cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

ptimer.c (14522B)


      1/*
      2 * General purpose implementation of a simple periodic countdown timer.
      3 *
      4 * Copyright (c) 2007 CodeSourcery.
      5 *
      6 * This code is licensed under the GNU LGPL.
      7 */
      8
      9#include "qemu/osdep.h"
     10#include "hw/ptimer.h"
     11#include "migration/vmstate.h"
     12#include "qemu/host-utils.h"
     13#include "sysemu/replay.h"
     14#include "sysemu/cpu-timers.h"
     15#include "sysemu/qtest.h"
     16#include "block/aio.h"
     17#include "sysemu/cpus.h"
     18#include "hw/clock.h"
     19
     20#define DELTA_ADJUST     1
     21#define DELTA_NO_ADJUST -1
     22
     23struct ptimer_state
     24{
     25    uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */
     26    uint64_t limit;
     27    uint64_t delta;
     28    uint32_t period_frac;
     29    int64_t period;
     30    int64_t last_event;
     31    int64_t next_event;
     32    uint8_t policy_mask;
     33    QEMUTimer *timer;
     34    ptimer_cb callback;
     35    void *callback_opaque;
     36    /*
     37     * These track whether we're in a transaction block, and if we
     38     * need to do a timer reload when the block finishes. They don't
     39     * need to be migrated because migration can never happen in the
     40     * middle of a transaction block.
     41     */
     42    bool in_transaction;
     43    bool need_reload;
     44};
     45
     46/* Use a bottom-half routine to avoid reentrancy issues.  */
     47static void ptimer_trigger(ptimer_state *s)
     48{
     49    s->callback(s->callback_opaque);
     50}
     51
     52static void ptimer_reload(ptimer_state *s, int delta_adjust)
     53{
     54    uint32_t period_frac;
     55    uint64_t period;
     56    uint64_t delta;
     57    bool suppress_trigger = false;
     58
     59    /*
     60     * Note that if delta_adjust is 0 then we must be here because of
     61     * a count register write or timer start, not because of timer expiry.
     62     * In that case the policy might require us to suppress the timer trigger
     63     * that we would otherwise generate for a zero delta.
     64     */
     65    if (delta_adjust == 0 &&
     66        (s->policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT)) {
     67        suppress_trigger = true;
     68    }
     69    if (s->delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)
     70        && !suppress_trigger) {
     71        ptimer_trigger(s);
     72    }
     73
     74    /*
     75     * Note that ptimer_trigger() might call the device callback function,
     76     * which can then modify timer state, so we must not cache any fields
     77     * from ptimer_state until after we have called it.
     78     */
     79    delta = s->delta;
     80    period = s->period;
     81    period_frac = s->period_frac;
     82
     83    if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
     84        delta = s->delta = s->limit;
     85    }
     86
     87    if (s->period == 0) {
     88        if (!qtest_enabled()) {
     89            fprintf(stderr, "Timer with period zero, disabling\n");
     90        }
     91        timer_del(s->timer);
     92        s->enabled = 0;
     93        return;
     94    }
     95
     96    if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
     97        if (delta_adjust != DELTA_NO_ADJUST) {
     98            delta += delta_adjust;
     99        }
    100    }
    101
    102    if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) {
    103        if (s->enabled == 1 && s->limit == 0) {
    104            delta = 1;
    105        }
    106    }
    107
    108    if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
    109        if (delta_adjust != DELTA_NO_ADJUST) {
    110            delta = 1;
    111        }
    112    }
    113
    114    if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
    115        if (s->enabled == 1 && s->limit != 0) {
    116            delta = 1;
    117        }
    118    }
    119
    120    if (delta == 0) {
    121        if (s->enabled == 0) {
    122            /* trigger callback disabled the timer already */
    123            return;
    124        }
    125        if (!qtest_enabled()) {
    126            fprintf(stderr, "Timer with delta zero, disabling\n");
    127        }
    128        timer_del(s->timer);
    129        s->enabled = 0;
    130        return;
    131    }
    132
    133    /*
    134     * Artificially limit timeout rate to something
    135     * achievable under QEMU.  Otherwise, QEMU spends all
    136     * its time generating timer interrupts, and there
    137     * is no forward progress.
