ptimer.c (14522B)
1/* 2 * General purpose implementation of a simple periodic countdown timer. 3 * 4 * Copyright (c) 2007 CodeSourcery. 5 * 6 * This code is licensed under the GNU LGPL. 7 */ 8 9#include "qemu/osdep.h" 10#include "hw/ptimer.h" 11#include "migration/vmstate.h" 12#include "qemu/host-utils.h" 13#include "sysemu/replay.h" 14#include "sysemu/cpu-timers.h" 15#include "sysemu/qtest.h" 16#include "block/aio.h" 17#include "sysemu/cpus.h" 18#include "hw/clock.h" 19 20#define DELTA_ADJUST 1 21#define DELTA_NO_ADJUST -1 22 23struct ptimer_state 24{ 25 uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot. */ 26 uint64_t limit; 27 uint64_t delta; 28 uint32_t period_frac; 29 int64_t period; 30 int64_t last_event; 31 int64_t next_event; 32 uint8_t policy_mask; 33 QEMUTimer *timer; 34 ptimer_cb callback; 35 void *callback_opaque; 36 /* 37 * These track whether we're in a transaction block, and if we 38 * need to do a timer reload when the block finishes. They don't 39 * need to be migrated because migration can never happen in the 40 * middle of a transaction block. 41 */ 42 bool in_transaction; 43 bool need_reload; 44}; 45 46/* Use a bottom-half routine to avoid reentrancy issues. */ 47static void ptimer_trigger(ptimer_state *s) 48{ 49 s->callback(s->callback_opaque); 50} 51 52static void ptimer_reload(ptimer_state *s, int delta_adjust) 53{ 54 uint32_t period_frac; 55 uint64_t period; 56 uint64_t delta; 57 bool suppress_trigger = false; 58 59 /* 60 * Note that if delta_adjust is 0 then we must be here because of 61 * a count register write or timer start, not because of timer expiry. 62 * In that case the policy might require us to suppress the timer trigger 63 * that we would otherwise generate for a zero delta. 64 */ 65 if (delta_adjust == 0 && 66 (s->policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT)) { 67 suppress_trigger = true; 68 } 69 if (s->delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER) 70 && !suppress_trigger) { 71 ptimer_trigger(s); 72 } 73 74 /* 75 * Note that ptimer_trigger() might call the device callback function, 76 * which can then modify timer state, so we must not cache any fields 77 * from ptimer_state until after we have called it. 78 */ 79 delta = s->delta; 80 period = s->period; 81 period_frac = s->period_frac; 82 83 if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) { 84 delta = s->delta = s->limit; 85 } 86 87 if (s->period == 0) { 88 if (!qtest_enabled()) { 89 fprintf(stderr, "Timer with period zero, disabling\n"); 90 } 91 timer_del(s->timer); 92 s->enabled = 0; 93 return; 94 } 95 96 if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) { 97 if (delta_adjust != DELTA_NO_ADJUST) { 98 delta += delta_adjust; 99 } 100 } 101 102 if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) { 103 if (s->enabled == 1 && s->limit == 0) { 104 delta = 1; 105 } 106 } 107 108 if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) { 109 if (delta_adjust != DELTA_NO_ADJUST) { 110 delta = 1; 111 } 112 } 113 114 if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) { 115 if (s->enabled == 1 && s->limit != 0) { 116 delta = 1; 117 } 118 } 119 120 if (delta == 0) { 121 if (s->enabled == 0) { 122 /* trigger callback disabled the timer already */ 123 return; 124 } 125 if (!qtest_enabled()) { 126 fprintf(stderr, "Timer with delta zero, disabling\n"); 127 } 128 timer_del(s->timer); 129 s->enabled = 0; 130 return; 131 } 132 133 /* 134 * Artificially limit timeout rate to something 135 * achievable under QEMU. Otherwise, QEMU spends all 136 * its time generating timer interrupts, and there 137 * is no forward progress. 138 * About ten microseconds is the fastest that really works 139 * on the current generation of host machines. 140 */ 141 142 if (s->enabled == 1 && (delta * period < 10000) && 143 !icount_enabled() && !qtest_enabled()) { 144 period = 10000 / delta; 145 period_frac = 0; 146 } 147 148 s->last_event = s->next_event; 149 s->next_event = s->last_event + delta * period; 150 if (period_frac) { 151 s->next_event += ((int64_t)period_frac * delta) >> 32; 152 } 153 timer_mod(s->timer, s->next_event); 154} 155 156static void ptimer_tick(void *opaque) 157{ 158 ptimer_state *s = (ptimer_state *)opaque; 159 bool trigger = true; 160 161 /* 162 * We perform all the tick actions within a begin/commit block 163 * because the callback function that ptimer_trigger() calls 164 * might make calls into the ptimer APIs that provoke another 165 * trigger, and we want that to cause the callback function 166 * to be called iteratively, not recursively. 