/boot.h"
     15#include "qemu/timer.h"
     16#include "hw/i2c/i2c.h"
     17#include "net/net.h"
     18#include "hw/boards.h"
     19#include "qemu/log.h"
     20#include "exec/address-spaces.h"
     21#include "sysemu/sysemu.h"
     22#include "hw/arm/armv7m.h"
     23#include "hw/char/pl011.h"
     24#include "hw/input/gamepad.h"
     25#include "hw/irq.h"
     26#include "hw/watchdog/cmsdk-apb-watchdog.h"
     27#include "migration/vmstate.h"
     28#include "hw/misc/unimp.h"
     29#include "hw/timer/stellaris-gptm.h"
     30#include "hw/qdev-clock.h"
     31#include "qom/object.h"
     32
     33#define GPIO_A 0
     34#define GPIO_B 1
     35#define GPIO_C 2
     36#define GPIO_D 3
     37#define GPIO_E 4
     38#define GPIO_F 5
     39#define GPIO_G 6
     40
     41#define BP_OLED_I2C  0x01
     42#define BP_OLED_SSI  0x02
     43#define BP_GAMEPAD   0x04
     44
     45#define NUM_IRQ_LINES 64
     46
     47typedef const struct {
     48    const char *name;
     49    uint32_t did0;
     50    uint32_t did1;
     51    uint32_t dc0;
     52    uint32_t dc1;
     53    uint32_t dc2;
     54    uint32_t dc3;
     55    uint32_t dc4;
     56    uint32_t peripherals;
     57} stellaris_board_info;
     58
     59/* System controller.  */
     60
     61#define TYPE_STELLARIS_SYS "stellaris-sys"
     62OBJECT_DECLARE_SIMPLE_TYPE(ssys_state, STELLARIS_SYS)
     63
     64struct ssys_state {
     65    SysBusDevice parent_obj;
     66
     67    MemoryRegion iomem;
     68    uint32_t pborctl;
     69    uint32_t ldopctl;
     70    uint32_t int_status;
     71    uint32_t int_mask;
     72    uint32_t resc;
     73    uint32_t rcc;
     74    uint32_t rcc2;
     75    uint32_t rcgc[3];
     76    uint32_t scgc[3];
     77    uint32_t dcgc[3];
     78    uint32_t clkvclr;
     79    uint32_t ldoarst;
     80    qemu_irq irq;
     81    Clock *sysclk;
     82    /* Properties (all read-only registers) */
     83    uint32_t user0;
     84    uint32_t user1;
     85    uint32_t did0;
     86    uint32_t did1;
     87    uint32_t dc0;
     88    uint32_t dc1;
     89    uint32_t dc2;
     90    uint32_t dc3;
     91    uint32_t dc4;
     92};
     93
     94static void ssys_update(ssys_state *s)
     95{
     96  qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
     97}
     98
     99static uint32_t pllcfg_sandstorm[16] = {
    100    0x31c0, /* 1 Mhz */
    101    0x1ae0, /* 1.8432 Mhz */
    102    0x18c0, /* 2 Mhz */
    103    0xd573, /* 2.4576 Mhz */
    104    0x37a6, /* 3.57954 Mhz */
    105    0x1ae2, /* 3.6864 Mhz */
    106    0x0c40, /* 4 Mhz */
    107    0x98bc, /* 4.906 Mhz */
    108    0x935b, /* 4.9152 Mhz */
    109    0x09c0, /* 5 Mhz */
    110    0x4dee, /* 5.12 Mhz */
    111    0x0c41, /* 6 Mhz */
    112    0x75db, /* 6.144 Mhz */
    113    0x1ae6, /* 7.3728 Mhz */
    114    0x0600, /* 8 Mhz */
    115    0x585b /* 8.192 Mhz */
    116};
    117
    118static uint32_t pllcfg_fury[16] = {
    119    0x3200, /* 1 Mhz */
    120    0x1b20, /* 1.8432 Mhz */
    121    0x1900, /* 2 Mhz */
    122    0xf42b, /* 2.4576 Mhz */
    123    0x37e3, /* 3.57954 Mhz */
    124    0x1b21, /* 3.6864 Mhz */
    125    0x0c80, /* 4 Mhz */
    126    0x98ee, /* 4.906 Mhz */
    127    0xd5b4, /* 4.9152 Mhz */
    128    0x0a00, /* 5 Mhz */
    129    0x4e27, /* 5.12 Mhz */
    130    0x1902, /* 6 Mhz */
    131    0xec1c, /* 6.144 Mhz */
    132    0x1b23, /* 7.3728 Mhz */
    133    0x0640, /* 8 Mhz */
    134    0xb11c /* 8.192 Mhz */
    135};
    136
    137#define DID0_VER_MASK        0x70000000
    138#define DID0_VER_0           0x00000000
    139#define DID0_VER_1           0x10000000
    140
    141#define DID0_CLASS_MASK      0x00FF0000
    142#define DID0_CLASS_SANDSTORM 0x00000000
    143#define DID0_CLASS_FURY      0x00010000
    144
    145static int ssys_board_class(const ssys_state *s)
    146{
    147    uint32_t did0 = s->did0;
    148    switch (did0 & DID0_VER_MASK) {
    149    case DID0_VER_0:
    150        return DID0_CLASS_SANDSTORM;
    151    case DID0_VER_1:
    152        switch (did0 & DID0_CLASS_MASK) {
    153        case DID0_CLASS_SANDSTORM:
    154        case DID0_CLASS_FURY:
    155            return did0 & DID0_CLASS_MASK;
    156        }
    157        /* for unknown classes, fall through */
    158    default:
    159        /* This can only happen if the hardwired constant did0 value
    160         * in this board's stellaris_board_info struct is wrong.
