cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

intel_iommu.c (125740B)


      1/*
      2 * QEMU emulation of an Intel IOMMU (VT-d)
      3 *   (DMA Remapping device)
      4 *
      5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
      6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
      7 *
      8 * This program is free software; you can redistribute it and/or modify
      9 * it under the terms of the GNU General Public License as published by
     10 * the Free Software Foundation; either version 2 of the License, or
     11 * (at your option) any later version.
     12
     13 * This program is distributed in the hope that it will be useful,
     14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     16 * GNU General Public License for more details.
     17
     18 * You should have received a copy of the GNU General Public License along
     19 * with this program; if not, see <http://www.gnu.org/licenses/>.
     20 */
     21
     22#include "qemu/osdep.h"
     23#include "qemu/error-report.h"
     24#include "qemu/main-loop.h"
     25#include "qapi/error.h"
     26#include "hw/sysbus.h"
     27#include "intel_iommu_internal.h"
     28#include "hw/pci/pci.h"
     29#include "hw/pci/pci_bus.h"
     30#include "hw/qdev-properties.h"
     31#include "hw/i386/pc.h"
     32#include "hw/i386/apic-msidef.h"
     33#include "hw/i386/x86-iommu.h"
     34#include "hw/pci-host/q35.h"
     35#include "sysemu/kvm.h"
     36#include "sysemu/dma.h"
     37#include "sysemu/sysemu.h"
     38#include "hw/i386/apic_internal.h"
     39#include "kvm/kvm_i386.h"
     40#include "migration/vmstate.h"
     41#include "trace.h"
     42
     43/* context entry operations */
     44#define VTD_CE_GET_RID2PASID(ce) \
     45    ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
     46#define VTD_CE_GET_PASID_DIR_TABLE(ce) \
     47    ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
     48
     49/* pe operations */
     50#define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
     51#define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
     52#define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
     53    if (ret_fr) {                                                             \
     54        ret_fr = -ret_fr;                                                     \
     55        if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {                   \
     56            trace_vtd_fault_disabled();                                       \
     57        } else {                                                              \
     58            vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);      \
     59        }                                                                     \
     60        goto error;                                                           \
     61    }                                                                         \
     62}
     63
     64static void vtd_address_space_refresh_all(IntelIOMMUState *s);
     65static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
     66
     67static void vtd_panic_require_caching_mode(void)
     68{
     69    error_report("We need to set caching-mode=on for intel-iommu to enable "
     70                 "device assignment with IOMMU protection.");
     71    exit(1);
     72}
     73
     74static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
     75                            uint64_t wmask, uint64_t w1cmask)
     76{
     77    stq_le_p(&s->csr[addr], val);
     78    stq_le_p(&s->wmask[addr], wmask);
     79    stq_le_p(&s->w1cmask[addr], w1cmask);
     80}
     81
     82static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
     83{
     84    stq_le_p(&s->womask[addr], mask);
     85}
     86
     87static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
     88                            uint32_t wmask, uint32_t w1cmask)
     89{
     90    stl_le_p(&s->csr[addr], val);
     91    stl_le_p(&s->wmask[addr], wmask);
     92    stl_le_p(&s->w1cmask[addr], w1cmask);
     93}
     94
     95static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
     96{
     97    stl_le_p(&s->womask[addr], mask);
     98}
     99
    100/* "External" get/set operations */
    101static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
    102{
    103    uint64_t oldval = ldq_le_p(&s->csr[addr]);
    104    uint64_t wmask = ldq_le_p(&s->wmask[addr]);
    105    uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
    106    stq_le_p(&s->csr[addr],
    107             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
    108}
    109
    110static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
    111{
    112    uint32_t oldval = ldl_le_p(&s->csr[addr]);
    113    uint32_t wmask = ldl_le_p(&s->wmask[addr]);
    114    uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
    115    stl_le_p(&s->csr[addr],
    116             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
    117}
    118
    119static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
    120{
    121    uint64_t val = ldq_le_p(&s->csr[addr]);
    122    uint64_t womask = ldq_le_p(&s->womask[addr]);
    123    return val & ~womask;
    124}
    125
    126static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
    127{
    128    uint32_t val = ldl_le_p(&s->csr[addr]);
    129    uint32_t womask = ldl_le_p(&s->womask[addr]);
    130    return val & ~womask;
    131}
    132
    133/* "Internal" get/set operations */
    134static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
    135{
    136    return ldq_le_p(&s->csr[addr]);
    137}
    138
    139static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
    140{
    141    return ldl_le_p(&s->csr[addr]);
    142}
    143
    144static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
    145{
    146    stq_le_p(&s->csr[addr], val);
    147}
    148
    149static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
    150                                        uint32_t clear, uint32_t mask)
    151{
    152    uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
    153    stl_le_p(&s->csr[addr], new_val);
    154    return new_val;
    155}
    156
    157static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
    158                                        uint64_t clear, uint64_t mask)
    159{
    160    uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
    161    stq_le_p(&s->csr[addr], new_val);
    162    return new_val;
    163}
    164
    165static inline void vtd_iommu_lock(IntelIOMMUState *s)
    166{
    167    qemu_mutex_lock(&s->iommu_lock);
    168}
    169
    170static inline void vtd_iommu_unlock(IntelIOMMUState *s)
    171{
    172    qemu_mutex_unlock(&s->iommu_lock);
    173}
    174
    175static void vtd_update_scalable_state(IntelIOMMUState *s)
    176{
    177    uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
    178
    179    if (s->scalable_mode) {
    180        s->root_scalable = val & VTD_RTADDR_SMT;
    181    }
    182}
    183
    184/* Whether the address space needs to notify new mappings */
    185static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
    186{
    187    return as->notifier_flags & IOMMU_NOTIFIER_MAP;
    188}
    189
    190/* GHashTable functions */
    191static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
    192{
    193    return *((const uint64_t *)v1) == *((const uint64_t *)v2);
    194}
    195
    196static guint vtd_uint64_hash(gconstpointer v)
    197{
    198    return (guint)*(const uint64_t *)v;
    199}
    200
    201static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
    202                                          gpointer user_data)
    203{
    204    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
    205    uint16_t domain_id = *(uint16_t *)user_data;
    206    return entry->domain_id == domain_id;
    207}
    208
    209/* The shift of an addr for a certain level of paging structure */
    210static inline uint32_t vtd_slpt_level_shift(uint32_t level)
    211{
    212    assert(level != 0);
    213    return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
    214}
    215
    216static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
    217{
    218    return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
    219}
    220
    221static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
    222                                        gpointer user_data)
    223{
    224    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
    225    VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
    226    uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
    227    uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
    228    return (entry->domain_id == info->domain_id) &&
    229            (((entry->gfn & info->mask) == gfn) ||
    230             (entry->gfn == gfn_tlb));
    231}
    232
    233/* Reset all the gen of VTDAddressSpace to zero and set the gen of
    234 * IntelIOMMUState to 1.  Must be called with IOMMU lock held.
    235 */
    236static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
    237{
    238    VTDAddressSpace *vtd_as;
    239    VTDBus *vtd_bus;
    240    GHashTableIter bus_it;
    241    uint32_t devfn_it;
    242
    243    trace_vtd_context_cache_reset();
    244
    245    g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
    246
    247    while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
    248        for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
    249            vtd_as = vtd_bus->dev_as[devfn_it];
    250            if (!vtd_as) {
    251                continue;
    252            }
    253            vtd_as->context_cache_entry.context_cache_gen = 0;
    254        }
    255    }
    256    s->context_cache_gen = 1;
    257}
    258
    259/* Must be called with IOMMU lock held. */
    260static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
    261{
    262    assert(s->iotlb);
    263    g_hash_table_remove_all(s->iotlb);
    264}
    265
    266static void vtd_reset_iotlb(IntelIOMMUState *s)
    267{
    268    vtd_iommu_lock(s);
    269    vtd_reset_iotlb_locked(s);
    270    vtd_iommu_unlock(s);
    271}
    272
    273static void vtd_reset_caches(IntelIOMMUState *s)
    274{
    275    vtd_iommu_lock(s);
    276    vtd_reset_iotlb_locked(s);
    277    vtd_reset_context_cache_locked(s);
    278    vtd_iommu_unlock(s);
    279}
    280
    281static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
    282                                  uint32_t level)
    283{
    284    return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
    285           ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
    286}
    287
    288static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
    289{
    290    return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
    291}
    292
    293/* Must be called with IOMMU lock held */
    294static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
    295                                       hwaddr addr)
    296{
    297    VTDIOTLBEntry *entry;
    298    uint64_t key;
    299    int level;
    300
    301    for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
    302        key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
    303                                source_id, level);
    304        entry = g_hash_table_lookup(s->iotlb, &key);
    305        if (entry) {
    306            goto out;
    307        }
    308    }
    309
    310out:
    311    return entry;
    312}
    313
    314/* Must be with IOMMU lock held */
    315static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
    316                             uint16_t domain_id, hwaddr addr, uint64_t slpte,
    317                             uint8_t access_flags, uint32_t level)
    318{
    319    VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
    320    uint64_t *key = g_malloc(sizeof(*key));
    321    uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
    322
    323    trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
    324    if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
    325        trace_vtd_iotlb_reset("iotlb exceeds size limit");
    326        vtd_reset_iotlb_locked(s);
    327    }
    328
    329    entry->gfn = gfn;
    330    entry->domain_id = domain_id;
    331    entry->slpte = slpte;
    332    entry->access_flags = access_flags;
    333    entry->mask = vtd_slpt_level_page_mask(level);
    334    *key = vtd_get_iotlb_key(gfn, source_id, level);
    335    g_hash_table_replace(s->iotlb, key, entry);
    336}
    337
    338/* Given the reg addr of both the message data and address, generate an
    339 * interrupt via MSI.