    138     * About ten microseconds is the fastest that really works
    139     * on the current generation of host machines.
    140     */
    141
    142    if (s->enabled == 1 && (delta * period < 10000) &&
    143        !icount_enabled() && !qtest_enabled()) {
    144        period = 10000 / delta;
    145        period_frac = 0;
    146    }
    147
    148    s->last_event = s->next_event;
    149    s->next_event = s->last_event + delta * period;
    150    if (period_frac) {
    151        s->next_event += ((int64_t)period_frac * delta) >> 32;
    152    }
    153    timer_mod(s->timer, s->next_event);
    154}
    155
    156static void ptimer_tick(void *opaque)
    157{
    158    ptimer_state *s = (ptimer_state *)opaque;
    159    bool trigger = true;
    160
    161    /*
    162     * We perform all the tick actions within a begin/commit block
    163     * because the callback function that ptimer_trigger() calls
    164     * might make calls into the ptimer APIs that provoke another
    165     * trigger, and we want that to cause the callback function
    166     * to be called iteratively, not recursively.
    167     */
    168    ptimer_transaction_begin(s);
    169
    170    if (s->enabled == 2) {
    171        s->delta = 0;
    172        s->enabled = 0;
    173    } else {
    174        int delta_adjust = DELTA_ADJUST;
    175
    176        if (s->delta == 0 || s->limit == 0) {
    177            /* If a "continuous trigger" policy is not used and limit == 0,
    178               we should error out. delta == 0 means that this tick is
    179               caused by a "no immediate reload" policy, so it shouldn't
    180               be adjusted.  */
    181            delta_adjust = DELTA_NO_ADJUST;
    182        }
    183
    184        if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
    185            /* Avoid re-trigger on deferred reload if "no immediate trigger"
    186               policy isn't used.  */
    187            trigger = (delta_adjust == DELTA_ADJUST);
    188        }
    189
    190        s->delta = s->limit;
    191
    192        ptimer_reload(s, delta_adjust);
    193    }
    194
    195    if (trigger) {
    196        ptimer_trigger(s);
    197    }
    198
    199    ptimer_transaction_commit(s);
    200}
    201
    202uint64_t ptimer_get_count(ptimer_state *s)
    203{
    204    uint64_t counter;
    205
    206    if (s->enabled && s->delta != 0) {
    207        int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    208        int64_t next = s->next_event;
    209        int64_t last = s->last_event;
    210        bool expired = (now - next >= 0);
    211        bool oneshot = (s->enabled == 2);
    212
    213        /* Figure out the current counter value.  */
    214        if (expired) {
    215            /* Prevent timer underflowing if it should already have
    216               triggered.  */
    217            counter = 0;
    218        } else {
    219            uint64_t rem;
    220            uint64_t div;
    221            int clz1, clz2;
    222            int shift;
    223            uint32_t period_frac = s->period_frac;
    224            uint64_t period = s->period;
    225
    226            if (!oneshot && (s->delta * period < 10000) &&
    227                !icount_enabled() && !qtest_enabled()) {
    228                period = 10000 / s->delta;
    229                period_frac = 0;
    230            }
    231
    232            /* We need to divide time by period, where time is stored in
    233               rem (64-bit integer) and period is stored in period/period_frac
    234               (64.32 fixed point).
    235
    236               Doing full precision division is hard, so scale values and
    237               do a 64-bit division.  The result should be rounded down,
    238               so that the rounding error never causes the timer to go
    239               backwards.