    161         */
    162        g_assert_not_reached();
    163    }
    164}
    165
    166static uint64_t ssys_read(void *opaque, hwaddr offset,
    167                          unsigned size)
    168{
    169    ssys_state *s = (ssys_state *)opaque;
    170
    171    switch (offset) {
    172    case 0x000: /* DID0 */
    173        return s->did0;
    174    case 0x004: /* DID1 */
    175        return s->did1;
    176    case 0x008: /* DC0 */
    177        return s->dc0;
    178    case 0x010: /* DC1 */
    179        return s->dc1;
    180    case 0x014: /* DC2 */
    181        return s->dc2;
    182    case 0x018: /* DC3 */
    183        return s->dc3;
    184    case 0x01c: /* DC4 */
    185        return s->dc4;
    186    case 0x030: /* PBORCTL */
    187        return s->pborctl;
    188    case 0x034: /* LDOPCTL */
    189        return s->ldopctl;
    190    case 0x040: /* SRCR0 */
    191        return 0;
    192    case 0x044: /* SRCR1 */
    193        return 0;
    194    case 0x048: /* SRCR2 */
    195        return 0;
    196    case 0x050: /* RIS */
    197        return s->int_status;
    198    case 0x054: /* IMC */
    199        return s->int_mask;
    200    case 0x058: /* MISC */
    201        return s->int_status & s->int_mask;
    202    case 0x05c: /* RESC */
    203        return s->resc;
    204    case 0x060: /* RCC */
    205        return s->rcc;
    206    case 0x064: /* PLLCFG */
    207        {
    208            int xtal;
    209            xtal = (s->rcc >> 6) & 0xf;
    210            switch (ssys_board_class(s)) {
    211            case DID0_CLASS_FURY:
    212                return pllcfg_fury[xtal];
    213            case DID0_CLASS_SANDSTORM:
    214                return pllcfg_sandstorm[xtal];
    215            default:
    216                g_assert_not_reached();
    217            }
    218        }
    219    case 0x070: /* RCC2 */
    220        return s->rcc2;
    221    case 0x100: /* RCGC0 */
    222        return s->rcgc[0];
    223    case 0x104: /* RCGC1 */
    224        return s->rcgc[1];
    225    case 0x108: /* RCGC2 */
    226        return s->rcgc[2];
    227    case 0x110: /* SCGC0 */
    228        return s->scgc[0];
    229    case 0x114: /* SCGC1 */
    230        return s->scgc[1];
    231    case 0x118: /* SCGC2 */
    232        return s->scgc[2];
    233    case 0x120: /* DCGC0 */
    234        return s->dcgc[0];
    235    case 0x124: /* DCGC1 */
    236        return s->dcgc[1];
    237    case 0x128: /* DCGC2 */
    238        return s->dcgc[2];
    239    case 0x150: /* CLKVCLR */
    240        return s->clkvclr;
    241    case 0x160: /* LDOARST */
    242        return s->ldoarst;
    243    case 0x1e0: /* USER0 */
    244        return s->user0;
    245    case 0x1e4: /* USER1 */
    246        return s->user1;
    247    default:
    248        qemu_log_mask(LOG_GUEST_ERROR,
    249                      "SSYS: read at bad offset 0x%x\n", (int)offset);
    250        return 0;
    251    }
    252}
    253
    254static bool ssys_use_rcc2(ssys_state *s)
    255{
    256    return (s->rcc2 >> 31) & 0x1;
    257}
    258
    259/*
    260 * Calculate the system clock period. We only want to propagate
    261 * this change to the rest of the system if we're not being called
    262 * from migration post-load.
    263 */
    264static void ssys_calculate_system_clock(ssys_state *s, bool propagate_clock)
    265{
    266    int period_ns;
    267    /*
    268     * SYSDIV field specifies divisor: 0 == /1, 1 == /2, etc.  Input
    269     * clock is 200MHz, which is a period of 5 ns. Dividing the clock
    270     * frequency by X is the same as multiplying the period by X.
    271     */
    272    if (ssys_use_rcc2(s)) {
    273        period_ns = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
    274    } else {
    275        period_ns = 5 * (((s->rcc >> 23) & 0xf) + 1);
    276    }
    277    clock_set_ns(s->sysclk, period_ns);
    278    if (propagate_clock) {
    279        clock_propagate(s->sysclk);
    280    }
    281}
    282
    283static void ssys_write(void *opaque, hwaddr offset,
    284                       uint64_t value, unsigned size)
    285{
    286    ssys_state *s = (ssys_state *)opaque;
    287
    288    switch (offset) {
    289    case 0x030: /* PBORCTL */
    290        s->pborctl = value & 0xffff;
    291        break;
    292    case 0x034: /* LDOPCTL */
    293        s->ldopctl = value & 0x1f;
    294        break;
    295    case 0x040: /* SRCR0 */
    296    case 0x044: /* SRCR1 */
    297    case 0x048: /* SRCR2 */
    298        qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
    299        break;
    300    case 0x054: /* IMC */
    301        s->int_mask = value & 0x7f;
    302        break;
    303    case 0x058: /* MISC */
    304        s->int_status &= ~value;
    305        break;
    306    case 0x05c: /* RESC */
    307        s->resc = value & 0x3f;
    308        break;
    309    case 0x060: /* RCC */
    310        if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
    311            /* PLL enable.  */
    312            s->int_status |= (1 << 6);
    313        }
    314        s->rcc = value;
    315        ssys_calculate_system_clock(s, true);
    316        break;
    317    case 0x070: /* RCC2 */
    318        if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
    319            break;
    320        }
    321
    322        if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
    323            /* PLL enable.  */
    324            s->int_status |= (1 << 6);
    325        }
    326        s->rcc2 = value;
    327        ssys_calculate_system_clock(s, true);
    328        break;
    329    case 0x100: /* RCGC0 */
    330        s->rcgc[0] = value;
    331        break;
    332    case 0x104: /* RCGC1 */
    333        s->rcgc[1] = value;
    334        break;
    335    case 0x108: /* RCGC2 */
    336        s->rcgc[2] = value;
    337        break;
    338    case 0x110: /* SCGC0 */
    339        s->scgc[0] = value;
    340        break;
    341    case 0x114: /* SCGC1 */
    342        s->scgc[1] = value;
    343        break;
    344    case 0x118: /* SCGC2 */
    345        s->scgc[2] = value;
    346        break;
    347    case 0x120: /* DCGC0 */
    348        s->dcgc[0] = value;
    349        break;
    350    case 0x124: /* DCGC1 */
    351        s->dcgc[1] = value;
    352        break;
    353    case 0x128: /* DCGC2 */
    354        s->dcgc[2] = value;
    355        break;
    356    case 0x150: /* CLKVCLR */
    357        s->clkvclr = value;
    358        break;
    359    case 0x160: /* LDOARST */
    360        s->ldoarst = value;
    361        break;
    362    default:
    363        qemu_log_mask(LOG_GUEST_ERROR,