    340 */
    341static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
    342                                   hwaddr mesg_data_reg)
    343{
    344    MSIMessage msi;
    345
    346    assert(mesg_data_reg < DMAR_REG_SIZE);
    347    assert(mesg_addr_reg < DMAR_REG_SIZE);
    348
    349    msi.address = vtd_get_long_raw(s, mesg_addr_reg);
    350    msi.data = vtd_get_long_raw(s, mesg_data_reg);
    351
    352    trace_vtd_irq_generate(msi.address, msi.data);
    353
    354    apic_get_class()->send_msi(&msi);
    355}
    356
    357/* Generate a fault event to software via MSI if conditions are met.
    358 * Notice that the value of FSTS_REG being passed to it should be the one
    359 * before any update.
    360 */
    361static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
    362{
    363    if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
    364        pre_fsts & VTD_FSTS_IQE) {
    365        error_report_once("There are previous interrupt conditions "
    366                          "to be serviced by software, fault event "
    367                          "is not generated");
    368        return;
    369    }
    370    vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
    371    if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
    372        error_report_once("Interrupt Mask set, irq is not generated");
    373    } else {
    374        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
    375        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
    376    }
    377}
    378
    379/* Check if the Fault (F) field of the Fault Recording Register referenced by
    380 * @index is Set.
    381 */
    382static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
    383{
    384    /* Each reg is 128-bit */
    385    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
    386    addr += 8; /* Access the high 64-bit half */
    387
    388    assert(index < DMAR_FRCD_REG_NR);
    389
    390    return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
    391}
    392
    393/* Update the PPF field of Fault Status Register.
    394 * Should be called whenever change the F field of any fault recording
    395 * registers.
    396 */
    397static void vtd_update_fsts_ppf(IntelIOMMUState *s)
    398{
    399    uint32_t i;
    400    uint32_t ppf_mask = 0;
    401
    402    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
    403        if (vtd_is_frcd_set(s, i)) {
    404            ppf_mask = VTD_FSTS_PPF;
    405            break;
    406        }
    407    }
    408    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
    409    trace_vtd_fsts_ppf(!!ppf_mask);
    410}
    411
    412static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
    413{
    414    /* Each reg is 128-bit */
    415    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
    416    addr += 8; /* Access the high 64-bit half */
    417
    418    assert(index < DMAR_FRCD_REG_NR);
    419
    420    vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
    421    vtd_update_fsts_ppf(s);
    422}
    423
    424/* Must not update F field now, should be done later */
    425static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
    426                            uint16_t source_id, hwaddr addr,
    427                            VTDFaultReason fault, bool is_write)
    428{
    429    uint64_t hi = 0, lo;
    430    hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
    431
    432    assert(index < DMAR_FRCD_REG_NR);
    433
    434    lo = VTD_FRCD_FI(addr);
    435    hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
    436    if (!is_write) {
    437        hi |= VTD_FRCD_T;
    438    }
    439    vtd_set_quad_raw(s, frcd_reg_addr, lo);
    440    vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
    441
    442    trace_vtd_frr_new(index, hi, lo);
    443}
    444
    445/* Try to collapse multiple pending faults from the same requester */
    446static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
    447{
    448    uint32_t i;
    449    uint64_t frcd_reg;
    450    hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
    451
    452    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
    453        frcd_reg = vtd_get_quad_raw(s, addr);
    454        if ((frcd_reg & VTD_FRCD_F) &&
    455            ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
    456            return true;
    457        }
    458        addr += 16; /* 128-bit for each */
    459    }
    460    return false;
    461}
    462
    463/* Log and report an DMAR (address translation) fault to software */
    464static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
    465                                  hwaddr addr, VTDFaultReason fault,
    466                                  bool is_write)
    467{
    468    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
    469
    470    assert(fault < VTD_FR_MAX);
    471
    472    if (fault == VTD_FR_RESERVED_ERR) {
    473        /* This is not a normal fault reason case. Drop it. */
    474        return;
    475    }
    476
    477    trace_vtd_dmar_fault(source_id, fault, addr, is_write);
    478
    479    if (fsts_reg & VTD_FSTS_PFO) {
    480        error_report_once("New fault is not recorded due to "
    481                          "Primary Fault Overflow");
    482        return;
    483    }
    484
    485    if (vtd_try_collapse_fault(s, source_id)) {
    486        error_report_once("New fault is not recorded due to "
    487                          "compression of faults");
    488        return;
    489    }
    490
    491    if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
    492        error_report_once("Next Fault Recording Reg is used, "
    493                          "new fault is not recorded, set PFO field");
    494        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
    495        return;
    496    }
    497
    498    vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
    499
    500    if (fsts_reg & VTD_FSTS_PPF) {
    501        error_report_once("There are pending faults already, "
    502                          "fault event is not generated");
    503        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
    504        s->next_frcd_reg++;
    505        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
    506            s->next_frcd_reg = 0;
    507        }
    508    } else {
    509        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
    510                                VTD_FSTS_FRI(s->next_frcd_reg));
    511        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
    512        s->next_frcd_reg++;
    513        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
    514            s->next_frcd_reg = 0;
    515        }
    516        /* This case actually cause the PPF to be Set.
    517         * So generate fault event (interrupt).
    518         */
    519         vtd_generate_fault_event(s, fsts_reg);
    520    }
    521}
    522
    523/* Handle Invalidation Queue Errors of queued invalidation interface error
    524 * conditions.
    525 */
    526static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
    527{
    528    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
    529
    530    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
    531    vtd_generate_fault_event(s, fsts_reg);
    532}
    533
    534/* Set the IWC field and try to generate an invalidation completion interrupt */
    535static void vtd_generate_completion_event(IntelIOMMUState *s)
    536{
    537    if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
    538        trace_vtd_inv_desc_wait_irq("One pending, skip current");
    539        return;
    540    }
    541    vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
    542    vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
    543    if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
    544        trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
    545                                    "new event not generated");
    546        return;
    547    } else {
    548        /* Generate the interrupt event */
    549        trace_vtd_inv_desc_wait_irq("Generating complete event");
    550        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
    551        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
    552    }
    553}
    554
    555static inline bool vtd_root_entry_present(IntelIOMMUState *s,
    556                                          VTDRootEntry *re,
    557                                          uint8_t devfn)
    558{
    559    if (s->root_scalable && devfn > UINT8_MAX / 2) {
    560        return re->hi & VTD_ROOT_ENTRY_P;
    561    }
    562
    563    return re->lo & VTD_ROOT_ENTRY_P;
    564}
    565
    566static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
    567                              VTDRootEntry *re)
    568{
    569    dma_addr_t addr;
    570
    571    addr = s->root + index * sizeof(*re);
    572    if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
    573        re->lo = 0;
    574        return -VTD_FR_ROOT_TABLE_INV;
    575    }
    576    re->lo = le64_to_cpu(re->lo);
    577    re->hi = le64_to_cpu(re->hi);
    578    return 0;
    579}
    580
    581static inline bool vtd_ce_present(VTDContextEntry *context)
    582{
    583    return context->lo & VTD_CONTEXT_ENTRY_P;
    584}
    585
    586static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
    587                                           VTDRootEntry *re,
    588                                           uint8_t index,
    589                                           VTDContextEntry *ce)
    590{
    591    dma_addr_t addr, ce_size;
    592
    593    /* we have checked that root entry is present */
    594    ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
    595              VTD_CTX_ENTRY_LEGACY_SIZE;
    596
    597    if (s->root_scalable && index > UINT8_MAX / 2) {
    598        index = index & (~VTD_DEVFN_CHECK_MASK);
    599        addr = re->hi & VTD_ROOT_ENTRY_CTP;
    600    } else {
    601        addr = re->lo & VTD_ROOT_ENTRY_CTP;
    602    }
    603
    604    addr = addr + index * ce_size;
    605    if (dma_memory_read(&address_space_memory, addr, ce, ce_size)) {
    606        return -VTD_FR_CONTEXT_TABLE_INV;
    607    }
    608
    609    ce->lo = le64_to_cpu(ce->lo);
    610    ce->hi = le64_to_cpu(ce->hi);
    611    if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
    612        ce->val[2] = le64_to_cpu(ce->val[2]);
    613        ce->val[3] = le64_to_cpu(ce->val[3]);
    614    }
    615    return 0;
    616}
    617
    618static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
    619{
    620    return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
    621}
    622
    623static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
    624{
    625    return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
    626}
    627
    628/* Whether the pte indicates the address of the page frame */
    629static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
    630{
    631    return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
    632}
    633
    634/* Get the content of a spte located in @base_addr[@index] */
    635static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
    636{
    637    uint64_t slpte;
    638
    639    assert(index < VTD_SL_PT_ENTRY_NR);
    640
    641    if (dma_memory_read(&address_space_memory,
    642                        base_addr + index * sizeof(slpte), &slpte,
    643                        sizeof(slpte))) {
    644        slpte = (uint64_t)-1;
    645        return slpte;
    646    }
    647    slpte = le64_to_cpu(slpte);
    648    return slpte;
    649}
    650
    651/* Given an iova and the level of paging structure, return the offset
    652 * of current level.
    653 */
    654static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
    655{
    656    return (iova >> vtd_slpt_level_shift(level)) &
    657            ((1ULL << VTD_SL_LEVEL_BITS) - 1);
    658}
    659
    660/* Check Capability Register to see if the @level of page-table is supported */
    661static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
    662{
    663    return VTD_CAP_SAGAW_MASK & s->cap &
    664           (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
    665}
    666
    667/* Return true if check passed, otherwise false */
    668static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
    669                                     VTDPASIDEntry *pe)
    670{
    671    switch (VTD_PE_GET_TYPE(pe)) {
    672    case VTD_SM_PASID_ENTRY_FLT:
    673    case VTD_SM_PASID_ENTRY_SLT:
    674    case VTD_SM_PASID_ENTRY_NESTED:
    675        break;
    676    case VTD_SM_PASID_ENTRY_PT:
    677        if (!x86_iommu->pt_supported) {
    678            return false;
    679        }
    680        break;
    681    default:
    682        /* Unknown type */
    683        return false;
    684    }
    685    return true;
    686}
    687
    688static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
    689{
    690    return pdire->val & 1;
    691}
    692
    693/**
    694 * Caller of this function should check present bit if wants
    695 * to use pdir entry for further usage except for fpd bit check.
