cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

smbus_eeprom.c (9302B)


      1/*
      2 * QEMU SMBus EEPROM device
      3 *
      4 * Copyright (c) 2007 Arastra, Inc.
      5 *
      6 * Permission is hereby granted, free of charge, to any person obtaining a copy
      7 * of this software and associated documentation files (the "Software"), to deal
      8 * in the Software without restriction, including without limitation the rights
      9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     10 * copies of the Software, and to permit persons to whom the Software is
     11 * furnished to do so, subject to the following conditions:
     12 *
     13 * The above copyright notice and this permission notice shall be included in
     14 * all copies or substantial portions of the Software.
     15 *
     16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
     19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     22 * THE SOFTWARE.
     23 */
     24
     25#include "qemu/osdep.h"
     26#include "qemu/units.h"
     27#include "qapi/error.h"
     28#include "hw/boards.h"
     29#include "hw/i2c/i2c.h"
     30#include "hw/i2c/smbus_slave.h"
     31#include "hw/qdev-properties.h"
     32#include "migration/vmstate.h"
     33#include "hw/i2c/smbus_eeprom.h"
     34#include "qom/object.h"
     35
     36//#define DEBUG
     37
     38#define TYPE_SMBUS_EEPROM "smbus-eeprom"
     39
     40OBJECT_DECLARE_SIMPLE_TYPE(SMBusEEPROMDevice, SMBUS_EEPROM)
     41
     42#define SMBUS_EEPROM_SIZE 256
     43
     44struct SMBusEEPROMDevice {
     45    SMBusDevice smbusdev;
     46    uint8_t data[SMBUS_EEPROM_SIZE];
     47    uint8_t *init_data;
     48    uint8_t offset;
     49    bool accessed;
     50};
     51
     52static uint8_t eeprom_receive_byte(SMBusDevice *dev)
     53{
     54    SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
     55    uint8_t *data = eeprom->data;
     56    uint8_t val = data[eeprom->offset++];
     57
     58    eeprom->accessed = true;
     59#ifdef DEBUG
     60    printf("eeprom_receive_byte: addr=0x%02x val=0x%02x\n",
     61           dev->i2c.address, val);
     62#endif
     63    return val;
     64}
     65
     66static int eeprom_write_data(SMBusDevice *dev, uint8_t *buf, uint8_t len)
     67{
     68    SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
     69    uint8_t *data = eeprom->data;
     70
     71    eeprom->accessed = true;
     72#ifdef DEBUG
     73    printf("eeprom_write_byte: addr=0x%02x cmd=0x%02x val=0x%02x\n",
     74           dev->i2c.address, buf[0], buf[1]);
     75#endif
     76    /* len is guaranteed to be > 0 */
     77    eeprom->offset = buf[0];
     78    buf++;
     79    len--;
     80
     81    for (; len > 0; len--) {
     82        data[eeprom->offset] = *buf++;
     83        eeprom->offset = (eeprom->offset + 1) % SMBUS_EEPROM_SIZE;
     84    }
     85
     86    return 0;
     87}
     88
     89static bool smbus_eeprom_vmstate_needed(void *opaque)
     90{
     91    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
     92    SMBusEEPROMDevice *eeprom = opaque;
     93
     94    return (eeprom->accessed || smbus_vmstate_needed(&eeprom->smbusdev)) &&
     95        !mc->smbus_no_migration_support;
     96}
     97
     98static const VMStateDescription vmstate_smbus_eeprom = {
     99    .name = "smbus-eeprom",
    100    .version_id = 1,
    101    .minimum_version_id = 1,
    102    .needed = smbus_eeprom_vmstate_needed,
    103    .fields      = (VMStateField[]) {
    104        VMSTATE_SMBUS_DEVICE(smbusdev, SMBusEEPROMDevice),
    105        VMSTATE_UINT8_ARRAY(data, SMBusEEPROMDevice, SMBUS_EEPROM_SIZE),
    106        VMSTATE_UINT8(offset, SMBusEEPROMDevice),
    107        VMSTATE_BOOL(accessed, SMBusEEPROMDevice),
    108        VMSTATE_END_OF_LIST()
    109    }
    110};
    111
    112/*
    113 * Reset the EEPROM contents to the initial state on a reset.  This
    114 * isn't really how an EEPROM works, of course, but the general
    115 * principle of QEMU is to restore function on reset to what it would
    116 * be if QEMU was stopped and started.