    364                      "SSYS: write at bad offset 0x%x\n", (int)offset);
    365    }
    366    ssys_update(s);
    367}
    368
    369static const MemoryRegionOps ssys_ops = {
    370    .read = ssys_read,
    371    .write = ssys_write,
    372    .endianness = DEVICE_NATIVE_ENDIAN,
    373};
    374
    375static void stellaris_sys_reset_enter(Object *obj, ResetType type)
    376{
    377    ssys_state *s = STELLARIS_SYS(obj);
    378
    379    s->pborctl = 0x7ffd;
    380    s->rcc = 0x078e3ac0;
    381
    382    if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
    383        s->rcc2 = 0;
    384    } else {
    385        s->rcc2 = 0x07802810;
    386    }
    387    s->rcgc[0] = 1;
    388    s->scgc[0] = 1;
    389    s->dcgc[0] = 1;
    390}
    391
    392static void stellaris_sys_reset_hold(Object *obj)
    393{
    394    ssys_state *s = STELLARIS_SYS(obj);
    395
    396    /* OK to propagate clocks from the hold phase */
    397    ssys_calculate_system_clock(s, true);
    398}
    399
    400static void stellaris_sys_reset_exit(Object *obj)
    401{
    402}
    403
    404static int stellaris_sys_post_load(void *opaque, int version_id)
    405{
    406    ssys_state *s = opaque;
    407
    408    ssys_calculate_system_clock(s, false);
    409
    410    return 0;
    411}
    412
    413static const VMStateDescription vmstate_stellaris_sys = {
    414    .name = "stellaris_sys",
    415    .version_id = 2,
    416    .minimum_version_id = 1,
    417    .post_load = stellaris_sys_post_load,
    418    .fields = (VMStateField[]) {
    419        VMSTATE_UINT32(pborctl, ssys_state),
    420        VMSTATE_UINT32(ldopctl, ssys_state),
    421        VMSTATE_UINT32(int_mask, ssys_state),
    422        VMSTATE_UINT32(int_status, ssys_state),
    423        VMSTATE_UINT32(resc, ssys_state),
    424        VMSTATE_UINT32(rcc, ssys_state),
    425        VMSTATE_UINT32_V(rcc2, ssys_state, 2),
    426        VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
    427        VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
    428        VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
    429        VMSTATE_UINT32(clkvclr, ssys_state),
    430        VMSTATE_UINT32(ldoarst, ssys_state),
    431        /* No field for sysclk -- handled in post-load instead */
    432        VMSTATE_END_OF_LIST()
    433    }
    434};
    435
    436static Property stellaris_sys_properties[] = {
    437    DEFINE_PROP_UINT32("user0", ssys_state, user0, 0),
    438    DEFINE_PROP_UINT32("user1", ssys_state, user1, 0),
    439    DEFINE_PROP_UINT32("did0", ssys_state, did0, 0),
    440    DEFINE_PROP_UINT32("did1", ssys_state, did1, 0),
    441    DEFINE_PROP_UINT32("dc0", ssys_state, dc0, 0),
    442    DEFINE_PROP_UINT32("dc1", ssys_state, dc1, 0),
    443    DEFINE_PROP_UINT32("dc2", ssys_state, dc2, 0),
    444    DEFINE_PROP_UINT32("dc3", ssys_state, dc3, 0),
    445    DEFINE_PROP_UINT32("dc4", ssys_state, dc4, 0),
    446    DEFINE_PROP_END_OF_LIST()
    447};
    448
    449static void stellaris_sys_instance_init(Object *obj)
    450{
    451    ssys_state *s = STELLARIS_SYS(obj);
    452    SysBusDevice *sbd = SYS_BUS_DEVICE(s);
    453
    454    memory_region_init_io(&s->iomem, obj, &ssys_ops, s, "ssys", 0x00001000);
    455    sysbus_init_mmio(sbd, &s->iomem);
    456    sysbus_init_irq(sbd, &s->irq);
    457    s->sysclk = qdev_init_clock_out(DEVICE(s), "SYSCLK");
    458}
    459
    460/* I2C controller.  */
    461
    462#define TYPE_STELLARIS_I2C "stellaris-i2c"
    463OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C)
    464
    465struct stellaris_i2c_state {
    466    SysBusDevice parent_obj;
    467
    468    I2CBus *bus;
    469    qemu_irq irq;
    470    MemoryRegion iomem;
    471    uint32_t msa;
    472    uint32_t mcs;
    473    uint32_t mdr;
    474    uint32_t mtpr;
    475    uint32_t mimr;
    476    uint32_t mris;
    477    uint32_t mcr;
    478};
    479
    480#define STELLARIS_I2C_MCS_BUSY    0x01
    481#define STELLARIS_I2C_MCS_ERROR   0x02
    482#define STELLARIS_I2C_MCS_ADRACK  0x04
    483#define STELLARIS_I2C_MCS_DATACK  0x08
    484#define STELLARIS_I2C_MCS_ARBLST  0x10
    485#define STELLARIS_I2C_MCS_IDLE    0x20
    486#define STELLARIS_I2C_MCS_BUSBSY  0x40
    487
    488static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
    489                                   unsigned size)
    490{
    491    stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
    492
    493    switch (offset) {
    494    case 0x00: /* MSA */
    495        return s->msa;
    496    case 0x04: /* MCS */
    497        /* We don't emulate timing, so the controller is never busy.  */
    498        return s->mcs | STELLARIS_I2C_MCS_IDLE;
    499    case 0x08: /* MDR */
    500        return s->mdr;
    501    case 0x0c: /* MTPR */
    502        return s->mtpr;
    503    case 0x10: /* MIMR */
    504        return s->mimr;
    505    case 0x14: /* MRIS */
    506        return s->mris;
    507    case 0x18: /* MMIS */
    508        return s->mris & s->mimr;
    509    case 0x20: /* MCR */
    510        return s->mcr;
    511    default:
    512        qemu_log_mask(LOG_GUEST_ERROR,
    513                      "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
    514        return 0;
    515    }
    516}
    517
    518static void stellaris_i2c_update(stellaris_i2c_state *s)
    519{
    520    int level;
    521
    522    level = (s->mris & s->mimr) != 0;
    523    qemu_set_irq(s->irq, level);
    524}
    525
    526static void stellaris_i2c_write(void *opaque, hwaddr offset,
    527                                uint64_t value, unsigned size)
    528{
    529    stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
    530
    531    switch (offset) {
    532    case 0x00: /* MSA */
    533        s->msa = value & 0xff;
    534        break;
    535    case 0x04: /* MCS */
    536        if ((s->mcr & 0x10) == 0) {
    537            /* Disabled.  Do nothing.  */
    538            break;
    539        }
    540        /* Grab the bus if this is starting a transfer.  */
    541        if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
    542            if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
    543                s->mcs |= STELLARIS_I2C_MCS_ARBLST;
    544            } else {
    545                s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
    546                s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
    547            }
    548        }
    549        /* If we don't have the bus then indicate an error.  */
    550        if (!i2c_bus_busy(s->bus)
    551                || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
    552            s->mcs |= STELLARIS_I2C_MCS_ERROR;
