cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

cadence_uart.c (18738B)


      1/*
      2 * Device model for Cadence UART
      3 *
      4 * Reference: Xilinx Zynq 7000 reference manual
      5 *   - http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
      6 *   - Chapter 19 UART Controller
      7 *   - Appendix B for Register details
      8 *
      9 * Copyright (c) 2010 Xilinx Inc.
     10 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
     11 * Copyright (c) 2012 PetaLogix Pty Ltd.
     12 * Written by Haibing Ma
     13 *            M.Habib
     14 *
     15 * This program is free software; you can redistribute it and/or
     16 * modify it under the terms of the GNU General Public License
     17 * as published by the Free Software Foundation; either version
     18 * 2 of the License, or (at your option) any later version.
     19 *
     20 * You should have received a copy of the GNU General Public License along
     21 * with this program; if not, see <http://www.gnu.org/licenses/>.
     22 */
     23
     24#include "qemu/osdep.h"
     25#include "hw/sysbus.h"
     26#include "migration/vmstate.h"
     27#include "chardev/char-fe.h"
     28#include "chardev/char-serial.h"
     29#include "qemu/timer.h"
     30#include "qemu/log.h"
     31#include "qemu/module.h"
     32#include "hw/char/cadence_uart.h"
     33#include "hw/irq.h"
     34#include "hw/qdev-clock.h"
     35#include "hw/qdev-properties-system.h"
     36#include "trace.h"
     37
     38#ifdef CADENCE_UART_ERR_DEBUG
     39#define DB_PRINT(...) do { \
     40    fprintf(stderr,  ": %s: ", __func__); \
     41    fprintf(stderr, ## __VA_ARGS__); \
     42    } while (0)
     43#else
     44    #define DB_PRINT(...)
     45#endif
     46
     47#define UART_SR_INTR_RTRIG     0x00000001
     48#define UART_SR_INTR_REMPTY    0x00000002
     49#define UART_SR_INTR_RFUL      0x00000004
     50#define UART_SR_INTR_TEMPTY    0x00000008
     51#define UART_SR_INTR_TFUL      0x00000010
     52/* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
     53#define UART_SR_TTRIG          0x00002000
     54#define UART_INTR_TTRIG        0x00000400
     55/* bits fields in CSR that correlate to CISR. If any of these bits are set in
     56 * SR, then the same bit in CISR is set high too */
     57#define UART_SR_TO_CISR_MASK   0x0000001F
     58
     59#define UART_INTR_ROVR         0x00000020
     60#define UART_INTR_FRAME        0x00000040
     61#define UART_INTR_PARE         0x00000080
     62#define UART_INTR_TIMEOUT      0x00000100
     63#define UART_INTR_DMSI         0x00000200
     64#define UART_INTR_TOVR         0x00001000
     65
     66#define UART_SR_RACTIVE    0x00000400
     67#define UART_SR_TACTIVE    0x00000800
     68#define UART_SR_FDELT      0x00001000
     69
     70#define UART_CR_RXRST       0x00000001
     71#define UART_CR_TXRST       0x00000002
     72#define UART_CR_RX_EN       0x00000004
     73#define UART_CR_RX_DIS      0x00000008
     74#define UART_CR_TX_EN       0x00000010
     75#define UART_CR_TX_DIS      0x00000020
     76#define UART_CR_RST_TO      0x00000040
     77#define UART_CR_STARTBRK    0x00000080
     78#define UART_CR_STOPBRK     0x00000100
     79
     80#define UART_MR_CLKS            0x00000001
     81#define UART_MR_CHRL            0x00000006
     82#define UART_MR_CHRL_SH         1
     83#define UART_MR_PAR             0x00000038
     84#define UART_MR_PAR_SH          3
     85#define UART_MR_NBSTOP          0x000000C0
     86#define UART_MR_NBSTOP_SH       6
     87#define UART_MR_CHMODE          0x00000300
     88#define UART_MR_CHMODE_SH       8
     89#define UART_MR_UCLKEN          0x00000400
     90#define UART_MR_IRMODE          0x00000800
     91
     92#define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH)
     93#define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH)
     94#define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH)
     95#define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH)
     96#define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH)
     97#define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH)
     98#define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH)