    696 */
    697static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
    698                                         uint32_t pasid,
    699                                         VTDPASIDDirEntry *pdire)
    700{
    701    uint32_t index;
    702    dma_addr_t addr, entry_size;
    703
    704    index = VTD_PASID_DIR_INDEX(pasid);
    705    entry_size = VTD_PASID_DIR_ENTRY_SIZE;
    706    addr = pasid_dir_base + index * entry_size;
    707    if (dma_memory_read(&address_space_memory, addr, pdire, entry_size)) {
    708        return -VTD_FR_PASID_TABLE_INV;
    709    }
    710
    711    return 0;
    712}
    713
    714static inline bool vtd_pe_present(VTDPASIDEntry *pe)
    715{
    716    return pe->val[0] & VTD_PASID_ENTRY_P;
    717}
    718
    719static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
    720                                          uint32_t pasid,
    721                                          dma_addr_t addr,
    722                                          VTDPASIDEntry *pe)
    723{
    724    uint32_t index;
    725    dma_addr_t entry_size;
    726    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
    727
    728    index = VTD_PASID_TABLE_INDEX(pasid);
    729    entry_size = VTD_PASID_ENTRY_SIZE;
    730    addr = addr + index * entry_size;
    731    if (dma_memory_read(&address_space_memory, addr, pe, entry_size)) {
    732        return -VTD_FR_PASID_TABLE_INV;
    733    }
    734
    735    /* Do translation type check */
    736    if (!vtd_pe_type_check(x86_iommu, pe)) {
    737        return -VTD_FR_PASID_TABLE_INV;
    738    }
    739
    740    if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
    741        return -VTD_FR_PASID_TABLE_INV;
    742    }
    743
    744    return 0;
    745}
    746
    747/**
    748 * Caller of this function should check present bit if wants
    749 * to use pasid entry for further usage except for fpd bit check.
    750 */
    751static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
    752                                 uint32_t pasid,
    753                                 VTDPASIDDirEntry *pdire,
    754                                 VTDPASIDEntry *pe)
    755{
    756    dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
    757
    758    return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
    759}
    760
    761/**
    762 * This function gets a pasid entry from a specified pasid
    763 * table (includes dir and leaf table) with a specified pasid.
    764 * Sanity check should be done to ensure return a present
    765 * pasid entry to caller.
    766 */
    767static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
    768                                       dma_addr_t pasid_dir_base,
    769                                       uint32_t pasid,
    770                                       VTDPASIDEntry *pe)
    771{
    772    int ret;
    773    VTDPASIDDirEntry pdire;
    774
    775    ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
    776                                        pasid, &pdire);
    777    if (ret) {
    778        return ret;
    779    }
    780
    781    if (!vtd_pdire_present(&pdire)) {
    782        return -VTD_FR_PASID_TABLE_INV;
    783    }
    784
    785    ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
    786    if (ret) {
    787        return ret;
    788    }
    789
    790    if (!vtd_pe_present(pe)) {
    791        return -VTD_FR_PASID_TABLE_INV;
    792    }
    793
    794    return 0;
    795}
    796
    797static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
    798                                      VTDContextEntry *ce,
    799                                      VTDPASIDEntry *pe)
    800{
    801    uint32_t pasid;
    802    dma_addr_t pasid_dir_base;
    803    int ret = 0;
    804
    805    pasid = VTD_CE_GET_RID2PASID(ce);
    806    pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
    807    ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
    808
    809    return ret;
    810}
    811
    812static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
    813                                VTDContextEntry *ce,
    814                                bool *pe_fpd_set)
    815{
    816    int ret;
    817    uint32_t pasid;
    818    dma_addr_t pasid_dir_base;
    819    VTDPASIDDirEntry pdire;
    820    VTDPASIDEntry pe;
    821
    822    pasid = VTD_CE_GET_RID2PASID(ce);
    823    pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
    824
    825    /*
    826     * No present bit check since fpd is meaningful even
    827     * if the present bit is clear.
    828     */
    829    ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
    830    if (ret) {
    831        return ret;
    832    }
    833
    834    if (pdire.val & VTD_PASID_DIR_FPD) {
    835        *pe_fpd_set = true;
    836        return 0;
    837    }
    838
    839    if (!vtd_pdire_present(&pdire)) {
    840        return -VTD_FR_PASID_TABLE_INV;
    841    }
    842
    843    /*
    844     * No present bit check since fpd is meaningful even
    845     * if the present bit is clear.
    846     */
    847    ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
    848    if (ret) {
    849        return ret;
    850    }
    851
    852    if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
    853        *pe_fpd_set = true;
    854    }
    855
    856    return 0;
    857}
    858
    859/* Get the page-table level that hardware should use for the second-level
    860 * page-table walk from the Address Width field of context-entry.
    861 */
    862static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
    863{
    864    return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
    865}
    866
    867static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
    868                                   VTDContextEntry *ce)
    869{
    870    VTDPASIDEntry pe;
    871
    872    if (s->root_scalable) {
    873        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
    874        return VTD_PE_GET_LEVEL(&pe);
    875    }
    876
    877    return vtd_ce_get_level(ce);
    878}
    879
    880static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
    881{
    882    return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
    883}
    884
    885static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
    886                                  VTDContextEntry *ce)
    887{
    888    VTDPASIDEntry pe;
    889
    890    if (s->root_scalable) {
    891        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
    892        return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
    893    }
    894
    895    return vtd_ce_get_agaw(ce);
    896}
    897
    898static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
    899{
    900    return ce->lo & VTD_CONTEXT_ENTRY_TT;
    901}
    902
    903/* Only for Legacy Mode. Return true if check passed, otherwise false */
    904static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
    905                                     VTDContextEntry *ce)
    906{
    907    switch (vtd_ce_get_type(ce)) {
    908    case VTD_CONTEXT_TT_MULTI_LEVEL:
    909        /* Always supported */
    910        break;
    911    case VTD_CONTEXT_TT_DEV_IOTLB:
    912        if (!x86_iommu->dt_supported) {
    913            error_report_once("%s: DT specified but not supported", __func__);
    914            return false;
    915        }
    916        break;
    917    case VTD_CONTEXT_TT_PASS_THROUGH:
    918        if (!x86_iommu->pt_supported) {
    919            error_report_once("%s: PT specified but not supported", __func__);
    920            return false;
    921        }
    922        break;
    923    default:
    924        /* Unknown type */
    925        error_report_once("%s: unknown ce type: %"PRIu32, __func__,
    926                          vtd_ce_get_type(ce));
    927        return false;
    928    }
    929    return true;
    930}
    931
    932static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
    933                                      VTDContextEntry *ce, uint8_t aw)
    934{
    935    uint32_t ce_agaw = vtd_get_iova_agaw(s, ce);
    936    return 1ULL << MIN(ce_agaw, aw);
    937}
    938
    939/* Return true if IOVA passes range check, otherwise false. */
    940static inline bool vtd_iova_range_check(IntelIOMMUState *s,
    941                                        uint64_t iova, VTDContextEntry *ce,
    942                                        uint8_t aw)
    943{
    944    /*
    945     * Check if @iova is above 2^X-1, where X is the minimum of MGAW
    946     * in CAP_REG and AW in context-entry.
    947     */
    948    return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1));
    949}
    950
    951static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
    952                                          VTDContextEntry *ce)
    953{
    954    VTDPASIDEntry pe;
    955
    956    if (s->root_scalable) {
    957        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
    958        return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
    959    }
    960
    961    return vtd_ce_get_slpt_base(ce);
    962}
    963
    964/*
    965 * Rsvd field masks for spte:
    966 *     vtd_spte_rsvd 4k pages
    967 *     vtd_spte_rsvd_large large pages
    968 */
    969static uint64_t vtd_spte_rsvd[5];
    970static uint64_t vtd_spte_rsvd_large[5];
    971
    972static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
    973{
    974    uint64_t rsvd_mask = vtd_spte_rsvd[level];
    975
    976    if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
    977        (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
    978        /* large page */
    979        rsvd_mask = vtd_spte_rsvd_large[level];
    980    }
    981
    982    return slpte & rsvd_mask;
    983}
    984
    985/* Find the VTD address space associated with a given bus number */
    986static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
    987{
    988    VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
    989    GHashTableIter iter;
    990
    991    if (vtd_bus) {
    992        return vtd_bus;
    993    }
    994
    995    /*
    996     * Iterate over the registered buses to find the one which
    997     * currently holds this bus number and update the bus_num
    998     * lookup table.
    999     */
   1000    g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
   1001    while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
   1002        if (pci_bus_num(vtd_bus->bus) == bus_num) {
   1003            s->vtd_as_by_bus_num[bus_num] = vtd_bus;
   1004            return vtd_bus;
   1005        }
   1006    }
   1007
   1008    return NULL;
   1009}
   1010
   1011/* Given the @iova, get relevant @slptep. @slpte_level will be the last level
   1012 * of the translation, can be used for deciding the size of large page.