    553            break;
    554        }
    555        s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
    556        if (value & 1) {
    557            /* Transfer a byte.  */
    558            /* TODO: Handle errors.  */
    559            if (s->msa & 1) {
    560                /* Recv */
    561                s->mdr = i2c_recv(s->bus);
    562            } else {
    563                /* Send */
    564                i2c_send(s->bus, s->mdr);
    565            }
    566            /* Raise an interrupt.  */
    567            s->mris |= 1;
    568        }
    569        if (value & 4) {
    570            /* Finish transfer.  */
    571            i2c_end_transfer(s->bus);
    572            s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
    573        }
    574        break;
    575    case 0x08: /* MDR */
    576        s->mdr = value & 0xff;
    577        break;
    578    case 0x0c: /* MTPR */
    579        s->mtpr = value & 0xff;
    580        break;
    581    case 0x10: /* MIMR */
    582        s->mimr = 1;
    583        break;
    584    case 0x1c: /* MICR */
    585        s->mris &= ~value;
    586        break;
    587    case 0x20: /* MCR */
    588        if (value & 1) {
    589            qemu_log_mask(LOG_UNIMP,
    590                          "stellaris_i2c: Loopback not implemented\n");
    591        }
    592        if (value & 0x20) {
    593            qemu_log_mask(LOG_UNIMP,
    594                          "stellaris_i2c: Slave mode not implemented\n");
    595        }
    596        s->mcr = value & 0x31;
    597        break;
    598    default:
    599        qemu_log_mask(LOG_GUEST_ERROR,
    600                      "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
    601    }
    602    stellaris_i2c_update(s);
    603}
    604
    605static void stellaris_i2c_reset(stellaris_i2c_state *s)
    606{
    607    if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
    608        i2c_end_transfer(s->bus);
    609
    610    s->msa = 0;
    611    s->mcs = 0;
    612    s->mdr = 0;
    613    s->mtpr = 1;
    614    s->mimr = 0;
    615    s->mris = 0;
    616    s->mcr = 0;
    617    stellaris_i2c_update(s);
    618}
    619
    620static const MemoryRegionOps stellaris_i2c_ops = {
    621    .read = stellaris_i2c_read,
    622    .write = stellaris_i2c_write,
    623    .endianness = DEVICE_NATIVE_ENDIAN,
    624};
    625
    626static const VMStateDescription vmstate_stellaris_i2c = {
    627    .name = "stellaris_i2c",
    628    .version_id = 1,
    629    .minimum_version_id = 1,
    630    .fields = (VMStateField[]) {
    631        VMSTATE_UINT32(msa, stellaris_i2c_state),
    632        VMSTATE_UINT32(mcs, stellaris_i2c_state),
    633        VMSTATE_UINT32(mdr, stellaris_i2c_state),
    634        VMSTATE_UINT32(mtpr, stellaris_i2c_state),
    635        VMSTATE_UINT32(mimr, stellaris_i2c_state),
    636        VMSTATE_UINT32(mris, stellaris_i2c_state),
    637        VMSTATE_UINT32(mcr, stellaris_i2c_state),
    638        VMSTATE_END_OF_LIST()
    639    }
    640};
    641
    642static void stellaris_i2c_init(Object *obj)
    643{
    644    DeviceState *dev = DEVICE(obj);
    645    stellaris_i2c_state *s = STELLARIS_I2C(obj);
    646    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
    647    I2CBus *bus;
    648
    649    sysbus_init_irq(sbd, &s->irq);
    650    bus = i2c_init_bus(dev, "i2c");
    651    s->bus = bus;
    652
    653    memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
    654                          "i2c", 0x1000);
    655    sysbus_init_mmio(sbd, &s->iomem);
    656    /* ??? For now we only implement the master interface.  */
    657    stellaris_i2c_reset(s);
    658}
    659
    660/* Analogue to Digital Converter.  This is only partially implemented,
    661   enough for applications that use a combined ADC and timer tick.  */
    662
    663#define STELLARIS_ADC_EM_CONTROLLER 0
    664#define STELLARIS_ADC_EM_COMP       1
    665#define STELLARIS_ADC_EM_EXTERNAL   4
    666#define STELLARIS_ADC_EM_TIMER      5
    667#define STELLARIS_ADC_EM_PWM0       6
    668#define STELLARIS_ADC_EM_PWM1       7
    669#define STELLARIS_ADC_EM_PWM2       8
    670
    671#define STELLARIS_ADC_FIFO_EMPTY    0x0100
    672#define STELLARIS_ADC_FIFO_FULL     0x1000
    673
    674#define TYPE_STELLARIS_ADC "stellaris-adc"
    675typedef struct StellarisADCState stellaris_adc_state;
    676DECLARE_INSTANCE_CHECKER(stellaris_adc_state, STELLARIS_ADC,
    677                         TYPE_STELLARIS_ADC)
    678
    679struct StellarisADCState {
    680    SysBusDevice parent_obj;
    681
    682    MemoryRegion iomem;
    683    uint32_t actss;
    684    uint32_t ris;
    685    uint32_t im;
    686    uint32_t emux;
    687    uint32_t ostat;
    688    uint32_t ustat;
    689    uint32_t sspri;
    690    uint32_t sac;
    691    struct {
    692        uint32_t state;
    693        uint32_t data[16];
    694    } fifo[4];
    695    uint32_t ssmux[4];
    696    uint32_t ssctl[4];
    697    uint32_t noise;
    698    qemu_irq irq[4];
    699};
    700
    701static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
    702{
    703    int tail;
    704
    705    tail = s->fifo[n].state & 0xf;
    706    if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
    707        s->ustat |= 1 << n;
    708    } else {
    709        s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
    710        s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
    711        if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
    712            s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
    713    }
    714    return s->fifo[n].data[tail];
    715}
    716
    717static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
    718                                     uint32_t value)
    719{
    720    int head;
    721
    722    /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry 
    723       FIFO fir each sequencer.  */
    724    head = (s->fifo[n].state >> 4) & 0xf;
    725    if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
    726        s->ostat |= 1 << n;
    727        return;
    728    }
    729    s->fifo[n].data[head] = value;
    730    head = (head + 1) & 0xf;
    731    s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
    732    s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
    733    if ((s->fifo[n].state & 0xf) == head)
    734        s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
    735}
    736
    737static void stellaris_adc_update(stellaris_adc_state *s)
    738{
    739    int level;
    740    int n;
    741
    742    for (n = 0; n < 4; n++) {
    743        level = (s->ris & s->im & (1 << n)) != 0;