    240            */
    241
    242            rem = next - now;
    243            div = period;
    244
    245            clz1 = clz64(rem);
    246            clz2 = clz64(div);
    247            shift = clz1 < clz2 ? clz1 : clz2;
    248
    249            rem <<= shift;
    250            div <<= shift;
    251            if (shift >= 32) {
    252                div |= ((uint64_t)period_frac << (shift - 32));
    253            } else {
    254                if (shift != 0)
    255                    div |= (period_frac >> (32 - shift));
    256                /* Look at remaining bits of period_frac and round div up if 
    257                   necessary.  */
    258                if ((uint32_t)(period_frac << shift))
    259                    div += 1;
    260            }
    261            counter = rem / div;
    262
    263            if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
    264                /* Before wrapping around, timer should stay with counter = 0
    265                   for a one period.  */
    266                if (!oneshot && s->delta == s->limit) {
    267                    if (now == last) {
    268                        /* Counter == delta here, check whether it was
    269                           adjusted and if it was, then right now it is
    270                           that "one period".  */
    271                        if (counter == s->limit + DELTA_ADJUST) {
    272                            return 0;
    273                        }
    274                    } else if (counter == s->limit) {
    275                        /* Since the counter is rounded down and now != last,
    276                           the counter == limit means that delta was adjusted
    277                           by +1 and right now it is that adjusted period.  */
    278                        return 0;
    279                    }
    280                }
    281            }
    282        }
    283
    284        if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) {
    285            /* If now == last then delta == limit, i.e. the counter already
    286               represents the correct value. It would be rounded down a 1ns
    287               later.  */
    288            if (now != last) {
    289                counter += 1;
    290            }
    291        }
    292    } else {
    293        counter = s->delta;
    294    }
    295    return counter;
    296}
    297
    298void ptimer_set_count(ptimer_state *s, uint64_t count)
    299{
    300    assert(s->in_transaction);
    301    s->delta = count;
    302    if (s->enabled) {
    303        s->need_reload = true;
    304    }
    305}
    306
    307void ptimer_run(ptimer_state *s, int oneshot)
    308{
    309    bool was_disabled = !s->enabled;
    310
    311    assert(s->in_transaction);
    312
    313    if (was_disabled && s->period == 0) {
    314        if (!qtest_enabled()) {
    315            fprintf(stderr, "Timer with period zero, disabling\n");
    316        }
    317        return;
    318    }
    319    s->enabled = oneshot ? 2 : 1;
    320    if (was_disabled) {
    321        s->need_reload = true;
    322    }
    323}
    324
    325/* Pause a timer.  Note that this may cause it to "lose" time, even if it
    326   is immediately restarted.  */
    327void ptimer_stop(ptimer_state *s)
    328{
    329    assert(s->in_transaction);
    330
    331    if (!s->enabled)
    332        return;
    333
    334    s->delta = ptimer_get_count(s);
    335    timer_del(s->timer);
    336    s->enabled = 0;
    337    s->need_reload = false;
    338}
    339
    340/* Set counter increment interval in nanoseconds.  */
    341void ptimer_set_period(ptimer_state *s, int64_t period)
    342{
    343    assert(s->in_transaction);
    344    s->delta = ptimer_get_count(s);
    345    s->period = period;
    346    s->period_frac = 0;
    347    if (s->enabled) {
    348        s->need_reload = true;
    349    }
    350}
    351
    352/* Set counter increment interval from a Clock */
    353void ptimer_set_period_from_clock(ptimer_state *s, const Clock *clk,
    354                                  unsigned int divisor)
    355{
    356    /*
    357     * The raw clock period is a 64-bit value in units of 2^-32 ns;
    358     * put another way it's a 32.32 fixed-point ns value. Our internal
    359     * representation of the period is 64.32 fixed point ns, so
    360     * the conversion is simple.
    361     */
    362    uint64_t raw_period = clock_get(clk);
    363    uint64_t period_frac;
    364
    365    assert(s->in_transaction);
    366    s->delta = ptimer_get_count(s);
    367    s->period = extract64(raw_period, 32, 32);
    368    period_frac = extract64(raw_period, 0, 32);
    369    /*
    370     * divisor specifies a possible frequency divisor between the
    371     * clock and the timer, so it is a multiplier on the period.