   1013 */
   1014static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
   1015                             uint64_t iova, bool is_write,
   1016                             uint64_t *slptep, uint32_t *slpte_level,
   1017                             bool *reads, bool *writes, uint8_t aw_bits)
   1018{
   1019    dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
   1020    uint32_t level = vtd_get_iova_level(s, ce);
   1021    uint32_t offset;
   1022    uint64_t slpte;
   1023    uint64_t access_right_check;
   1024
   1025    if (!vtd_iova_range_check(s, iova, ce, aw_bits)) {
   1026        error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
   1027                          __func__, iova);
   1028        return -VTD_FR_ADDR_BEYOND_MGAW;
   1029    }
   1030
   1031    /* FIXME: what is the Atomics request here? */
   1032    access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
   1033
   1034    while (true) {
   1035        offset = vtd_iova_level_offset(iova, level);
   1036        slpte = vtd_get_slpte(addr, offset);
   1037
   1038        if (slpte == (uint64_t)-1) {
   1039            error_report_once("%s: detected read error on DMAR slpte "
   1040                              "(iova=0x%" PRIx64 ")", __func__, iova);
   1041            if (level == vtd_get_iova_level(s, ce)) {
   1042                /* Invalid programming of context-entry */
   1043                return -VTD_FR_CONTEXT_ENTRY_INV;
   1044            } else {
   1045                return -VTD_FR_PAGING_ENTRY_INV;
   1046            }
   1047        }
   1048        *reads = (*reads) && (slpte & VTD_SL_R);
   1049        *writes = (*writes) && (slpte & VTD_SL_W);
   1050        if (!(slpte & access_right_check)) {
   1051            error_report_once("%s: detected slpte permission error "
   1052                              "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
   1053                              "slpte=0x%" PRIx64 ", write=%d)", __func__,
   1054                              iova, level, slpte, is_write);
   1055            return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
   1056        }
   1057        if (vtd_slpte_nonzero_rsvd(slpte, level)) {
   1058            error_report_once("%s: detected splte reserve non-zero "
   1059                              "iova=0x%" PRIx64 ", level=0x%" PRIx32
   1060                              "slpte=0x%" PRIx64 ")", __func__, iova,
   1061                              level, slpte);
   1062            return -VTD_FR_PAGING_ENTRY_RSVD;
   1063        }
   1064
   1065        if (vtd_is_last_slpte(slpte, level)) {
   1066            *slptep = slpte;
   1067            *slpte_level = level;
   1068            return 0;
   1069        }
   1070        addr = vtd_get_slpte_addr(slpte, aw_bits);
   1071        level--;
   1072    }
   1073}
   1074
   1075typedef int (*vtd_page_walk_hook)(IOMMUTLBEvent *event, void *private);
   1076
   1077/**
   1078 * Constant information used during page walking
   1079 *
   1080 * @hook_fn: hook func to be called when detected page
   1081 * @private: private data to be passed into hook func
   1082 * @notify_unmap: whether we should notify invalid entries
   1083 * @as: VT-d address space of the device
   1084 * @aw: maximum address width
   1085 * @domain: domain ID of the page walk
   1086 */
   1087typedef struct {
   1088    VTDAddressSpace *as;
   1089    vtd_page_walk_hook hook_fn;
   1090    void *private;
   1091    bool notify_unmap;
   1092    uint8_t aw;
   1093    uint16_t domain_id;
   1094} vtd_page_walk_info;
   1095
   1096static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
   1097{
   1098    VTDAddressSpace *as = info->as;
   1099    vtd_page_walk_hook hook_fn = info->hook_fn;
   1100    void *private = info->private;
   1101    IOMMUTLBEntry *entry = &event->entry;
   1102    DMAMap target = {
   1103        .iova = entry->iova,
   1104        .size = entry->addr_mask,
   1105        .translated_addr = entry->translated_addr,
   1106        .perm = entry->perm,
   1107    };
   1108    DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
   1109
   1110    if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
   1111        trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
   1112        return 0;
   1113    }
   1114
   1115    assert(hook_fn);
   1116
   1117    /* Update local IOVA mapped ranges */
   1118    if (event->type == IOMMU_NOTIFIER_MAP) {
   1119        if (mapped) {
   1120            /* If it's exactly the same translation, skip */
   1121            if (!memcmp(mapped, &target, sizeof(target))) {
   1122                trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
   1123                                                 entry->translated_addr);
   1124                return 0;
   1125            } else {
   1126                /*
   1127                 * Translation changed.  Normally this should not
   1128                 * happen, but it can happen when with buggy guest
   1129                 * OSes.  Note that there will be a small window that
   1130                 * we don't have map at all.  But that's the best
   1131                 * effort we can do.  The ideal way to emulate this is
   1132                 * atomically modify the PTE to follow what has
   1133                 * changed, but we can't.  One example is that vfio
   1134                 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
   1135                 * interface to modify a mapping (meanwhile it seems
   1136                 * meaningless to even provide one).  Anyway, let's
   1137                 * mark this as a TODO in case one day we'll have
   1138                 * a better solution.
   1139                 */
   1140                IOMMUAccessFlags cache_perm = entry->perm;
   1141                int ret;
   1142
   1143                /* Emulate an UNMAP */
   1144                event->type = IOMMU_NOTIFIER_UNMAP;
   1145                entry->perm = IOMMU_NONE;
   1146                trace_vtd_page_walk_one(info->domain_id,
   1147                                        entry->iova,
   1148                                        entry->translated_addr,
   1149                                        entry->addr_mask,
   1150                                        entry->perm);
   1151                ret = hook_fn(event, private);
   1152                if (ret) {
   1153                    return ret;
   1154                }
   1155                /* Drop any existing mapping */
   1156                iova_tree_remove(as->iova_tree, &target);
   1157                /* Recover the correct type */
   1158                event->type = IOMMU_NOTIFIER_MAP;
   1159                entry->perm = cache_perm;
   1160            }
   1161        }
   1162        iova_tree_insert(as->iova_tree, &target);
   1163    } else {
   1164        if (!mapped) {
   1165            /* Skip since we didn't map this range at all */
   1166            trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
   1167            return 0;
   1168        }
   1169        iova_tree_remove(as->iova_tree, &target);
   1170    }
   1171
   1172    trace_vtd_page_walk_one(info->domain_id, entry->iova,
   1173                            entry->translated_addr, entry->addr_mask,
   1174                            entry->perm);
   1175    return hook_fn(event, private);
   1176}
   1177
   1178/**
   1179 * vtd_page_walk_level - walk over specific level for IOVA range
   1180 *
   1181 * @addr: base GPA addr to start the walk
   1182 * @start: IOVA range start address
   1183 * @end: IOVA range end address (start <= addr < end)
   1184 * @read: whether parent level has read permission
   1185 * @write: whether parent level has write permission
   1186 * @info: constant information for the page walk
   1187 */
   1188static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
   1189                               uint64_t end, uint32_t level, bool read,
   1190                               bool write, vtd_page_walk_info *info)
   1191{
   1192    bool read_cur, write_cur, entry_valid;
   1193    uint32_t offset;
   1194    uint64_t slpte;
   1195    uint64_t subpage_size, subpage_mask;
   1196    IOMMUTLBEvent event;
   1197    uint64_t iova = start;
   1198    uint64_t iova_next;
   1199    int ret = 0;
   1200
   1201    trace_vtd_page_walk_level(addr, level, start, end);
   1202
   1203    subpage_size = 1ULL << vtd_slpt_level_shift(level);
   1204    subpage_mask = vtd_slpt_level_page_mask(level);
   1205
   1206    while (iova < end) {
   1207        iova_next = (iova & subpage_mask) + subpage_size;
   1208
   1209        offset = vtd_iova_level_offset(iova, level);
   1210        slpte = vtd_get_slpte(addr, offset);
   1211
   1212        if (slpte == (uint64_t)-1) {
   1213            trace_vtd_page_walk_skip_read(iova, iova_next);
   1214            goto next;
   1215        }
   1216
   1217        if (vtd_slpte_nonzero_rsvd(slpte, level)) {
   1218            trace_vtd_page_walk_skip_reserve(iova, iova_next);
   1219            goto next;
   1220        }
   1221
   1222        /* Permissions are stacked with parents' */
   1223        read_cur = read && (slpte & VTD_SL_R);
   1224        write_cur = write && (slpte & VTD_SL_W);
   1225
   1226        /*
   1227         * As long as we have either read/write permission, this is a
   1228         * valid entry. The rule works for both page entries and page
   1229         * table entries.
   1230         */
   1231        entry_valid = read_cur | write_cur;
   1232
   1233        if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
   1234            /*
   1235             * This is a valid PDE (or even bigger than PDE).  We need
   1236             * to walk one further level.
   1237             */
   1238            ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
   1239                                      iova, MIN(iova_next, end), level - 1,
   1240                                      read_cur, write_cur, info);
   1241        } else {
   1242            /*
   1243             * This means we are either:
   1244             *
   1245             * (1) the real page entry (either 4K page, or huge page)
   1246             * (2) the whole range is invalid
   1247             *
   1248             * In either case, we send an IOTLB notification down.