    744        qemu_set_irq(s->irq[n], level);
    745    }
    746}
    747
    748static void stellaris_adc_trigger(void *opaque, int irq, int level)
    749{
    750    stellaris_adc_state *s = (stellaris_adc_state *)opaque;
    751    int n;
    752
    753    for (n = 0; n < 4; n++) {
    754        if ((s->actss & (1 << n)) == 0) {
    755            continue;
    756        }
    757
    758        if (((s->emux >> (n * 4)) & 0xff) != 5) {
    759            continue;
    760        }
    761
    762        /* Some applications use the ADC as a random number source, so introduce
    763           some variation into the signal.  */
    764        s->noise = s->noise * 314159 + 1;
    765        /* ??? actual inputs not implemented.  Return an arbitrary value.  */
    766        stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
    767        s->ris |= (1 << n);
    768        stellaris_adc_update(s);
    769    }
    770}
    771
    772static void stellaris_adc_reset(stellaris_adc_state *s)
    773{
    774    int n;
    775
    776    for (n = 0; n < 4; n++) {
    777        s->ssmux[n] = 0;
    778        s->ssctl[n] = 0;
    779        s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
    780    }
    781}
    782
    783static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
    784                                   unsigned size)
    785{
    786    stellaris_adc_state *s = (stellaris_adc_state *)opaque;
    787
    788    /* TODO: Implement this.  */
    789    if (offset >= 0x40 && offset < 0xc0) {
    790        int n;
    791        n = (offset - 0x40) >> 5;
    792        switch (offset & 0x1f) {
    793        case 0x00: /* SSMUX */
    794            return s->ssmux[n];
    795        case 0x04: /* SSCTL */
    796            return s->ssctl[n];
    797        case 0x08: /* SSFIFO */
    798            return stellaris_adc_fifo_read(s, n);
    799        case 0x0c: /* SSFSTAT */
    800            return s->fifo[n].state;
    801        default:
    802            break;
    803        }
    804    }
    805    switch (offset) {
    806    case 0x00: /* ACTSS */
    807        return s->actss;
    808    case 0x04: /* RIS */
    809        return s->ris;
    810    case 0x08: /* IM */
    811        return s->im;
    812    case 0x0c: /* ISC */
    813        return s->ris & s->im;
    814    case 0x10: /* OSTAT */
    815        return s->ostat;
    816    case 0x14: /* EMUX */
    817        return s->emux;
    818    case 0x18: /* USTAT */
    819        return s->ustat;
    820    case 0x20: /* SSPRI */
    821        return s->sspri;
    822    case 0x30: /* SAC */
    823        return s->sac;
    824    default:
    825        qemu_log_mask(LOG_GUEST_ERROR,
    826                      "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
    827        return 0;
    828    }
    829}
    830
    831static void stellaris_adc_write(void *opaque, hwaddr offset,
    832                                uint64_t value, unsigned size)
    833{
    834    stellaris_adc_state *s = (stellaris_adc_state *)opaque;
    835
    836    /* TODO: Implement this.  */
    837    if (offset >= 0x40 && offset < 0xc0) {
    838        int n;
    839        n = (offset - 0x40) >> 5;
    840        switch (offset & 0x1f) {
    841        case 0x00: /* SSMUX */
    842            s->ssmux[n] = value & 0x33333333;
    843            return;
    844        case 0x04: /* SSCTL */
    845            if (value != 6) {
    846                qemu_log_mask(LOG_UNIMP,
    847                              "ADC: Unimplemented sequence %" PRIx64 "\n",
    848                              value);
    849            }
    850            s->ssctl[n] = value;
    851            return;
    852        default:
    853            break;
    854        }
    855    }
    856    switch (offset) {
    857    case 0x00: /* ACTSS */
    858        s->actss = value & 0xf;
    859        break;
    860    case 0x08: /* IM */
    861        s->im = value;
    862        break;
    863    case 0x0c: /* ISC */
    864        s->ris &= ~value;
    865        break;
    866    case 0x10: /* OSTAT */
    867        s->ostat &= ~value;
    868        break;
    869    case 0x14: /* EMUX */
    870        s->emux = value;
    871        break;
    872    case 0x18: /* USTAT */
    873        s->ustat &= ~value;
    874        break;
    875    case 0x20: /* SSPRI */
    876        s->sspri = value;
    877        break;
    878    case 0x28: /* PSSI */
    879        qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
    880        break;
    881    case 0x30: /* SAC */
    882        s->sac = value;
    883        break;
    884    default:
    885        qemu_log_mask(LOG_GUEST_ERROR,
    886                      "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
    887    }
    888    stellaris_adc_update(s);
    889}
    890
    891static const MemoryRegionOps stellaris_adc_ops = {
    892    .read = stellaris_adc_read,
    893    .write = stellaris_adc_write,
    894    .endianness = DEVICE_NATIVE_ENDIAN,
    895};
    896
    897static const VMStateDescription vmstate_stellaris_adc = {
    898    .name = "stellaris_adc",
    899    .version_id = 1,
    900    .minimum_version_id = 1,
    901    .fields = (VMStateField[]) {
    902        VMSTATE_UINT32(actss, stellaris_adc_state),
    903        VMSTATE_UINT32(ris, stellaris_adc_state),
    904        VMSTATE_UINT32(im, stellaris_adc_state),
    905        VMSTATE_UINT32(emux, stellaris_adc_state),
    906        VMSTATE_UINT32(ostat, stellaris_adc_state),
    907        VMSTATE_UINT32(ustat, stellaris_adc_state),
    908        VMSTATE_UINT32(sspri, stellaris_adc_state),
    909        VMSTATE_UINT32(sac, stellaris_adc_state),
    910        VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
    911        VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
    912        VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
    913        VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
    914        VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
    915        VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
    916        VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
    917        VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
    918        VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
    919        VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
    920        VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
    921        VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
    922        VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
    923        VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
    924        VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