     99#define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH)
    100#define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH)
    101#define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH)
    102
    103#define UART_DEFAULT_REF_CLK (50 * 1000 * 1000)
    104
    105#define R_CR       (0x00/4)
    106#define R_MR       (0x04/4)
    107#define R_IER      (0x08/4)
    108#define R_IDR      (0x0C/4)
    109#define R_IMR      (0x10/4)
    110#define R_CISR     (0x14/4)
    111#define R_BRGR     (0x18/4)
    112#define R_RTOR     (0x1C/4)
    113#define R_RTRIG    (0x20/4)
    114#define R_MCR      (0x24/4)
    115#define R_MSR      (0x28/4)
    116#define R_SR       (0x2C/4)
    117#define R_TX_RX    (0x30/4)
    118#define R_BDIV     (0x34/4)
    119#define R_FDEL     (0x38/4)
    120#define R_PMIN     (0x3C/4)
    121#define R_PWID     (0x40/4)
    122#define R_TTRIG    (0x44/4)
    123
    124
    125static void uart_update_status(CadenceUARTState *s)
    126{
    127    s->r[R_SR] = 0;
    128
    129    s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
    130                                                           : 0;
    131    s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
    132    s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
    133
    134    s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
    135                                                           : 0;
    136    s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
    137    s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
    138
    139    s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
    140    s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
    141    qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
    142}
    143
    144static void fifo_trigger_update(void *opaque)
    145{
    146    CadenceUARTState *s = opaque;
    147
    148    if (s->r[R_RTOR]) {
    149        s->r[R_CISR] |= UART_INTR_TIMEOUT;
    150        uart_update_status(s);
    151    }
    152}
    153
    154static void uart_rx_reset(CadenceUARTState *s)
    155{
    156    s->rx_wpos = 0;
    157    s->rx_count = 0;
    158    qemu_chr_fe_accept_input(&s->chr);
    159}
    160
    161static void uart_tx_reset(CadenceUARTState *s)
    162{
    163    s->tx_count = 0;
    164}
    165
    166static void uart_send_breaks(CadenceUARTState *s)
    167{
    168    int break_enabled = 1;
    169
    170    qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
    171                      &break_enabled);
    172}
    173
    174static void uart_parameters_setup(CadenceUARTState *s)
    175{
    176    QEMUSerialSetParams ssp;
    177    unsigned int baud_rate, packet_size, input_clk;
    178    input_clk = clock_get_hz(s->refclk);
    179
    180    baud_rate = (s->r[R_MR] & UART_MR_CLKS) ? input_clk / 8 : input_clk;
    181    baud_rate /= (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
    182    trace_cadence_uart_baudrate(baud_rate);
    183
    184    ssp.speed = baud_rate;
    185
    186    packet_size = 1;
    187
    188    switch (s->r[R_MR] & UART_MR_PAR) {
    189    case UART_PARITY_EVEN:
    190        ssp.parity = 'E';
    191        packet_size++;
    192        break;
    193    case UART_PARITY_ODD:
    194        ssp.parity = 'O';
    195        packet_size++;
    196        break;
    197    default:
    198        ssp.parity = 'N';
    199        break;
    200    }
    201
    202    switch (s->r[R_MR] & UART_MR_CHRL) {
    203    case UART_DATA_BITS_6:
    204        ssp.data_bits = 6;
    205        break;
    206    case UART_DATA_BITS_7:
    207        ssp.data_bits = 7;
    208        break;
    209    default:
    210        ssp.data_bits = 8;
    211        break;
    212    }
    213
    214    switch (s->r[R_MR] & UART_MR_NBSTOP) {
    215    case UART_STOP_BITS_1:
    216        ssp.stop_bits = 1;
    217        break;
    218    default:
    219        ssp.stop_bits = 2;
    220        break;
    221    }
    222
    223    packet_size += ssp.data_bits + ssp.stop_bits;
    224    if (ssp.speed == 0) {
    225        /*
    226         * Avoid division-by-zero below.