   1249             */
   1250            event.entry.target_as = &address_space_memory;
   1251            event.entry.iova = iova & subpage_mask;
   1252            event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
   1253            event.entry.addr_mask = ~subpage_mask;
   1254            /* NOTE: this is only meaningful if entry_valid == true */
   1255            event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
   1256            event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
   1257                                            IOMMU_NOTIFIER_UNMAP;
   1258            ret = vtd_page_walk_one(&event, info);
   1259        }
   1260
   1261        if (ret < 0) {
   1262            return ret;
   1263        }
   1264
   1265next:
   1266        iova = iova_next;
   1267    }
   1268
   1269    return 0;
   1270}
   1271
   1272/**
   1273 * vtd_page_walk - walk specific IOVA range, and call the hook
   1274 *
   1275 * @s: intel iommu state
   1276 * @ce: context entry to walk upon
   1277 * @start: IOVA address to start the walk
   1278 * @end: IOVA range end address (start <= addr < end)
   1279 * @info: page walking information struct
   1280 */
   1281static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
   1282                         uint64_t start, uint64_t end,
   1283                         vtd_page_walk_info *info)
   1284{
   1285    dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
   1286    uint32_t level = vtd_get_iova_level(s, ce);
   1287
   1288    if (!vtd_iova_range_check(s, start, ce, info->aw)) {
   1289        return -VTD_FR_ADDR_BEYOND_MGAW;
   1290    }
   1291
   1292    if (!vtd_iova_range_check(s, end, ce, info->aw)) {
   1293        /* Fix end so that it reaches the maximum */
   1294        end = vtd_iova_limit(s, ce, info->aw);
   1295    }
   1296
   1297    return vtd_page_walk_level(addr, start, end, level, true, true, info);
   1298}
   1299
   1300static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
   1301                                          VTDRootEntry *re)
   1302{
   1303    /* Legacy Mode reserved bits check */
   1304    if (!s->root_scalable &&
   1305        (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
   1306        goto rsvd_err;
   1307
   1308    /* Scalable Mode reserved bits check */
   1309    if (s->root_scalable &&
   1310        ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
   1311         (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
   1312        goto rsvd_err;
   1313
   1314    return 0;
   1315
   1316rsvd_err:
   1317    error_report_once("%s: invalid root entry: hi=0x%"PRIx64
   1318                      ", lo=0x%"PRIx64,
   1319                      __func__, re->hi, re->lo);
   1320    return -VTD_FR_ROOT_ENTRY_RSVD;
   1321}
   1322
   1323static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
   1324                                                    VTDContextEntry *ce)
   1325{
   1326    if (!s->root_scalable &&
   1327        (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
   1328         ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
   1329        error_report_once("%s: invalid context entry: hi=%"PRIx64
   1330                          ", lo=%"PRIx64" (reserved nonzero)",
   1331                          __func__, ce->hi, ce->lo);
   1332        return -VTD_FR_CONTEXT_ENTRY_RSVD;
   1333    }
   1334
   1335    if (s->root_scalable &&
   1336        (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
   1337         ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
   1338         ce->val[2] ||
   1339         ce->val[3])) {
   1340        error_report_once("%s: invalid context entry: val[3]=%"PRIx64
   1341                          ", val[2]=%"PRIx64
   1342                          ", val[1]=%"PRIx64
   1343                          ", val[0]=%"PRIx64" (reserved nonzero)",
   1344                          __func__, ce->val[3], ce->val[2],
   1345                          ce->val[1], ce->val[0]);
   1346        return -VTD_FR_CONTEXT_ENTRY_RSVD;
   1347    }
   1348
   1349    return 0;
   1350}
   1351
   1352static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
   1353                                  VTDContextEntry *ce)
   1354{
   1355    VTDPASIDEntry pe;
   1356
   1357    /*
   1358     * Make sure in Scalable Mode, a present context entry
   1359     * has valid rid2pasid setting, which includes valid
   1360     * rid2pasid field and corresponding pasid entry setting
   1361     */
   1362    return vtd_ce_get_rid2pasid_entry(s, ce, &pe);
   1363}
   1364
   1365/* Map a device to its corresponding domain (context-entry) */
   1366static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
   1367                                    uint8_t devfn, VTDContextEntry *ce)
   1368{
   1369    VTDRootEntry re;
   1370    int ret_fr;
   1371    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
   1372
   1373    ret_fr = vtd_get_root_entry(s, bus_num, &re);
   1374    if (ret_fr) {
   1375        return ret_fr;
   1376    }
   1377
   1378    if (!vtd_root_entry_present(s, &re, devfn)) {
   1379        /* Not error - it's okay we don't have root entry. */
   1380        trace_vtd_re_not_present(bus_num);
   1381        return -VTD_FR_ROOT_ENTRY_P;
   1382    }
   1383
   1384    ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
   1385    if (ret_fr) {
   1386        return ret_fr;
   1387    }
   1388
   1389    ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
   1390    if (ret_fr) {
   1391        return ret_fr;
   1392    }
   1393
   1394    if (!vtd_ce_present(ce)) {
   1395        /* Not error - it's okay we don't have context entry. */
   1396        trace_vtd_ce_not_present(bus_num, devfn);
   1397        return -VTD_FR_CONTEXT_ENTRY_P;
   1398    }
   1399
   1400    ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
   1401    if (ret_fr) {
   1402        return ret_fr;
   1403    }
   1404
   1405    /* Check if the programming of context-entry is valid */
   1406    if (!s->root_scalable &&
   1407        !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
   1408        error_report_once("%s: invalid context entry: hi=%"PRIx64
   1409                          ", lo=%"PRIx64" (level %d not supported)",
   1410                          __func__, ce->hi, ce->lo,
   1411                          vtd_ce_get_level(ce));
   1412        return -VTD_FR_CONTEXT_ENTRY_INV;
   1413    }
   1414
   1415    if (!s->root_scalable) {
   1416        /* Do translation type check */
   1417        if (!vtd_ce_type_check(x86_iommu, ce)) {
   1418            /* Errors dumped in vtd_ce_type_check() */
   1419            return -VTD_FR_CONTEXT_ENTRY_INV;
   1420        }
   1421    } else {
   1422        /*
   1423         * Check if the programming of context-entry.rid2pasid
   1424         * and corresponding pasid setting is valid, and thus
   1425         * avoids to check pasid entry fetching result in future
   1426         * helper function calling.
   1427         */
   1428        ret_fr = vtd_ce_rid2pasid_check(s, ce);
   1429        if (ret_fr) {
   1430            return ret_fr;
   1431        }
   1432    }
   1433
   1434    return 0;
   1435}
   1436
   1437static int vtd_sync_shadow_page_hook(IOMMUTLBEvent *event,
   1438                                     void *private)
   1439{
   1440    memory_region_notify_iommu(private, 0, *event);
   1441    return 0;
   1442}
   1443
   1444static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
   1445                                  VTDContextEntry *ce)
   1446{
   1447    VTDPASIDEntry pe;
   1448
   1449    if (s->root_scalable) {
   1450        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
   1451        return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
   1452    }
   1453
   1454    return VTD_CONTEXT_ENTRY_DID(ce->hi);
   1455}
   1456
   1457static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
   1458                                            VTDContextEntry *ce,
   1459                                            hwaddr addr, hwaddr size)
   1460{
   1461    IntelIOMMUState *s = vtd_as->iommu_state;
   1462    vtd_page_walk_info info = {
   1463        .hook_fn = vtd_sync_shadow_page_hook,
   1464        .private = (void *)&vtd_as->iommu,
   1465        .notify_unmap = true,
   1466        .aw = s->aw_bits,
   1467        .as = vtd_as,
   1468        .domain_id = vtd_get_domain_id(s, ce),
   1469    };
   1470
   1471    return vtd_page_walk(s, ce, addr, addr + size, &info);
   1472}
   1473
   1474static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
   1475{
   1476    int ret;
   1477    VTDContextEntry ce;
   1478    IOMMUNotifier *n;
   1479
   1480    if (!(vtd_as->iommu.iommu_notify_flags & IOMMU_NOTIFIER_IOTLB_EVENTS)) {
   1481        return 0;
   1482    }
   1483
   1484    ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
   1485                                   pci_bus_num(vtd_as->bus),
   1486                                   vtd_as->devfn, &ce);
   1487    if (ret) {
   1488        if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
   1489            /*
   1490             * It's a valid scenario to have a context entry that is
   1491             * not present.  For example, when a device is removed
   1492             * from an existing domain then the context entry will be
   1493             * zeroed by the guest before it was put into another
   1494             * domain.  When this happens, instead of synchronizing
   1495             * the shadow pages we should invalidate all existing
   1496             * mappings and notify the backends.
   1497             */
   1498            IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
   1499                vtd_address_space_unmap(vtd_as, n);
   1500            }
   1501            ret = 0;
   1502        }
   1503        return ret;
   1504    }
   1505
   1506    return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
   1507}
   1508
   1509/*
   1510 * Check if specific device is configured to bypass address
   1511 * translation for DMA requests. In Scalable Mode, bypass
   1512 * 1st-level translation or 2nd-level translation, it depends
   1513 * on PGTT setting.
   1514 */
   1515static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
   1516{
   1517    IntelIOMMUState *s;
   1518    VTDContextEntry ce;
   1519    VTDPASIDEntry pe;
   1520    int ret;
   1521
   1522    assert(as);
   1523
   1524    s = as->iommu_state;
   1525    ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
   1526                                   as->devfn, &ce);
   1527    if (ret) {
   1528        /*
   1529         * Possibly failed to parse the context entry for some reason
   1530         * (e.g., during init, or any guest configuration errors on
   1531         * context entries). We should assume PT not enabled for
   1532         * safety.
   1533         */
   1534        return false;
   1535    }
   1536
   1537    if (s->root_scalable) {
   1538        ret = vtd_ce_get_rid2pasid_entry(s, &ce, &pe);
   1539        if (ret) {
   1540            error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32,
   1541                              __func__, ret);
   1542            return false;
   1543        }
   1544        return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
   1545    }
   1546
   1547    return (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH);
   1548}
   1549
   1550/* Return whether the device is using IOMMU translation. */
   1551static bool vtd_switch_address_space(VTDAddressSpace *as)
   1552{
   1553    bool use_iommu;
   1554    /* Whether we need to take the BQL on our own */
   1555    bool take_bql = !qemu_mutex_iothread_locked();
   1556
   1557    assert(as);
   1558
   1559    use_iommu = as->iommu_state->dmar_enabled && !vtd_dev_pt_enabled(as);
   1560
   1561    trace_vtd_switch_address_space(pci_bus_num(as->bus),
   1562                                   VTD_PCI_SLOT(as->devfn),
   1563                                   VTD_PCI_FUNC(as->devfn),
   1564                                   use_iommu);
   1565
   1566    /*
   1567     * It's possible that we reach here without BQL, e.g., when called
   1568     * from vtd_pt_enable_fast_path(). However the memory APIs need
   1569     * it. We'd better make sure we have had it already, or, take it.