167 */ 168 ptimer_transaction_begin(s); 169 170 if (s->enabled == 2) { 171 s->delta = 0; 172 s->enabled = 0; 173 } else { 174 int delta_adjust = DELTA_ADJUST; 175 176 if (s->delta == 0 || s->limit == 0) { 177 /* If a "continuous trigger" policy is not used and limit == 0, 178 we should error out. delta == 0 means that this tick is 179 caused by a "no immediate reload" policy, so it shouldn't 180 be adjusted. */ 181 delta_adjust = DELTA_NO_ADJUST; 182 } 183 184 if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) { 185 /* Avoid re-trigger on deferred reload if "no immediate trigger" 186 policy isn't used. */ 187 trigger = (delta_adjust == DELTA_ADJUST); 188 } 189 190 s->delta = s->limit; 191 192 ptimer_reload(s, delta_adjust); 193 } 194 195 if (trigger) { 196 ptimer_trigger(s); 197 } 198 199 ptimer_transaction_commit(s); 200} 201 202uint64_t ptimer_get_count(ptimer_state *s) 203{ 204 uint64_t counter; 205 206 if (s->enabled && s->delta != 0) { 207 int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 208 int64_t next = s->next_event; 209 int64_t last = s->last_event; 210 bool expired = (now - next >= 0); 211 bool oneshot = (s->enabled == 2); 212 213 /* Figure out the current counter value. */ 214 if (expired) { 215 /* Prevent timer underflowing if it should already have 216 triggered. */ 217 counter = 0; 218 } else { 219 uint64_t rem; 220 uint64_t div; 221 int clz1, clz2; 222 int shift; 223 uint32_t period_frac = s->period_frac; 224 uint64_t period = s->period; 225 226 if (!oneshot && (s->delta * period < 10000) && 227 !icount_enabled() && !qtest_enabled()) { 228 period = 10000 / s->delta; 229 period_frac = 0; 230 } 231 232 /* We need to divide time by period, where time is stored in 233 rem (64-bit integer) and period is stored in period/period_frac 234 (64.32 fixed point). 235 236 Doing full precision division is hard, so scale values and 237 do a 64-bit division. The result should be rounded down, 238 so that the rounding error never causes the timer to go 239 backwards. 240 */ 241 242 rem = next - now; 243 div = period; 244 245 clz1 = clz64(rem); 246 clz2 = clz64(div); 247 shift = clz1 < clz2 ? clz1 : clz2; 248 249 rem <<= shift; 250 div <<= shift; 251 if (shift >= 32) { 252 div |= ((uint64_t)period_frac << (shift - 32)); 253 } else { 254 if (shift != 0) 255 div |= (period_frac >> (32 - shift)); 256 /* Look at remaining bits of period_frac and round div up if 257 necessary. */ 258 if ((uint32_t)(period_frac << shift)) 259 div += 1; 260 } 261 counter = rem / div; 262 263 if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) { 264 /* Before wrapping around, timer should stay with counter = 0 265 for a one period. */ 266 if (!oneshot && s->delta == s->limit) { 267 if (now == last) { 268 /* Counter == delta here, check whether it was 269 adjusted and if it was, then right now it is 270 that "one period". */ 271 if (counter == s->limit + DELTA_ADJUST) { 272 return 0; 273 } 274 } else if (counter == s->limit) { 275 /* Since the counter is rounded down and now != last, 276 the counter == limit means that delta was adjusted 277 by +1 and right now it is that adjusted period. */ 278 return 0; 279 } 280 } 281 } 282 } 283 284 if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) { 285 /* If now == last then delta == limit, i.e. the counter already 286 represents the correct value. It would be rounded down a 1ns 287 later. */ 288 if (now != last) { 289 counter += 1; 290 } 291 } 292 } else { 293 counter = s->delta; 294 } 295 return counter; 296} 297 298void ptimer_set_count(ptimer_state *s, uint64_t count) 299{ 300 assert(s->in_transaction); 301 s->delta = count; 302 if (s->enabled) { 303 s->need_reload = true; 304 } 305} 306 307void ptimer_run(ptimer_state *s, int oneshot) 308{ 309 bool was_disabled = !s->enabled; 310 311 assert(s->in_transaction); 312 313 if (was_disabled && s->period == 0) { 314 if (!qtest_enabled()) { 315 fprintf(stderr, "Timer with period zero, disabling\n"); 316 } 317 return; 318 } 319 s->enabled = oneshot ? 