    117 *
    118 * The proper thing to do would be to have a backing blockdev to hold
    119 * the contents and restore that on startup, and not do this on reset.
    120 * But until that time, act as if we had been stopped and restarted.
    121 */
    122static void smbus_eeprom_reset(DeviceState *dev)
    123{
    124    SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
    125
    126    memcpy(eeprom->data, eeprom->init_data, SMBUS_EEPROM_SIZE);
    127    eeprom->offset = 0;
    128}
    129
    130static void smbus_eeprom_realize(DeviceState *dev, Error **errp)
    131{
    132    SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
    133
    134    smbus_eeprom_reset(dev);
    135    if (eeprom->init_data == NULL) {
    136        error_setg(errp, "init_data cannot be NULL");
    137    }
    138}
    139
    140static void smbus_eeprom_class_initfn(ObjectClass *klass, void *data)
    141{
    142    DeviceClass *dc = DEVICE_CLASS(klass);
    143    SMBusDeviceClass *sc = SMBUS_DEVICE_CLASS(klass);
    144
    145    dc->realize = smbus_eeprom_realize;
    146    dc->reset = smbus_eeprom_reset;
    147    sc->receive_byte = eeprom_receive_byte;
    148    sc->write_data = eeprom_write_data;
    149    dc->vmsd = &vmstate_smbus_eeprom;
    150    /* Reason: init_data */
    151    dc->user_creatable = false;
    152}
    153
    154static const TypeInfo smbus_eeprom_info = {
    155    .name          = TYPE_SMBUS_EEPROM,
    156    .parent        = TYPE_SMBUS_DEVICE,
    157    .instance_size = sizeof(SMBusEEPROMDevice),
    158    .class_init    = smbus_eeprom_class_initfn,
    159};
    160
    161static void smbus_eeprom_register_types(void)
    162{
    163    type_register_static(&smbus_eeprom_info);
    164}
    165
    166type_init(smbus_eeprom_register_types)
    167
    168void smbus_eeprom_init_one(I2CBus *smbus, uint8_t address, uint8_t *eeprom_buf)
    169{
    170    DeviceState *dev;
    171
    172    dev = qdev_new(TYPE_SMBUS_EEPROM);
    173    qdev_prop_set_uint8(dev, "address", address);
    174    /* FIXME: use an array of byte or block backend property? */
    175    SMBUS_EEPROM(dev)->init_data = eeprom_buf;
    176    qdev_realize_and_unref(dev, (BusState *)smbus, &error_fatal);
    177}
    178
    179void smbus_eeprom_init(I2CBus *smbus, int nb_eeprom,
    180                       const uint8_t *eeprom_spd, int eeprom_spd_size)
    181{
    182    int i;
    183     /* XXX: make this persistent */
    184
    185    assert(nb_eeprom <= 8);
    186    uint8_t *eeprom_buf = g_malloc0(8 * SMBUS_EEPROM_SIZE);
    187    if (eeprom_spd_size > 0) {
    188        memcpy(eeprom_buf, eeprom_spd, eeprom_spd_size);
    189    }
    190
    191    for (i = 0; i < nb_eeprom; i++) {
    192        smbus_eeprom_init_one(smbus, 0x50 + i,
    193                              eeprom_buf + (i * SMBUS_EEPROM_SIZE));
    194    }
    195}
    196
    197/* Generate SDRAM SPD EEPROM data describing a module of type and size */
    198uint8_t *spd_data_generate(enum sdram_type type, ram_addr_t ram_size)
    199{
    200    uint8_t *spd;
    201    uint8_t nbanks;
    202    uint16_t density;
    203    uint32_t size;
    204    int min_log2, max_log2, sz_log2;
    205    int i;
    206
    207    switch (type) {
    208    case SDR:
    209        min_log2 = 2;
    210        max_log2 = 9;
    211        break;
    212    case DDR:
    213        min_log2 = 5;
    214        max_log2 = 12;
