fw_cfg.c (7776B)
1/* 2 * QEMU fw_cfg helpers (X86 specific) 3 * 4 * Copyright (c) 2019 Red Hat, Inc. 5 * 6 * Author: 7 * Philippe Mathieu-Daudé <philmd@redhat.com> 8 * 9 * SPDX-License-Identifier: GPL-2.0-or-later 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 */ 14 15#include "qemu/osdep.h" 16#include "sysemu/numa.h" 17#include "hw/acpi/acpi.h" 18#include "hw/acpi/aml-build.h" 19#include "hw/firmware/smbios.h" 20#include "hw/i386/fw_cfg.h" 21#include "hw/timer/hpet.h" 22#include "hw/nvram/fw_cfg.h" 23#include "e820_memory_layout.h" 24#include "kvm/kvm_i386.h" 25#include "qapi/error.h" 26#include CONFIG_DEVICES 27 28struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 29 30const char *fw_cfg_arch_key_name(uint16_t key) 31{ 32 static const struct { 33 uint16_t key; 34 const char *name; 35 } fw_cfg_arch_wellknown_keys[] = { 36 {FW_CFG_ACPI_TABLES, "acpi_tables"}, 37 {FW_CFG_SMBIOS_ENTRIES, "smbios_entries"}, 38 {FW_CFG_IRQ0_OVERRIDE, "irq0_override"}, 39 {FW_CFG_E820_TABLE, "e820_table"}, 40 {FW_CFG_HPET, "hpet"}, 41 }; 42 43 for (size_t i = 0; i < ARRAY_SIZE(fw_cfg_arch_wellknown_keys); i++) { 44 if (fw_cfg_arch_wellknown_keys[i].key == key) { 45 return fw_cfg_arch_wellknown_keys[i].name; 46 } 47 } 48 return NULL; 49} 50 51void fw_cfg_build_smbios(MachineState *ms, FWCfgState *fw_cfg) 52{ 53#ifdef CONFIG_SMBIOS 54 uint8_t *smbios_tables, *smbios_anchor; 55 size_t smbios_tables_len, smbios_anchor_len; 56 struct smbios_phys_mem_area *mem_array; 57 unsigned i, array_count; 58 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 59 60 /* tell smbios about cpuid version and features */ 61 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); 62 63 smbios_tables = smbios_get_table_legacy(ms, &smbios_tables_len); 64 if (smbios_tables) { 65 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES, 66 smbios_tables, smbios_tables_len); 67 } 68 69 /* build the array of physical mem area from e820 table */ 70 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries()); 71 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) { 72 uint64_t addr, len; 73 74 if (e820_get_entry(i, E820_RAM, &addr, &len)) { 75 mem_array[array_count].address = addr; 76 mem_array[array_count].length = len; 77 array_count++; 78 } 79 } 80 smbios_get_tables(ms, mem_array, array_count, 81 &smbios_tables, &smbios_tables_len, 82 &smbios_anchor, &smbios_anchor_len, 83 &error_fatal); 84 g_free(mem_array); 85 86 if (smbios_anchor) { 87 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables", 88 smbios_tables, smbios_tables_len); 89 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor", 90 smbios_anchor, smbios_anchor_len); 91 } 92#endif 93} 94 95FWCfgState *fw_cfg_arch_create(MachineState *ms, 96 uint16_t boot_cpus, 97 uint16_t apic_id_limit) 98{ 99 FWCfgState *fw_cfg; 100 uint64_t *numa_fw_cfg; 101 int i; 102 MachineClass *mc = MACHINE_GET_CLASS(ms); 103 const CPUArchIdList *cpus = mc->possible_cpu_arch_ids(ms); 104 int nb_numa_nodes = ms->numa_state->num_nodes; 105 106 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, 107 &address_space_memory); 108 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, boot_cpus); 109 110 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 111 * 112 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for 113 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table, 114 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface 115 * for CPU hotplug also uses APIC ID and not "CPU index". 116 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs", 117 * but the "limit to the APIC ID values SeaBIOS may see". 