2 : 1; 320 if (was_disabled) { 321 s->need_reload = true; 322 } 323} 324 325/* Pause a timer. Note that this may cause it to "lose" time, even if it 326 is immediately restarted. */ 327void ptimer_stop(ptimer_state *s) 328{ 329 assert(s->in_transaction); 330 331 if (!s->enabled) 332 return; 333 334 s->delta = ptimer_get_count(s); 335 timer_del(s->timer); 336 s->enabled = 0; 337 s->need_reload = false; 338} 339 340/* Set counter increment interval in nanoseconds. */ 341void ptimer_set_period(ptimer_state *s, int64_t period) 342{ 343 assert(s->in_transaction); 344 s->delta = ptimer_get_count(s); 345 s->period = period; 346 s->period_frac = 0; 347 if (s->enabled) { 348 s->need_reload = true; 349 } 350} 351 352/* Set counter increment interval from a Clock */ 353void ptimer_set_period_from_clock(ptimer_state *s, const Clock *clk, 354 unsigned int divisor) 355{ 356 /* 357 * The raw clock period is a 64-bit value in units of 2^-32 ns; 358 * put another way it's a 32.32 fixed-point ns value. Our internal 359 * representation of the period is 64.32 fixed point ns, so 360 * the conversion is simple. 361 */ 362 uint64_t raw_period = clock_get(clk); 363 uint64_t period_frac; 364 365 assert(s->in_transaction); 366 s->delta = ptimer_get_count(s); 367 s->period = extract64(raw_period, 32, 32); 368 period_frac = extract64(raw_period, 0, 32); 369 /* 370 * divisor specifies a possible frequency divisor between the 371 * clock and the timer, so it is a multiplier on the period. 372 * We do the multiply after splitting the raw period out into 373 * period and frac to avoid having to do a 32*64->96 multiply. 374 */ 375 s->period *= divisor; 376 period_frac *= divisor; 377 s->period += extract64(period_frac, 32, 32); 378 s->period_frac = (uint32_t)period_frac; 379 380 if (s->enabled) { 381 s->need_reload = true; 382 } 383} 384 385/* Set counter frequency in Hz. */ 386void ptimer_set_freq(ptimer_state *s, uint32_t freq) 387{ 388 assert(s->in_transaction); 389 s->delta = ptimer_get_count(s); 390 s->period = 1000000000ll / freq; 391 s->period_frac = (1000000000ll << 32) / freq; 392 if (s->enabled) { 393 s->need_reload = true; 394 } 395} 396 397/* Set the initial countdown value. If reload is nonzero then also set 398 count = limit. */ 399void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload) 400{ 401 assert(s->in_transaction); 402 s->limit = limit; 403 if (reload) 404 s->delta = limit; 405 if (s->enabled && reload) { 406 s->need_reload = true; 407 } 408} 409 410uint64_t ptimer_get_limit(ptimer_state *s) 411{ 412 return s->limit; 413} 414 415void ptimer_transaction_begin(ptimer_state *s) 416{ 417 assert(!s->in_transaction); 418 s->in_transaction = true; 419 s->need_reload = false; 420} 421 422void ptimer_transaction_commit(ptimer_state *s) 423{ 424 assert(s->in_transaction); 425 /* 426 * We must loop here because ptimer_reload() can call the callback 427 * function, which might then update ptimer state in a way that 428 * means we need to do another reload and possibly another callback. 429 * A disabled timer never needs reloading (and if we don't check 430 * this then we loop forever if ptimer_reload() disables the timer). 431 */ 432 while (s->need_reload && s->enabled) { 433 s->need_reload = false; 434 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 435 ptimer_reload(s, 0); 436 } 437 /* Now we've finished reload we can leave the transaction block. */ 438 s->in_transaction = false; 439} 440 441const VMStateDescription vmstate_ptimer = { 442 .name = "ptimer", 443 .version_id = 1, 444 .minimum_version_id = 1, 445 .fields = (VMStateField[]) { 446 VMSTATE_UINT8(enabled, ptimer_state), 447 VMSTATE_UINT64(limit, ptimer_state), 448 VMSTATE_UINT64(delta, ptimer_state), 449 VMSTATE_UINT32(period_frac, ptimer_state), 450 VMSTATE_INT64(period, ptimer_state), 451 VMSTATE_INT64(last_event, ptimer_state), 452 VMSTATE_INT64(next_event, ptimer_state), 453 VMSTATE_TIMER_PTR(timer, ptimer_state), 454 VMSTATE_END_OF_LIST() 455 } 456}; 457 458ptimer_state *ptimer_init(ptimer_cb callback, void *callback_opaque, 459 uint8_t policy_mask) 460{ 461 ptimer_state *s; 462 463 /* The callback function is mandatory. */ 464 assert(callback); 465 466 s = g_new0(ptimer_state, 1); 467 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s); 468 s->policy_mask = policy_mask; 469 s->callback = callback; 470 s->callback_opaque = callback_opaque; 471 472 /* 473 * These two policies are incompatible -- trigger-on-decrement implies 474 * a timer trigger when the count becomes 0, but no-immediate-trigger 475 * implies a trigger when the count stops being 0. 476 */ 477 assert(!((policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) && 478 (policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER))); 479 return s; 480} 481 482void ptimer_free(ptimer_state *s) 483{ 484 timer_free(s->timer); 485 g_free(s); 486}