   1570     */
   1571    if (take_bql) {
   1572        qemu_mutex_lock_iothread();
   1573    }
   1574
   1575    /* Turn off first then on the other */
   1576    if (use_iommu) {
   1577        memory_region_set_enabled(&as->nodmar, false);
   1578        memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
   1579    } else {
   1580        memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
   1581        memory_region_set_enabled(&as->nodmar, true);
   1582    }
   1583
   1584    if (take_bql) {
   1585        qemu_mutex_unlock_iothread();
   1586    }
   1587
   1588    return use_iommu;
   1589}
   1590
   1591static void vtd_switch_address_space_all(IntelIOMMUState *s)
   1592{
   1593    GHashTableIter iter;
   1594    VTDBus *vtd_bus;
   1595    int i;
   1596
   1597    g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
   1598    while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
   1599        for (i = 0; i < PCI_DEVFN_MAX; i++) {
   1600            if (!vtd_bus->dev_as[i]) {
   1601                continue;
   1602            }
   1603            vtd_switch_address_space(vtd_bus->dev_as[i]);
   1604        }
   1605    }
   1606}
   1607
   1608static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
   1609{
   1610    return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
   1611}
   1612
   1613static const bool vtd_qualified_faults[] = {
   1614    [VTD_FR_RESERVED] = false,
   1615    [VTD_FR_ROOT_ENTRY_P] = false,
   1616    [VTD_FR_CONTEXT_ENTRY_P] = true,
   1617    [VTD_FR_CONTEXT_ENTRY_INV] = true,
   1618    [VTD_FR_ADDR_BEYOND_MGAW] = true,
   1619    [VTD_FR_WRITE] = true,
   1620    [VTD_FR_READ] = true,
   1621    [VTD_FR_PAGING_ENTRY_INV] = true,
   1622    [VTD_FR_ROOT_TABLE_INV] = false,
   1623    [VTD_FR_CONTEXT_TABLE_INV] = false,
   1624    [VTD_FR_ROOT_ENTRY_RSVD] = false,
   1625    [VTD_FR_PAGING_ENTRY_RSVD] = true,
   1626    [VTD_FR_CONTEXT_ENTRY_TT] = true,
   1627    [VTD_FR_PASID_TABLE_INV] = false,
   1628    [VTD_FR_RESERVED_ERR] = false,
   1629    [VTD_FR_MAX] = false,
   1630};
   1631
   1632/* To see if a fault condition is "qualified", which is reported to software
   1633 * only if the FPD field in the context-entry used to process the faulting
   1634 * request is 0.
   1635 */
   1636static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
   1637{
   1638    return vtd_qualified_faults[fault];
   1639}
   1640
   1641static inline bool vtd_is_interrupt_addr(hwaddr addr)
   1642{
   1643    return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
   1644}
   1645
   1646static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
   1647{
   1648    VTDBus *vtd_bus;
   1649    VTDAddressSpace *vtd_as;
   1650    bool success = false;
   1651
   1652    vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
   1653    if (!vtd_bus) {
   1654        goto out;
   1655    }
   1656
   1657    vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
   1658    if (!vtd_as) {
   1659        goto out;
   1660    }
   1661
   1662    if (vtd_switch_address_space(vtd_as) == false) {
   1663        /* We switched off IOMMU region successfully. */
   1664        success = true;
   1665    }
   1666
   1667out:
   1668    trace_vtd_pt_enable_fast_path(source_id, success);
   1669}
   1670
   1671/* Map dev to context-entry then do a paging-structures walk to do a iommu
   1672 * translation.
   1673 *
   1674 * Called from RCU critical section.
   1675 *
   1676 * @bus_num: The bus number
   1677 * @devfn: The devfn, which is the  combined of device and function number
   1678 * @is_write: The access is a write operation
   1679 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
   1680 *
   1681 * Returns true if translation is successful, otherwise false.
   1682 */
   1683static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
   1684                                   uint8_t devfn, hwaddr addr, bool is_write,
   1685                                   IOMMUTLBEntry *entry)
   1686{
   1687    IntelIOMMUState *s = vtd_as->iommu_state;
   1688    VTDContextEntry ce;
   1689    uint8_t bus_num = pci_bus_num(bus);
   1690    VTDContextCacheEntry *cc_entry;
   1691    uint64_t slpte, page_mask;
   1692    uint32_t level;
   1693    uint16_t source_id = vtd_make_source_id(bus_num, devfn);
   1694    int ret_fr;
   1695    bool is_fpd_set = false;
   1696    bool reads = true;
   1697    bool writes = true;
   1698    uint8_t access_flags;
   1699    VTDIOTLBEntry *iotlb_entry;
   1700
   1701    /*
   1702     * We have standalone memory region for interrupt addresses, we
   1703     * should never receive translation requests in this region.
   1704     */
   1705    assert(!vtd_is_interrupt_addr(addr));
   1706
   1707    vtd_iommu_lock(s);
   1708
   1709    cc_entry = &vtd_as->context_cache_entry;
   1710
   1711    /* Try to fetch slpte form IOTLB */
   1712    iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
   1713    if (iotlb_entry) {
   1714        trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
   1715                                 iotlb_entry->domain_id);
   1716        slpte = iotlb_entry->slpte;
   1717        access_flags = iotlb_entry->access_flags;
   1718        page_mask = iotlb_entry->mask;
   1719        goto out;
   1720    }
   1721
   1722    /* Try to fetch context-entry from cache first */
   1723    if (cc_entry->context_cache_gen == s->context_cache_gen) {
   1724        trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
   1725                               cc_entry->context_entry.lo,
   1726                               cc_entry->context_cache_gen);
   1727        ce = cc_entry->context_entry;
   1728        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
   1729        if (!is_fpd_set && s->root_scalable) {
   1730            ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
   1731            VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
   1732        }
   1733    } else {
   1734        ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
   1735        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
   1736        if (!ret_fr && !is_fpd_set && s->root_scalable) {
   1737            ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
   1738        }
   1739        VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
   1740        /* Update context-cache */
   1741        trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
   1742                                  cc_entry->context_cache_gen,
   1743                                  s->context_cache_gen);
   1744        cc_entry->context_entry = ce;
   1745        cc_entry->context_cache_gen = s->context_cache_gen;
   1746    }
   1747
   1748    /*
   1749     * We don't need to translate for pass-through context entries.
   1750     * Also, let's ignore IOTLB caching as well for PT devices.
   1751     */
   1752    if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
   1753        entry->iova = addr & VTD_PAGE_MASK_4K;
   1754        entry->translated_addr = entry->iova;
   1755        entry->addr_mask = ~VTD_PAGE_MASK_4K;
   1756        entry->perm = IOMMU_RW;
   1757        trace_vtd_translate_pt(source_id, entry->iova);
   1758
   1759        /*
   1760         * When this happens, it means firstly caching-mode is not
   1761         * enabled, and this is the first passthrough translation for
   1762         * the device. Let's enable the fast path for passthrough.
   1763         *
   1764         * When passthrough is disabled again for the device, we can
   1765         * capture it via the context entry invalidation, then the
   1766         * IOMMU region can be swapped back.
   1767         */
   1768        vtd_pt_enable_fast_path(s, source_id);
   1769        vtd_iommu_unlock(s);
   1770        return true;
   1771    }
   1772
   1773    ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
   1774                               &reads, &writes, s->aw_bits);
   1775    VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
   1776
   1777    page_mask = vtd_slpt_level_page_mask(level);
   1778    access_flags = IOMMU_ACCESS_FLAG(reads, writes);
   1779    vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte,
   1780                     access_flags, level);
   1781out:
   1782    vtd_iommu_unlock(s);
   1783    entry->iova = addr & page_mask;
   1784    entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
   1785    entry->addr_mask = ~page_mask;
   1786    entry->perm = access_flags;
   1787    return true;
   1788
   1789error:
   1790    vtd_iommu_unlock(s);
   1791    entry->iova = 0;
   1792    entry->translated_addr = 0;
   1793    entry->addr_mask = 0;
   1794    entry->perm = IOMMU_NONE;
   1795    return false;
   1796}
   1797
   1798static void vtd_root_table_setup(IntelIOMMUState *s)
   1799{
   1800    s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
   1801    s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
   1802
   1803    vtd_update_scalable_state(s);
   1804
   1805    trace_vtd_reg_dmar_root(s->root, s->root_scalable);
   1806}
   1807
   1808static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
   1809                               uint32_t index, uint32_t mask)
   1810{
   1811    x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
   1812}
   1813
   1814static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
   1815{
   1816    uint64_t value = 0;
   1817    value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
   1818    s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
   1819    s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
   1820    s->intr_eime = value & VTD_IRTA_EIME;
   1821
   1822    /* Notify global invalidation */
   1823    vtd_iec_notify_all(s, true, 0, 0);
   1824
   1825    trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
   1826}
   1827
   1828static void vtd_iommu_replay_all(IntelIOMMUState *s)
   1829{
   1830    VTDAddressSpace *vtd_as;
   1831
   1832    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
   1833        vtd_sync_shadow_page_table(vtd_as);
   1834    }
   1835}
   1836
   1837static void vtd_context_global_invalidate(IntelIOMMUState *s)
   1838{
   1839    trace_vtd_inv_desc_cc_global();
   1840    /* Protects context cache */
   1841    vtd_iommu_lock(s);
   1842    s->context_cache_gen++;
   1843    if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
   1844        vtd_reset_context_cache_locked(s);
   1845    }
   1846    vtd_iommu_unlock(s);
   1847    vtd_address_space_refresh_all(s);
   1848    /*
   1849     * From VT-d spec 6.5.2.1, a global context entry invalidation
   1850     * should be followed by a IOTLB global invalidation, so we should
   1851     * be safe even without this. Hoewever, let's replay the region as
   1852     * well to be safer, and go back here when we need finer tunes for
   1853     * VT-d emulation codes.
   1854     */
   1855    vtd_iommu_replay_all(s);
   1856}
   1857
   1858/* Do a context-cache device-selective invalidation.