    227         * TODO: find something better
    228         */
    229        ssp.speed = 1;
    230    }
    231    s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
    232    qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
    233}
    234
    235static int uart_can_receive(void *opaque)
    236{
    237    CadenceUARTState *s = opaque;
    238    int ret;
    239    uint32_t ch_mode;
    240
    241    /* ignore characters when unclocked or in reset */
    242    if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
    243        qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n",
    244                      __func__);
    245        return 0;
    246    }
    247
    248    ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
    249    ch_mode = s->r[R_MR] & UART_MR_CHMODE;
    250
    251    if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
    252        ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
    253    }
    254    if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
    255        ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
    256    }
    257    return ret;
    258}
    259
    260static void uart_ctrl_update(CadenceUARTState *s)
    261{
    262    if (s->r[R_CR] & UART_CR_TXRST) {
    263        uart_tx_reset(s);
    264    }
    265
    266    if (s->r[R_CR] & UART_CR_RXRST) {
    267        uart_rx_reset(s);
    268    }
    269
    270    s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
    271
    272    if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
    273        uart_send_breaks(s);
    274    }
    275}
    276
    277static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
    278{
    279    CadenceUARTState *s = opaque;
    280    uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    281    int i;
    282
    283    if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
    284        return;
    285    }
    286
    287    if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
    288        s->r[R_CISR] |= UART_INTR_ROVR;
    289    } else {
    290        for (i = 0; i < size; i++) {
    291            s->rx_fifo[s->rx_wpos] = buf[i];
    292            s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
    293            s->rx_count++;
    294        }
    295        timer_mod(s->fifo_trigger_handle, new_rx_time +
    296                                                (s->char_tx_time * 4));
    297    }
    298    uart_update_status(s);
    299}
    300
    301static gboolean cadence_uart_xmit(void *do_not_use, GIOCondition cond,
    302                                  void *opaque)
    303{
    304    CadenceUARTState *s = opaque;
    305    int ret;
    306
    307    /* instant drain the fifo when there's no back-end */
    308    if (!qemu_chr_fe_backend_connected(&s->chr)) {
    309        s->tx_count = 0;
    310        return FALSE;
    311    }
    312
    313    if (!s->tx_count) {
    314        return FALSE;
    315    }
    316
    317    ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count);
    318
    319    if (ret >= 0) {
    320        s->tx_count -= ret;
    321        memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
    322    }
    323
    324    if (s->tx_count) {
    325        guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
    326                                        cadence_uart_xmit, s);
    327        if (!r) {
    328            s->tx_count = 0;
    329            return FALSE;
    330        }
    331    }
    332
    333    uart_update_status(s);
    334    return FALSE;
    335}
    336
    337static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
    338                               int size)
    339{
    340    if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
    341        return;
    342    }
    343
    344    if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
    345        size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
    346        /*
    347         * This can only be a guest error via a bad tx fifo register push,
    348         * as can_receive() should stop remote loop and echo modes ever getting
    349         * us to here.
    350         */
    351        qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
    352        s->r[R_CISR] |= UART_INTR_ROVR;
    353    }
    354
    355    memcpy(s->tx_fifo + s->tx_count, buf, size);
    356    s->tx_count += size;
    357
    358    cadence_uart_xmit(NULL, G_IO_OUT, s);
    359}
    360
    361static void uart_receive(void *opaque, const uint8_t *buf, int size)
    362{
    363    CadenceUARTState *s = opaque;
    364    uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
    365
    366    if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
    367        uart_write_rx_fifo(opaque, buf, size);
    368    }