    925        VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
    926        VMSTATE_UINT32(noise, stellaris_adc_state),
    927        VMSTATE_END_OF_LIST()
    928    }
    929};
    930
    931static void stellaris_adc_init(Object *obj)
    932{
    933    DeviceState *dev = DEVICE(obj);
    934    stellaris_adc_state *s = STELLARIS_ADC(obj);
    935    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
    936    int n;
    937
    938    for (n = 0; n < 4; n++) {
    939        sysbus_init_irq(sbd, &s->irq[n]);
    940    }
    941
    942    memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
    943                          "adc", 0x1000);
    944    sysbus_init_mmio(sbd, &s->iomem);
    945    stellaris_adc_reset(s);
    946    qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
    947}
    948
    949/* Board init.  */
    950static stellaris_board_info stellaris_boards[] = {
    951  { "LM3S811EVB",
    952    0,
    953    0x0032000e,
    954    0x001f001f, /* dc0 */
    955    0x001132bf,
    956    0x01071013,
    957    0x3f0f01ff,
    958    0x0000001f,
    959    BP_OLED_I2C
    960  },
    961  { "LM3S6965EVB",
    962    0x10010002,
    963    0x1073402e,
    964    0x00ff007f, /* dc0 */
    965    0x001133ff,
    966    0x030f5317,
    967    0x0f0f87ff,
    968    0x5000007f,
    969    BP_OLED_SSI | BP_GAMEPAD
    970  }
    971};
    972
    973static void stellaris_init(MachineState *ms, stellaris_board_info *board)
    974{
    975    static const int uart_irq[] = {5, 6, 33, 34};
    976    static const int timer_irq[] = {19, 21, 23, 35};
    977    static const uint32_t gpio_addr[7] =
    978      { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
    979        0x40024000, 0x40025000, 0x40026000};
    980    static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
    981
    982    /* Memory map of SoC devices, from
    983     * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
    984     * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
    985     *
    986     * 40000000 wdtimer
    987     * 40002000 i2c (unimplemented)
    988     * 40004000 GPIO
    989     * 40005000 GPIO
    990     * 40006000 GPIO
    991     * 40007000 GPIO
    992     * 40008000 SSI
    993     * 4000c000 UART
    994     * 4000d000 UART
    995     * 4000e000 UART
    996     * 40020000 i2c
    997     * 40021000 i2c (unimplemented)
    998     * 40024000 GPIO
    999     * 40025000 GPIO
   1000     * 40026000 GPIO
   1001     * 40028000 PWM (unimplemented)
   1002     * 4002c000 QEI (unimplemented)
   1003     * 4002d000 QEI (unimplemented)
   1004     * 40030000 gptimer
   1005     * 40031000 gptimer
   1006     * 40032000 gptimer
   1007     * 40033000 gptimer
   1008     * 40038000 ADC
   1009     * 4003c000 analogue comparator (unimplemented)
   1010     * 40048000 ethernet
   1011     * 400fc000 hibernation module (unimplemented)
   1012     * 400fd000 flash memory control (unimplemented)
   1013     * 400fe000 system control
   1014     */
   1015
   1016    DeviceState *gpio_dev[7], *nvic;
   1017    qemu_irq gpio_in[7][8];
   1018    qemu_irq gpio_out[7][8];
   1019    qemu_irq adc;
   1020    int sram_size;
   1021    int flash_size;
   1022    I2CBus *i2c;
   1023    DeviceState *dev;
   1024    DeviceState *ssys_dev;
   1025    int i;
   1026    int j;
   1027    const uint8_t *macaddr;
   1028
   1029    MemoryRegion *sram = g_new(MemoryRegion, 1);
   1030    MemoryRegion *flash = g_new(MemoryRegion, 1);
   1031    MemoryRegion *system_memory = get_system_memory();
   1032
   1033    flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
   1034    sram_size = ((board->dc0 >> 18) + 1) * 1024;
   1035
   1036    /* Flash programming is done via the SCU, so pretend it is ROM.  */
   1037    memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size,
   1038                           &error_fatal);
   1039    memory_region_add_subregion(system_memory, 0, flash);
   1040
   1041    memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
   1042                           &error_fatal);
   1043    memory_region_add_subregion(system_memory, 0x20000000, sram);
   1044
   1045    /*
   1046     * Create the system-registers object early, because we will
   1047     * need its sysclk output.
   1048     */
   1049    ssys_dev = qdev_new(TYPE_STELLARIS_SYS);
   1050    /* Most devices come preprogrammed with a MAC address in the user data. */
   1051    macaddr = nd_table[0].macaddr.a;
   1052    qdev_prop_set_uint32(ssys_dev, "user0",
   1053                         macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16));
   1054    qdev_prop_set_uint32(ssys_dev, "user1",
   1055                         macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16));
   1056    qdev_prop_set_uint32(ssys_dev, "did0", board->did0);
   1057    qdev_prop_set_uint32(ssys_dev, "did1", board->did1);
   1058    qdev_prop_set_uint32(ssys_dev, "dc0", board->dc0);
   1059    qdev_prop_set_uint32(ssys_dev, "dc1", board->dc1);
   1060    qdev_prop_set_uint32(ssys_dev, "dc2", board->dc2);
   1061    qdev_prop_set_uint32(ssys_dev, "dc3", board->dc3);
   1062    qdev_prop_set_uint32(ssys_dev, "dc4", board->dc4);
   1063    sysbus_realize_and_unref(SYS_BUS_DEVICE(ssys_dev), &error_fatal);
   1064
   1065    nvic = qdev_new(TYPE_ARMV7M);
   1066    qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
   1067    qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
   1068    qdev_prop_set_bit(nvic, "enable-bitband", true);
   1069    qdev_connect_clock_in(nvic, "cpuclk",
   1070                          qdev_get_clock_out(ssys_dev, "SYSCLK"));
   1071    /* This SoC does not connect the systick reference clock */
   1072    object_property_set_link(OBJECT(nvic), "memory",
   1073                             OBJECT(get_system_memory()), &error_abort);
   1074    /* This will exit with an error if the user passed us a bad cpu_type */
   1075    sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal);
   1076
   1077    /* Now we can wire up the IRQ and MMIO of the system registers */
   1078    sysbus_mmio_map(SYS_BUS_DEVICE(ssys_dev), 0, 0x400fe000);
   1079    sysbus_connect_irq(SYS_BUS_DEVICE(ssys_dev), 0, qdev_get_gpio_in(nvic, 28));
   1080
   1081    if (board->dc1 & (1 << 16)) {
   1082        dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
   1083                                    qdev_get_gpio_in(nvic, 14),
   1084                                    qdev_get_gpio_in(nvic, 15),
   1085                                    qdev_get_gpio_in(nvic, 16),
   1086                                    qdev_get_gpio_in(nvic, 17),
   1087                                    NULL);
   1088        adc = qdev_get_gpio_in(dev, 0);
   1089    } else {
   1090        adc = NULL;
   1091    }