   1859 * @func_mask: FM field after shifting
   1860 */
   1861static void vtd_context_device_invalidate(IntelIOMMUState *s,
   1862                                          uint16_t source_id,
   1863                                          uint16_t func_mask)
   1864{
   1865    uint16_t mask;
   1866    VTDBus *vtd_bus;
   1867    VTDAddressSpace *vtd_as;
   1868    uint8_t bus_n, devfn;
   1869    uint16_t devfn_it;
   1870
   1871    trace_vtd_inv_desc_cc_devices(source_id, func_mask);
   1872
   1873    switch (func_mask & 3) {
   1874    case 0:
   1875        mask = 0;   /* No bits in the SID field masked */
   1876        break;
   1877    case 1:
   1878        mask = 4;   /* Mask bit 2 in the SID field */
   1879        break;
   1880    case 2:
   1881        mask = 6;   /* Mask bit 2:1 in the SID field */
   1882        break;
   1883    case 3:
   1884        mask = 7;   /* Mask bit 2:0 in the SID field */
   1885        break;
   1886    default:
   1887        g_assert_not_reached();
   1888    }
   1889    mask = ~mask;
   1890
   1891    bus_n = VTD_SID_TO_BUS(source_id);
   1892    vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
   1893    if (vtd_bus) {
   1894        devfn = VTD_SID_TO_DEVFN(source_id);
   1895        for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
   1896            vtd_as = vtd_bus->dev_as[devfn_it];
   1897            if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
   1898                trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
   1899                                             VTD_PCI_FUNC(devfn_it));
   1900                vtd_iommu_lock(s);
   1901                vtd_as->context_cache_entry.context_cache_gen = 0;
   1902                vtd_iommu_unlock(s);
   1903                /*
   1904                 * Do switch address space when needed, in case if the
   1905                 * device passthrough bit is switched.
   1906                 */
   1907                vtd_switch_address_space(vtd_as);
   1908                /*
   1909                 * So a device is moving out of (or moving into) a
   1910                 * domain, resync the shadow page table.
   1911                 * This won't bring bad even if we have no such
   1912                 * notifier registered - the IOMMU notification
   1913                 * framework will skip MAP notifications if that
   1914                 * happened.
   1915                 */
   1916                vtd_sync_shadow_page_table(vtd_as);
   1917            }
   1918        }
   1919    }
   1920}
   1921
   1922/* Context-cache invalidation
   1923 * Returns the Context Actual Invalidation Granularity.
   1924 * @val: the content of the CCMD_REG
   1925 */
   1926static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
   1927{
   1928    uint64_t caig;
   1929    uint64_t type = val & VTD_CCMD_CIRG_MASK;
   1930
   1931    switch (type) {
   1932    case VTD_CCMD_DOMAIN_INVL:
   1933        /* Fall through */
   1934    case VTD_CCMD_GLOBAL_INVL:
   1935        caig = VTD_CCMD_GLOBAL_INVL_A;
   1936        vtd_context_global_invalidate(s);
   1937        break;
   1938
   1939    case VTD_CCMD_DEVICE_INVL:
   1940        caig = VTD_CCMD_DEVICE_INVL_A;
   1941        vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
   1942        break;
   1943
   1944    default:
   1945        error_report_once("%s: invalid context: 0x%" PRIx64,
   1946                          __func__, val);
   1947        caig = 0;
   1948    }
   1949    return caig;
   1950}
   1951
   1952static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
   1953{
   1954    trace_vtd_inv_desc_iotlb_global();
   1955    vtd_reset_iotlb(s);
   1956    vtd_iommu_replay_all(s);
   1957}
   1958
   1959static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
   1960{
   1961    VTDContextEntry ce;
   1962    VTDAddressSpace *vtd_as;
   1963
   1964    trace_vtd_inv_desc_iotlb_domain(domain_id);
   1965
   1966    vtd_iommu_lock(s);
   1967    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
   1968                                &domain_id);
   1969    vtd_iommu_unlock(s);
   1970
   1971    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
   1972        if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
   1973                                      vtd_as->devfn, &ce) &&
   1974            domain_id == vtd_get_domain_id(s, &ce)) {
   1975            vtd_sync_shadow_page_table(vtd_as);
   1976        }
   1977    }
   1978}
   1979
   1980static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
   1981                                           uint16_t domain_id, hwaddr addr,
   1982                                           uint8_t am)
   1983{
   1984    VTDAddressSpace *vtd_as;
   1985    VTDContextEntry ce;
   1986    int ret;
   1987    hwaddr size = (1 << am) * VTD_PAGE_SIZE;
   1988
   1989    QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
   1990        ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
   1991                                       vtd_as->devfn, &ce);
   1992        if (!ret && domain_id == vtd_get_domain_id(s, &ce)) {
   1993            if (vtd_as_has_map_notifier(vtd_as)) {
   1994                /*
   1995                 * As long as we have MAP notifications registered in
   1996                 * any of our IOMMU notifiers, we need to sync the
   1997                 * shadow page table.
   1998                 */
   1999                vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
   2000            } else {
   2001                /*
   2002                 * For UNMAP-only notifiers, we don't need to walk the
   2003                 * page tables.  We just deliver the PSI down to
   2004                 * invalidate caches.
   2005                 */
   2006                IOMMUTLBEvent event = {
   2007                    .type = IOMMU_NOTIFIER_UNMAP,
   2008                    .entry = {
   2009                        .target_as = &address_space_memory,
   2010                        .iova = addr,
   2011                        .translated_addr = 0,
   2012                        .addr_mask = size - 1,
   2013                        .perm = IOMMU_NONE,
   2014                    },
   2015                };
   2016                memory_region_notify_iommu(&vtd_as->iommu, 0, event);
   2017            }
   2018        }
   2019    }
   2020}
   2021
   2022static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
   2023                                      hwaddr addr, uint8_t am)
   2024{
   2025    VTDIOTLBPageInvInfo info;
   2026
   2027    trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
   2028
   2029    assert(am <= VTD_MAMV);
   2030    info.domain_id = domain_id;
   2031    info.addr = addr;
   2032    info.mask = ~((1 << am) - 1);
   2033    vtd_iommu_lock(s);
   2034    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
   2035    vtd_iommu_unlock(s);
   2036    vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
   2037}
   2038
   2039/* Flush IOTLB
   2040 * Returns the IOTLB Actual Invalidation Granularity.
   2041 * @val: the content of the IOTLB_REG
   2042 */
   2043static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
   2044{
   2045    uint64_t iaig;
   2046    uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
   2047    uint16_t domain_id;
   2048    hwaddr addr;
   2049    uint8_t am;
   2050
   2051    switch (type) {
   2052    case VTD_TLB_GLOBAL_FLUSH:
   2053        iaig = VTD_TLB_GLOBAL_FLUSH_A;
   2054        vtd_iotlb_global_invalidate(s);
   2055        break;
   2056
   2057    case VTD_TLB_DSI_FLUSH:
   2058        domain_id = VTD_TLB_DID(val);
   2059        iaig = VTD_TLB_DSI_FLUSH_A;
   2060        vtd_iotlb_domain_invalidate(s, domain_id);
   2061        break;
   2062
   2063    case VTD_TLB_PSI_FLUSH:
   2064        domain_id = VTD_TLB_DID(val);
   2065        addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
   2066        am = VTD_IVA_AM(addr);
   2067        addr = VTD_IVA_ADDR(addr);
   2068        if (am > VTD_MAMV) {
   2069            error_report_once("%s: address mask overflow: 0x%" PRIx64,
   2070                              __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
   2071            iaig = 0;
   2072            break;
   2073        }
   2074        iaig = VTD_TLB_PSI_FLUSH_A;
   2075        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
   2076        break;
   2077
   2078    default:
   2079        error_report_once("%s: invalid granularity: 0x%" PRIx64,
   2080                          __func__, val);
   2081        iaig = 0;
   2082    }
   2083    return iaig;
   2084}
   2085
   2086static void vtd_fetch_inv_desc(IntelIOMMUState *s);
   2087
   2088static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
   2089{
   2090    return s->qi_enabled && (s->iq_tail == s->iq_head) &&
   2091           (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
   2092}
   2093
   2094static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
   2095{
   2096    uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
   2097
   2098    trace_vtd_inv_qi_enable(en);
   2099
   2100    if (en) {
   2101        s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
   2102        /* 2^(x+8) entries */
   2103        s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
   2104        s->qi_enabled = true;
   2105        trace_vtd_inv_qi_setup(s->iq, s->iq_size);
   2106        /* Ok - report back to driver */
   2107        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
   2108
   2109        if (s->iq_tail != 0) {
   2110            /*
   2111             * This is a spec violation but Windows guests are known to set up
   2112             * Queued Invalidation this way so we allow the write and process
   2113             * Invalidation Descriptors right away.