    369    if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
    370        uart_write_tx_fifo(s, buf, size);
    371    }
    372}
    373
    374static void uart_event(void *opaque, QEMUChrEvent event)
    375{
    376    CadenceUARTState *s = opaque;
    377    uint8_t buf = '\0';
    378
    379    /* ignore characters when unclocked or in reset */
    380    if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
    381        qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n",
    382                      __func__);
    383        return;
    384    }
    385
    386    if (event == CHR_EVENT_BREAK) {
    387        uart_write_rx_fifo(opaque, &buf, 1);
    388    }
    389
    390    uart_update_status(s);
    391}
    392
    393static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
    394{
    395    if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
    396        return;
    397    }
    398
    399    if (s->rx_count) {
    400        uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
    401                            s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
    402        *c = s->rx_fifo[rx_rpos];
    403        s->rx_count--;
    404
    405        qemu_chr_fe_accept_input(&s->chr);
    406    } else {
    407        *c = 0;
    408    }
    409
    410    uart_update_status(s);
    411}
    412
    413static MemTxResult uart_write(void *opaque, hwaddr offset,
    414                              uint64_t value, unsigned size, MemTxAttrs attrs)
    415{
    416    CadenceUARTState *s = opaque;
    417
    418    /* ignore access when unclocked or in reset */
    419    if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
    420        qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n",
    421                      __func__);
    422        return MEMTX_ERROR;
    423    }
    424
    425    DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
    426    offset >>= 2;
    427    if (offset >= CADENCE_UART_R_MAX) {
    428        return MEMTX_DECODE_ERROR;
    429    }
    430    switch (offset) {
    431    case R_IER: /* ier (wts imr) */
    432        s->r[R_IMR] |= value;
    433        break;
    434    case R_IDR: /* idr (wtc imr) */
    435        s->r[R_IMR] &= ~value;
    436        break;
    437    case R_IMR: /* imr (read only) */
    438        break;
    439    case R_CISR: /* cisr (wtc) */
    440        s->r[R_CISR] &= ~value;
    441        break;
    442    case R_TX_RX: /* UARTDR */
    443        switch (s->r[R_MR] & UART_MR_CHMODE) {
    444        case NORMAL_MODE:
    445            uart_write_tx_fifo(s, (uint8_t *) &value, 1);
    446            break;
    447        case LOCAL_LOOPBACK:
    448            uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
    449            break;
    450        }
    451        break;
    452    case R_BRGR: /* Baud rate generator */
    453        if (value >= 0x01) {
    454            s->r[offset] = value & 0xFFFF;
    455        }
    456        break;
    457    case R_BDIV:    /* Baud rate divider */
    458        if (value >= 0x04) {
    459            s->r[offset] = value & 0xFF;
    460        }
    461        break;
    462    default:
    463        s->r[offset] = value;
    464    }
    465
    466    switch (offset) {
    467    case R_CR:
    468        uart_ctrl_update(s);
    469        break;
    470    case R_MR:
    471        uart_parameters_setup(s);
    472        break;
    473    }
    474    uart_update_status(s);
    475
    476    return MEMTX_OK;
    477}
    478
    479static MemTxResult uart_read(void *opaque, hwaddr offset,
    480                             uint64_t *value, unsigned size, MemTxAttrs attrs)
    481{
    482    CadenceUARTState *s = opaque;
    483    uint32_t c = 0;
    484
    485    /* ignore access when unclocked or in reset */
    486    if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
    487        qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n",
    488                      __func__);
    489        return MEMTX_ERROR;
    490    }
    491
    492    offset >>= 2;
    493    if (offset >= CADENCE_UART_R_MAX) {
    494        return MEMTX_DECODE_ERROR;
    495    }
    496    if (offset == R_TX_RX) {
    497        uart_read_rx_fifo(s, &c);
    498    } else {
    499        c = s->r[offset];
    500    }
    501
    502    DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
    503    *value = c;
    504    return MEMTX_OK;
    505}
    506
    507static const MemoryRegionOps uart_ops = {
    508    .read_with_attrs = uart_read,
    509    .write_with_attrs = uart_write,
    510    .endianness = DEVICE_NATIVE_ENDIAN,
    511};
    512
    513static void cadence_uart_reset_init(Object *obj, ResetType type)
    514{
    515    CadenceUARTState *s = CADENCE_UART(obj);
    516