    215        break;
    216    case DDR2:
    217        min_log2 = 7;
    218        max_log2 = 14;
    219        break;
    220    default:
    221        g_assert_not_reached();
    222    }
    223    size = ram_size >> 20; /* work in terms of megabytes */
    224    sz_log2 = 31 - clz32(size);
    225    size = 1U << sz_log2;
    226    assert(ram_size == size * MiB);
    227    assert(sz_log2 >= min_log2);
    228
    229    nbanks = 1;
    230    while (sz_log2 > max_log2 && nbanks < 8) {
    231        sz_log2--;
    232        nbanks *= 2;
    233    }
    234
    235    assert(size == (1ULL << sz_log2) * nbanks);
    236
    237    /* split to 2 banks if possible to avoid a bug in MIPS Malta firmware */
    238    if (nbanks == 1 && sz_log2 > min_log2) {
    239        sz_log2--;
    240        nbanks++;
    241    }
    242
    243    density = 1ULL << (sz_log2 - 2);
    244    switch (type) {
    245    case DDR2:
    246        density = (density & 0xe0) | (density >> 8 & 0x1f);
    247        break;
    248    case DDR:
    249        density = (density & 0xf8) | (density >> 8 & 0x07);
    250        break;
    251    case SDR:
    252    default:
    253        density &= 0xff;
    254        break;
    255    }
    256
    257    spd = g_malloc0(256);
    258    spd[0] = 128;   /* data bytes in EEPROM */
    259    spd[1] = 8;     /* log2 size of EEPROM */
    260    spd[2] = type;
    261    spd[3] = 13;    /* row address bits */
    262    spd[4] = 10;    /* column address bits */
    263    spd[5] = (type == DDR2 ? nbanks - 1 : nbanks);
    264    spd[6] = 64;    /* module data width */
    265                    /* reserved / data width high */
    266    spd[8] = 4;     /* interface voltage level */
    267    spd[9] = 0x25;  /* highest CAS latency */
    268    spd[10] = 1;    /* access time */
    269                    /* DIMM configuration 0 = non-ECC */
    270    spd[12] = 0x82; /* refresh requirements */
    271    spd[13] = 8;    /* primary SDRAM width */
    272                    /* ECC SDRAM width */
    273    spd[15] = (type == DDR2 ? 0 : 1); /* reserved / delay for random col rd */
    274    spd[16] = 12;   /* burst lengths supported */
    275    spd[17] = 4;    /* banks per SDRAM device */
    276    spd[18] = 12;   /* ~CAS latencies supported */
    277    spd[19] = (type == DDR2 ? 0 : 1); /* reserved / ~CS latencies supported */
    278    spd[20] = 2;    /* DIMM type / ~WE latencies */
    279    spd[21] = (type < DDR2 ? 0x20 : 0); /* module features */
    280                    /* memory chip features */
    281    spd[23] = 0x12; /* clock cycle time @ medium CAS latency */
    282                    /* data access time */
    283                    /* clock cycle time @ short CAS latency */
    284                    /* data access time */
    285    spd[27] = 20;   /* min. row precharge time */
    286    spd[28] = 15;   /* min. row active row delay */
    287    spd[29] = 20;   /* min. ~RAS to ~CAS delay */
    288    spd[30] = 45;   /* min. active to precharge time */
    289    spd[31] = density;
    290    spd[32] = 20;   /* addr/cmd setup time */
    291    spd[33] = 8;    /* addr/cmd hold time */
    292    spd[34] = 20;   /* data input setup time */
    293    spd[35] = 8;    /* data input hold time */
    294
    295    /* checksum */
    296    for (i = 0; i < 63; i++) {
    297        spd[63] += spd[i];
    298    }
    299    return spd;
    300}