   1092    for (i = 0; i < 4; i++) {
   1093        if (board->dc2 & (0x10000 << i)) {
   1094            SysBusDevice *sbd;
   1095
   1096            dev = qdev_new(TYPE_STELLARIS_GPTM);
   1097            sbd = SYS_BUS_DEVICE(dev);
   1098            qdev_connect_clock_in(dev, "clk",
   1099                                  qdev_get_clock_out(ssys_dev, "SYSCLK"));
   1100            sysbus_realize_and_unref(sbd, &error_fatal);
   1101            sysbus_mmio_map(sbd, 0, 0x40030000 + i * 0x1000);
   1102            sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, timer_irq[i]));
   1103            /* TODO: This is incorrect, but we get away with it because
   1104               the ADC output is only ever pulsed.  */
   1105            qdev_connect_gpio_out(dev, 0, adc);
   1106        }
   1107    }
   1108
   1109    if (board->dc1 & (1 << 3)) { /* watchdog present */
   1110        dev = qdev_new(TYPE_LUMINARY_WATCHDOG);
   1111
   1112        qdev_connect_clock_in(dev, "WDOGCLK",
   1113                              qdev_get_clock_out(ssys_dev, "SYSCLK"));
   1114
   1115        sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
   1116        sysbus_mmio_map(SYS_BUS_DEVICE(dev),
   1117                        0,
   1118                        0x40000000u);
   1119        sysbus_connect_irq(SYS_BUS_DEVICE(dev),
   1120                           0,
   1121                           qdev_get_gpio_in(nvic, 18));
   1122    }
   1123
   1124
   1125    for (i = 0; i < 7; i++) {
   1126        if (board->dc4 & (1 << i)) {
   1127            gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
   1128                                               qdev_get_gpio_in(nvic,
   1129                                                                gpio_irq[i]));
   1130            for (j = 0; j < 8; j++) {
   1131                gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
   1132                gpio_out[i][j] = NULL;
   1133            }
   1134        }
   1135    }
   1136
   1137    if (board->dc2 & (1 << 12)) {
   1138        dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
   1139                                   qdev_get_gpio_in(nvic, 8));
   1140        i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
   1141        if (board->peripherals & BP_OLED_I2C) {
   1142            i2c_slave_create_simple(i2c, "ssd0303", 0x3d);
   1143        }
   1144    }
   1145
   1146    for (i = 0; i < 4; i++) {
   1147        if (board->dc2 & (1 << i)) {
   1148            pl011_luminary_create(0x4000c000 + i * 0x1000,
   1149                                  qdev_get_gpio_in(nvic, uart_irq[i]),
   1150                                  serial_hd(i));
   1151        }
   1152    }
   1153    if (board->dc2 & (1 << 4)) {
   1154        dev = sysbus_create_simple("pl022", 0x40008000,
   1155                                   qdev_get_gpio_in(nvic, 7));
   1156        if (board->peripherals & BP_OLED_SSI) {
   1157            void *bus;
   1158            DeviceState *sddev;
   1159            DeviceState *ssddev;
   1160
   1161            /*
   1162             * Some boards have both an OLED controller and SD card connected to
   1163             * the same SSI port, with the SD card chip select connected to a
   1164             * GPIO pin.  Technically the OLED chip select is connected to the
   1165             * SSI Fss pin.  We do not bother emulating that as both devices
   1166             * should never be selected simultaneously, and our OLED controller
   1167             * ignores stray 0xff commands that occur when deselecting the SD
   1168             * card.
   1169             *
   1170             * The h/w wiring is:
   1171             *  - GPIO pin D0 is wired to the active-low SD card chip select
   1172             *  - GPIO pin A3 is wired to the active-low OLED chip select
   1173             *  - The SoC wiring of the PL061 "auxiliary function" for A3 is
   1174             *    SSI0Fss ("frame signal"), which is an output from the SoC's
   1175             *    SSI controller. The SSI controller takes SSI0Fss low when it
   1176             *    transmits a frame, so it can work as a chip-select signal.
   1177             *  - GPIO A4 is aux-function SSI0Rx, and wired to the SD card Tx
   1178             *    (the OLED never sends data to the CPU, so no wiring needed)
   1179             *  - GPIO A5 is aux-function SSI0Tx, and wired to the SD card Rx
   1180             *    and the OLED display-data-in
   1181             *  - GPIO A2 is aux-function SSI0Clk, wired to SD card and OLED
   1182             *    serial-clock input
   1183             * So a guest that wants to use the OLED can configure the PL061
   1184             * to make pins A2, A3, A5 aux-function, so they are connected
   1185             * directly to the SSI controller. When the SSI controller sends
   1186             * data it asserts SSI0Fss which selects the OLED.
   1187             * A guest that wants to use the SD card configures A2, A4 and A5
   1188             * as aux-function, but leaves A3 as a software-controlled GPIO
   1189             * line. It asserts the SD card chip-select by using the PL061
   1190             * to control pin D0, and lets the SSI controller handle Clk, Tx
   1191             * and Rx. (The SSI controller asserts Fss during tx cycles as
   1192             * usual, but because A3 is not set to aux-function this is not
   1193             * forwarded to the OLED, and so the OLED stays unselected.)
   1194             *
   1195             * The QEMU implementation instead is:
   1196             *  - GPIO pin D0 is wired to the active-low SD card chip select,
   1197             *    and also to the OLED chip-select which is implemented
   1198             *    as *active-high*
   1199             *  - SSI controller signals go to the devices regardless of
   1200             *    whether the guest programs A2, A4, A5 as aux-function or not
   1201             *
   1202             * The problem with this implementation is if the guest doesn't
   1203             * care about the SD card and only uses the OLED. In that case it
   1204             * may choose never to do anything with D0 (leaving it in its
   1205             * default floating state, which reliably leaves the card disabled
   1206             * because an SD card has a pullup on CS within the card itself),
   1207             * and only set up A2, A3, A5. This for us would mean the OLED
   1208             * never gets the chip-select assert it needs. We work around
   1209             * this with a manual raise of D0 here (despite board creation
   1210             * code being the wrong place to raise IRQ lines) to put the OLED
   1211             * into an initially selected state.