    372     * We do the multiply after splitting the raw period out into
    373     * period and frac to avoid having to do a 32*64->96 multiply.
    374     */
    375    s->period *= divisor;
    376    period_frac *= divisor;
    377    s->period += extract64(period_frac, 32, 32);
    378    s->period_frac = (uint32_t)period_frac;
    379
    380    if (s->enabled) {
    381        s->need_reload = true;
    382    }
    383}
    384
    385/* Set counter frequency in Hz.  */
    386void ptimer_set_freq(ptimer_state *s, uint32_t freq)
    387{
    388    assert(s->in_transaction);
    389    s->delta = ptimer_get_count(s);
    390    s->period = 1000000000ll / freq;
    391    s->period_frac = (1000000000ll << 32) / freq;
    392    if (s->enabled) {
    393        s->need_reload = true;
    394    }
    395}
    396
    397/* Set the initial countdown value.  If reload is nonzero then also set
    398   count = limit.  */
    399void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
    400{
    401    assert(s->in_transaction);
    402    s->limit = limit;
    403    if (reload)
    404        s->delta = limit;
    405    if (s->enabled && reload) {
    406        s->need_reload = true;
    407    }
    408}
    409
    410uint64_t ptimer_get_limit(ptimer_state *s)
    411{
    412    return s->limit;
    413}
    414
    415void ptimer_transaction_begin(ptimer_state *s)
    416{
    417    assert(!s->in_transaction);
    418    s->in_transaction = true;
    419    s->need_reload = false;
    420}
    421
    422void ptimer_transaction_commit(ptimer_state *s)
    423{
    424    assert(s->in_transaction);
    425    /*
    426     * We must loop here because ptimer_reload() can call the callback
    427     * function, which might then update ptimer state in a way that
    428     * means we need to do another reload and possibly another callback.
    429     * A disabled timer never needs reloading (and if we don't check
    430     * this then we loop forever if ptimer_reload() disables the timer).
    431     */
    432    while (s->need_reload && s->enabled) {
    433        s->need_reload = false;
    434        s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    435        ptimer_reload(s, 0);
    436    }
    437    /* Now we've finished reload we can leave the transaction block. */
    438    s->in_transaction = false;
    439}
    440
    441const VMStateDescription vmstate_ptimer = {
    442    .name = "ptimer",
    443    .version_id = 1,
    444    .minimum_version_id = 1,
    445    .fields = (VMStateField[]) {
    446        VMSTATE_UINT8(enabled, ptimer_state),
    447        VMSTATE_UINT64(limit, ptimer_state),
    448        VMSTATE_UINT64(delta, ptimer_state),
    449        VMSTATE_UINT32(period_frac, ptimer_state),
    450        VMSTATE_INT64(period, ptimer_state),
    451        VMSTATE_INT64(last_event, ptimer_state),
    452        VMSTATE_INT64(next_event, ptimer_state),
    453        VMSTATE_TIMER_PTR(timer, ptimer_state),
    454        VMSTATE_END_OF_LIST()
    455    }
    456};
    457
    458ptimer_state *ptimer_init(ptimer_cb callback, void *callback_opaque,
    459                          uint8_t policy_mask)
    460{
    461    ptimer_state *s;
    462
    463    /* The callback function is mandatory. */
    464    assert(callback);
    465
    466    s = g_new0(ptimer_state, 1);
    467    s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
    468    s->policy_mask = policy_mask;
    469    s->callback = callback;
    470    s->callback_opaque = callback_opaque;
    471
    472    /*
    473     * These two policies are incompatible -- trigger-on-decrement implies
    474     * a timer trigger when the count becomes 0, but no-immediate-trigger
    475     * implies a trigger when the count stops being 0.
    476     */
    477    assert(!((policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) &&
    478             (policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)));
    479    return s;
    480}
    481
    482void ptimer_free(ptimer_state *s)
    483{
    484    timer_free(s->timer);
    485    g_free(s);
    486}