    517    s->r[R_CR] = 0x00000128;
    518    s->r[R_IMR] = 0;
    519    s->r[R_CISR] = 0;
    520    s->r[R_RTRIG] = 0x00000020;
    521    s->r[R_BRGR] = 0x0000028B;
    522    s->r[R_BDIV] = 0x0000000F;
    523    s->r[R_TTRIG] = 0x00000020;
    524}
    525
    526static void cadence_uart_reset_hold(Object *obj)
    527{
    528    CadenceUARTState *s = CADENCE_UART(obj);
    529
    530    uart_rx_reset(s);
    531    uart_tx_reset(s);
    532
    533    uart_update_status(s);
    534}
    535
    536static void cadence_uart_realize(DeviceState *dev, Error **errp)
    537{
    538    CadenceUARTState *s = CADENCE_UART(dev);
    539
    540    s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
    541                                          fifo_trigger_update, s);
    542
    543    qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
    544                             uart_event, NULL, s, NULL, true);
    545}
    546
    547static void cadence_uart_refclk_update(void *opaque, ClockEvent event)
    548{
    549    CadenceUARTState *s = opaque;
    550
    551    /* recompute uart's speed on clock change */
    552    uart_parameters_setup(s);
    553}
    554
    555static void cadence_uart_init(Object *obj)
    556{
    557    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
    558    CadenceUARTState *s = CADENCE_UART(obj);
    559
    560    memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
    561    sysbus_init_mmio(sbd, &s->iomem);
    562    sysbus_init_irq(sbd, &s->irq);
    563
    564    s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk",
    565                                   cadence_uart_refclk_update, s, ClockUpdate);
    566    /* initialize the frequency in case the clock remains unconnected */
    567    clock_set_hz(s->refclk, UART_DEFAULT_REF_CLK);
    568
    569    s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
    570}
    571
    572static int cadence_uart_pre_load(void *opaque)
    573{
    574    CadenceUARTState *s = opaque;
    575
    576    /* the frequency will be overriden if the refclk field is present */
    577    clock_set_hz(s->refclk, UART_DEFAULT_REF_CLK);
    578    return 0;
    579}
    580
    581static int cadence_uart_post_load(void *opaque, int version_id)
    582{
    583    CadenceUARTState *s = opaque;
    584
    585    /* Ensure these two aren't invalid numbers */
    586    if (s->r[R_BRGR] < 1 || s->r[R_BRGR] & ~0xFFFF ||
    587        s->r[R_BDIV] <= 3 || s->r[R_BDIV] & ~0xFF) {
    588        /* Value is invalid, abort */
    589        return 1;
    590    }
    591
    592    uart_parameters_setup(s);
    593    uart_update_status(s);
    594    return 0;
    595}
    596
    597static const VMStateDescription vmstate_cadence_uart = {
    598    .name = "cadence_uart",
    599    .version_id = 3,
    600    .minimum_version_id = 2,
    601    .pre_load = cadence_uart_pre_load,
    602    .post_load = cadence_uart_post_load,
    603    .fields = (VMStateField[]) {
    604        VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
    605        VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
    606                            CADENCE_UART_RX_FIFO_SIZE),
    607        VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
    608                            CADENCE_UART_TX_FIFO_SIZE),
    609        VMSTATE_UINT32(rx_count, CadenceUARTState),
    610        VMSTATE_UINT32(tx_count, CadenceUARTState),
    611        VMSTATE_UINT32(rx_wpos, CadenceUARTState),
    612        VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
    613        VMSTATE_CLOCK_V(refclk, CadenceUARTState, 3),
    614        VMSTATE_END_OF_LIST()
    615    },
    616};
    617
    618static Property cadence_uart_properties[] = {
    619    DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
    620    DEFINE_PROP_END_OF_LIST(),
    621};
    622
    623static void cadence_uart_class_init(ObjectClass *klass, void *data)
    624{
    625    DeviceClass *dc = DEVICE_CLASS(klass);
    626    ResettableClass *rc = RESETTABLE_CLASS(klass);
    627
    628    dc->realize = cadence_uart_realize;
    629    dc->vmsd = &vmstate_cadence_uart;
    630    rc->phases.enter = cadence_uart_reset_init;
    631    rc->phases.hold  = cadence_uart_reset_hold;
    632    device_class_set_props(dc, cadence_uart_properties);
    633  }
    634
    635static const TypeInfo cadence_uart_info = {
    636    .name          = TYPE_CADENCE_UART,
    637    .parent        = TYPE_SYS_BUS_DEVICE,
    638    .instance_size = sizeof(CadenceUARTState),
    639    .instance_init = cadence_uart_init,
    640    .class_init    = cadence_uart_class_init,
    641};
    642
    643static void cadence_uart_register_types(void)
    644{
    645    type_register_static(&cadence_uart_info);
    646}
    647
    648type_init(cadence_uart_register_types)