   1212             *
   1213             * In theory the right way to model this would be:
   1214             *  - Implement aux-function support in the PL061, with an
   1215             *    extra set of AFIN and AFOUT GPIO lines (set up so that
   1216             *    if a GPIO line is in auxfn mode the main GPIO in and out
   1217             *    track the AFIN and AFOUT lines)
   1218             *  - Wire the AFOUT for D0 up to either a line from the
   1219             *    SSI controller that's pulled low around every transmit,
   1220             *    or at least to an always-0 line here on the board
   1221             *  - Make the ssd0323 OLED controller chipselect active-low
   1222             */
   1223            bus = qdev_get_child_bus(dev, "ssi");
   1224
   1225            sddev = ssi_create_peripheral(bus, "ssi-sd");
   1226            ssddev = ssi_create_peripheral(bus, "ssd0323");
   1227            gpio_out[GPIO_D][0] = qemu_irq_split(
   1228                    qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0),
   1229                    qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
   1230            gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
   1231
   1232            /* Make sure the select pin is high.  */
   1233            qemu_irq_raise(gpio_out[GPIO_D][0]);
   1234        }
   1235    }
   1236    if (board->dc4 & (1 << 28)) {
   1237        DeviceState *enet;
   1238
   1239        qemu_check_nic_model(&nd_table[0], "stellaris");
   1240
   1241        enet = qdev_new("stellaris_enet");
   1242        qdev_set_nic_properties(enet, &nd_table[0]);
   1243        sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal);
   1244        sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
   1245        sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
   1246    }
   1247    if (board->peripherals & BP_GAMEPAD) {
   1248        qemu_irq gpad_irq[5];
   1249        static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
   1250
   1251        gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
   1252        gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
   1253        gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
   1254        gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
   1255        gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
   1256
   1257        stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
   1258    }
   1259    for (i = 0; i < 7; i++) {
   1260        if (board->dc4 & (1 << i)) {
   1261            for (j = 0; j < 8; j++) {
   1262                if (gpio_out[i][j]) {
   1263                    qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
   1264                }
   1265            }
   1266        }
   1267    }
   1268
   1269    /* Add dummy regions for the devices we don't implement yet,
   1270     * so guest accesses don't cause unlogged crashes.
   1271     */
   1272    create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
   1273    create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
   1274    create_unimplemented_device("PWM", 0x40028000, 0x1000);
   1275    create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
   1276    create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
   1277    create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
   1278    create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
   1279    create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
   1280
   1281    armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, flash_size);
   1282}
   1283
   1284/* FIXME: Figure out how to generate these from stellaris_boards.  */
   1285static void lm3s811evb_init(MachineState *machine)
   1286{
   1287    stellaris_init(machine, &stellaris_boards[0]);
   1288}
   1289
   1290static void lm3s6965evb_init(MachineState *machine)
   1291{
   1292    stellaris_init(machine, &stellaris_boards[1]);
   1293}
   1294
   1295static void lm3s811evb_class_init(ObjectClass *oc, void *data)
   1296{
   1297    MachineClass *mc = MACHINE_CLASS(oc);
   1298
   1299    mc->desc = "Stellaris LM3S811EVB (Cortex-M3)";
   1300    mc->init = lm3s811evb_init;
   1301    mc->ignore_memory_transaction_failures = true;
   1302    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
   1303}
   1304
   1305static const TypeInfo lm3s811evb_type = {
   1306    .name = MACHINE_TYPE_NAME("lm3s811evb"),
   1307    .parent = TYPE_MACHINE,
   1308    .class_init = lm3s811evb_class_init,
   1309};
   1310
   1311static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
   1312{
   1313    MachineClass *mc = MACHINE_CLASS(oc);
   1314
   1315    mc->desc = "Stellaris LM3S6965EVB (Cortex-M3)";
   1316    mc->init = lm3s6965evb_init;
   1317    mc->ignore_memory_transaction_failures = true;
   1318    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
   1319}
   1320
   1321static const TypeInfo lm3s6965evb_type = {
   1322    .name = MACHINE_TYPE_NAME("lm3s6965evb"),
   1323    .parent = TYPE_MACHINE,
   1324    .class_init = lm3s6965evb_class_init,
   1325};
   1326
   1327static void stellaris_machine_init(void)
   1328{
   1329    type_register_static(&lm3s811evb_type);
   1330    type_register_static(&lm3s6965evb_type);
   1331}
   1332
   1333type_init(stellaris_machine_init)
   1334
   1335static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
   1336{
   1337    DeviceClass *dc = DEVICE_CLASS(klass);
   1338
   1339    dc->vmsd = &vmstate_stellaris_i2c;
   1340}
   1341
   1342static const TypeInfo stellaris_i2c_info = {
   1343    .name          = TYPE_STELLARIS_I2C,
   1344    .parent        = TYPE_SYS_BUS_DEVICE,
   1345    .instance_size = sizeof(stellaris_i2c_state),
   1346    .instance_init = stellaris_i2c_init,
   1347    .class_init    = stellaris_i2c_class_init,
   1348};
   1349
   1350static void stellaris_adc_class_init(ObjectClass *klass, void *data)
   1351{
   1352    DeviceClass *dc = DEVICE_CLASS(klass);
   1353
   1354    dc->vmsd = &vmstate_stellaris_adc;
   1355}
   1356
   1357static const TypeInfo stellaris_adc_info = {
   1358    .name          = TYPE_STELLARIS_ADC,
   1359    .parent        = TYPE_SYS_BUS_DEVICE,
   1360    .instance_size = sizeof(stellaris_adc_state),
   1361    .instance_init = stellaris_adc_init,
   1362    .class_init    = stellaris_adc_class_init,
   1363};
   1364
   1365static void stellaris_sys_class_init(ObjectClass *klass, void *data)
   1366{
   1367    DeviceClass *dc = DEVICE_CLASS(klass);
   1368    ResettableClass *rc = RESETTABLE_CLASS(klass);
   1369
   1370    dc->vmsd = &vmstate_stellaris_sys;
   1371    rc->phases.enter = stellaris_sys_reset_enter;
   1372    rc->phases.hold = stellaris_sys_reset_hold;
   1373    rc->phases.exit = stellaris_sys_reset_exit;
   1374    device_class_set_props(dc, stellaris_sys_properties);
   1375}
   1376
   1377static const TypeInfo stellaris_sys_info = {
   1378    .name = TYPE_STELLARIS_SYS,
   1379    .parent = TYPE_SYS_BUS_DEVICE,
   1380    .instance_size = sizeof(ssys_state),
   1381    .instance_init = stellaris_sys_instance_init,
   1382    .class_init = stellaris_sys_class_init,
   1383};
   1384
   1385static void stellaris_register_types(void)
   1386{
   1387    type_register_static(&stellaris_i2c_info);
   1388    type_register_static(&stellaris_adc_info);
   1389    type_register_static(&stellaris_sys_info);
   1390}
   1391
   1392type_init(stellaris_register_types)