118 * 119 * So for compatibility reasons with old BIOSes we are stuck with 120 * "etc/max-cpus" actually being apic_id_limit 121 */ 122 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, apic_id_limit); 123 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, ms->ram_size); 124#ifdef CONFIG_ACPI 125 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 126 acpi_tables, acpi_tables_len); 127#endif 128 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, 1); 129 130 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 131 &e820_reserve, sizeof(e820_reserve)); 132 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, 133 sizeof(struct e820_entry) * e820_get_num_entries()); 134 135 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 136 /* allocate memory for the NUMA channel: one (64bit) word for the number 137 * of nodes, one word for each VCPU->node and one word for each node to 138 * hold the amount of memory. 139 */ 140 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes); 141 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 142 for (i = 0; i < cpus->len; i++) { 143 unsigned int apic_id = cpus->cpus[i].arch_id; 144 assert(apic_id < apic_id_limit); 145 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id); 146 } 147 for (i = 0; i < nb_numa_nodes; i++) { 148 numa_fw_cfg[apic_id_limit + 1 + i] = 149 cpu_to_le64(ms->numa_state->nodes[i].node_mem); 150 } 151 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 152 (1 + apic_id_limit + nb_numa_nodes) * 153 sizeof(*numa_fw_cfg)); 154 155 return fw_cfg; 156} 157 158void fw_cfg_build_feature_control(MachineState *ms, FWCfgState *fw_cfg) 159{ 160 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 161 CPUX86State *env = &cpu->env; 162 uint32_t unused, ebx, ecx, edx; 163 uint64_t feature_control_bits = 0; 164 uint64_t *val; 165 166 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx); 167 if (ecx & CPUID_EXT_VMX) { 168 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 169 } 170 171 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) == 172 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) && 173 (env->mcg_cap & MCG_LMCE_P)) { 174 feature_control_bits |= FEATURE_CONTROL_LMCE; 175 } 176 177 if (env->cpuid_level >= 7) { 178 cpu_x86_cpuid(env, 0x7, 0, &unused, &ebx, &ecx, &unused); 179 if (ebx & CPUID_7_0_EBX_SGX) { 180 feature_control_bits |= FEATURE_CONTROL_SGX; 181 } 182 if (ecx & CPUID_7_0_ECX_SGX_LC) { 183 feature_control_bits |= FEATURE_CONTROL_SGX_LC; 184 } 185 } 186 187 if (!feature_control_bits) { 188 return; 189 } 190 191 val = g_malloc(sizeof(*val)); 192 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED); 193 fw_cfg_add_file(fw_cfg, "etc/msr_feature_control", val, sizeof(*val)); 194} 195 196void fw_cfg_add_acpi_dsdt(Aml *scope, FWCfgState *fw_cfg) 197{ 198 /* 199 * when using port i/o, the 8-bit data register *always* overlaps 200 * with half of the 16-bit control register. Hence, the total size 201 * of the i/o region used is FW_CFG_CTL_SIZE; when using DMA, the 202 * DMA control register is located at FW_CFG_DMA_IO_BASE + 4 203 */ 204 Object *obj = OBJECT(fw_cfg); 205 uint8_t io_size = object_property_get_bool(obj, "dma_enabled", NULL) ? 206 ROUND_UP(FW_CFG_CTL_SIZE, 4) + sizeof(dma_addr_t) : 207 FW_CFG_CTL_SIZE; 208 Aml *dev = aml_device("FWCF"); 209 Aml *crs = aml_resource_template(); 210 211 aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0002"))); 212 213 /* device present, functioning, decoding, not shown in UI */ 214 aml_append(dev, aml_name_decl("_STA", aml_int(0xB))); 215 216 aml_append(crs, 217 aml_io(AML_DECODE16, FW_CFG_IO_BASE, FW_CFG_IO_BASE, 0x01, io_size)); 218 219 aml_append(dev, aml_name_decl("_CRS", crs)); 220 aml_append(scope, dev); 221}