   2114             */
   2115            trace_vtd_warn_invalid_qi_tail(s->iq_tail);
   2116            if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
   2117                vtd_fetch_inv_desc(s);
   2118            }
   2119        }
   2120    } else {
   2121        if (vtd_queued_inv_disable_check(s)) {
   2122            /* disable Queued Invalidation */
   2123            vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
   2124            s->iq_head = 0;
   2125            s->qi_enabled = false;
   2126            /* Ok - report back to driver */
   2127            vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
   2128        } else {
   2129            error_report_once("%s: detected improper state when disable QI "
   2130                              "(head=0x%x, tail=0x%x, last_type=%d)",
   2131                              __func__,
   2132                              s->iq_head, s->iq_tail, s->iq_last_desc_type);
   2133        }
   2134    }
   2135}
   2136
   2137/* Set Root Table Pointer */
   2138static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
   2139{
   2140    vtd_root_table_setup(s);
   2141    /* Ok - report back to driver */
   2142    vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
   2143    vtd_reset_caches(s);
   2144    vtd_address_space_refresh_all(s);
   2145}
   2146
   2147/* Set Interrupt Remap Table Pointer */
   2148static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
   2149{
   2150    vtd_interrupt_remap_table_setup(s);
   2151    /* Ok - report back to driver */
   2152    vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
   2153}
   2154
   2155/* Handle Translation Enable/Disable */
   2156static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
   2157{
   2158    if (s->dmar_enabled == en) {
   2159        return;
   2160    }
   2161
   2162    trace_vtd_dmar_enable(en);
   2163
   2164    if (en) {
   2165        s->dmar_enabled = true;
   2166        /* Ok - report back to driver */
   2167        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
   2168    } else {
   2169        s->dmar_enabled = false;
   2170
   2171        /* Clear the index of Fault Recording Register */
   2172        s->next_frcd_reg = 0;
   2173        /* Ok - report back to driver */
   2174        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
   2175    }
   2176
   2177    vtd_reset_caches(s);
   2178    vtd_address_space_refresh_all(s);
   2179}
   2180
   2181/* Handle Interrupt Remap Enable/Disable */
   2182static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
   2183{
   2184    trace_vtd_ir_enable(en);
   2185
   2186    if (en) {
   2187        s->intr_enabled = true;
   2188        /* Ok - report back to driver */
   2189        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
   2190    } else {
   2191        s->intr_enabled = false;
   2192        /* Ok - report back to driver */
   2193        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
   2194    }
   2195}
   2196
   2197/* Handle write to Global Command Register */
   2198static void vtd_handle_gcmd_write(IntelIOMMUState *s)
   2199{
   2200    uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
   2201    uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
   2202    uint32_t changed = status ^ val;
   2203
   2204    trace_vtd_reg_write_gcmd(status, val);
   2205    if (changed & VTD_GCMD_TE) {
   2206        /* Translation enable/disable */
   2207        vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
   2208    }
   2209    if (val & VTD_GCMD_SRTP) {
   2210        /* Set/update the root-table pointer */
   2211        vtd_handle_gcmd_srtp(s);
   2212    }
   2213    if (changed & VTD_GCMD_QIE) {
   2214        /* Queued Invalidation Enable */
   2215        vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
   2216    }
   2217    if (val & VTD_GCMD_SIRTP) {
   2218        /* Set/update the interrupt remapping root-table pointer */
   2219        vtd_handle_gcmd_sirtp(s);
   2220    }
   2221    if (changed & VTD_GCMD_IRE) {
   2222        /* Interrupt remap enable/disable */
   2223        vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
   2224    }
   2225}
   2226
   2227/* Handle write to Context Command Register */
   2228static void vtd_handle_ccmd_write(IntelIOMMUState *s)
   2229{
   2230    uint64_t ret;
   2231    uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
   2232
   2233    /* Context-cache invalidation request */
   2234    if (val & VTD_CCMD_ICC) {
   2235        if (s->qi_enabled) {
   2236            error_report_once("Queued Invalidation enabled, "
   2237                              "should not use register-based invalidation");
   2238            return;
   2239        }
   2240        ret = vtd_context_cache_invalidate(s, val);
   2241        /* Invalidation completed. Change something to show */
   2242        vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
   2243        ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
   2244                                      ret);
   2245    }
   2246}
   2247
   2248/* Handle write to IOTLB Invalidation Register */
   2249static void vtd_handle_iotlb_write(IntelIOMMUState *s)
   2250{
   2251    uint64_t ret;
   2252    uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
   2253
   2254    /* IOTLB invalidation request */
   2255    if (val & VTD_TLB_IVT) {
   2256        if (s->qi_enabled) {
   2257            error_report_once("Queued Invalidation enabled, "
   2258                              "should not use register-based invalidation");
   2259            return;
   2260        }
   2261        ret = vtd_iotlb_flush(s, val);
   2262        /* Invalidation completed. Change something to show */
   2263        vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
   2264        ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
   2265                                      VTD_TLB_FLUSH_GRANU_MASK_A, ret);
   2266    }
   2267}
   2268
   2269/* Fetch an Invalidation Descriptor from the Invalidation Queue */
   2270static bool vtd_get_inv_desc(IntelIOMMUState *s,
   2271                             VTDInvDesc *inv_desc)
   2272{
   2273    dma_addr_t base_addr = s->iq;
   2274    uint32_t offset = s->iq_head;
   2275    uint32_t dw = s->iq_dw ? 32 : 16;
   2276    dma_addr_t addr = base_addr + offset * dw;
   2277
   2278    if (dma_memory_read(&address_space_memory, addr, inv_desc, dw)) {
   2279        error_report_once("Read INV DESC failed.");
   2280        return false;
   2281    }
   2282    inv_desc->lo = le64_to_cpu(inv_desc->lo);
   2283    inv_desc->hi = le64_to_cpu(inv_desc->hi);
   2284    if (dw == 32) {
   2285        inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
   2286        inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
   2287    }
   2288    return true;
   2289}
   2290
   2291static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
   2292{
   2293    if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
   2294        (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
   2295        error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
   2296                          " (reserved nonzero)", __func__, inv_desc->hi,
   2297                          inv_desc->lo);
   2298        return false;
   2299    }
   2300    if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
   2301        /* Status Write */
   2302        uint32_t status_data = (uint32_t)(inv_desc->lo >>
   2303                               VTD_INV_DESC_WAIT_DATA_SHIFT);
   2304
   2305        assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
   2306
   2307        /* FIXME: need to be masked with HAW? */
   2308        dma_addr_t status_addr = inv_desc->hi;
   2309        trace_vtd_inv_desc_wait_sw(status_addr, status_data);
   2310        status_data = cpu_to_le32(status_data);
   2311        if (dma_memory_write(&address_space_memory, status_addr, &status_data,
   2312                             sizeof(status_data))) {
   2313            trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
   2314            return false;
   2315        }
   2316    } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
   2317        /* Interrupt flag */
   2318        vtd_generate_completion_event(s);
   2319    } else {
   2320        error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
   2321                          " (unknown type)", __func__, inv_desc->hi,
   2322                          inv_desc->lo);
   2323        return false;
   2324    }
   2325    return true;
   2326}
   2327
   2328static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
   2329                                           VTDInvDesc *inv_desc)
   2330{
   2331    uint16_t sid, fmask;
   2332
   2333    if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
   2334        error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
   2335                          " (reserved nonzero)", __func__, inv_desc->hi,
   2336                          inv_desc->lo);
   2337        return false;
   2338    }
   2339    switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
   2340    case VTD_INV_DESC_CC_DOMAIN:
   2341        trace_vtd_inv_desc_cc_domain(
   2342            (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
   2343        /* Fall through */
   2344    case VTD_INV_DESC_CC_GLOBAL:
   2345        vtd_context_global_invalidate(s);
   2346        break;
   2347
   2348    case VTD_INV_DESC_CC_DEVICE:
   2349        sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
   2350        fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
   2351        vtd_context_device_invalidate(s, sid, fmask);
   2352        break;
   2353
   2354    default:
   2355        error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
   2356                          " (invalid type)", __func__, inv_desc->hi,
   2357                          inv_desc->lo);
   2358        return false;
   2359    }
   2360    return true;
   2361}
   2362
   2363static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
   2364{
   2365    uint16_t domain_id;
   2366    uint8_t am;
   2367    hwaddr addr;
   2368
   2369    if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
   2370        (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
   2371        error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
   2372                          ", lo=0x%"PRIx64" (reserved bits unzero)",
   2373                          __func__, inv_desc->hi, inv_desc->lo);
   2374        return false;
   2375    }
   2376
   2377    switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
   2378    case VTD_INV_DESC_IOTLB_GLOBAL:
   2379        vtd_iotlb_global_invalidate(s);
   2380        break;
   2381
   2382    case VTD_INV_DESC_IOTLB_DOMAIN:
   2383        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
   2384        vtd_iotlb_domain_invalidate(s, domain_id);
   2385        break;
   2386
   2387    case VTD_INV_DESC_IOTLB_PAGE:
   2388        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
   2389        addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
   2390        am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
   2391        if (am > VTD_MAMV) {
   2392            error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
   2393                              ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
   2394                              __func__, inv_desc->hi, inv_desc->lo,
   2395                              am, (unsigned)VTD_MAMV);
   2396            return false;
   2397        }
   2398        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
   2399        break;
   2400
   2401    default:
   2402        error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
   2403                          ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
   2404                          __func__, inv_desc->hi, inv_desc->lo,
   2405                          inv_desc->lo & VTD_INV_DESC_IOTLB_G);
   2406        return false;
   2407    }
   2408    return true;
   2409}
   2410
   2411static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
   2412                                     VTDInvDesc *inv_desc)
   2413{
   2414    trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
   2415                           inv_desc->iec.index,
   2416                           inv_desc->iec.index_mask);
   2417
   2418    vtd_iec_notify_all(s, !inv_desc->iec.granularity,
   2419                       inv_desc->iec.index,
   2420                       inv_desc->iec.index_mask);
   2421    return true;
   2422}
   2423
   2424static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
   2425                                          VTDInvDesc *inv_desc)
   2426{
   2427    VTDAddressSpace *vtd_dev_as;
   2428    IOMMUTLBEvent event;
   2429    struct VTDBus *vtd_bus;
   2430    hwaddr addr;
   2431    uint64_t sz;
   2432    uint16_t sid;
   2433    uint8_t devfn;
   2434    bool size;
   2435    uint8_t bus_num;
   2436
   2437    addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
   2438    sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
   2439    devfn = sid & 0xff;
   2440    bus_num = sid >> 8;
   2441    size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
   2442
   2443    if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
   2444        (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
   2445        error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
   2446                          ", lo=%"PRIx64" (reserved nonzero)", __func__,
   2447                          inv_desc->hi, inv_desc->lo);
   2448        return false;
   2449    }
   2450
   2451    vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
   2452    if (!vtd_bus) {
   2453        goto done;
   2454    }
   2455
   2456    vtd_dev_as = vtd_bus->dev_as[devfn];
   2457    if (!vtd_dev_as) {
   2458        goto done;
   2459    }
   2460
   2461    /* According to ATS spec table 2.4:
   2462     * S = 0, bits 15:12 = xxxx     range size: 4K
   2463     * S = 1, bits 15:12 = xxx0     range size: 8K
   2464     * S = 1, bits 15:12 = xx01     range size: 16K
   2465     * S = 1, bits 15:12 = x011     range size: 32K
   2466     * S = 1, bits 15:12 = 0111     range size: 64K
   2467     * ...
   2468     */
   2469    if (size) {
   2470        sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
   2471        addr &= ~(sz - 1);
   2472    } else {
   2473        sz = VTD_PAGE_SIZE;
   2474    }
   2475
   2476    event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
   2477    event.entry.target_as = &vtd_dev_as->as;
   2478    event.entry.addr_mask = sz - 1;
   2479    event.entry.iova = addr;
   2480    event.entry.perm = IOMMU_NONE;
   2481    event.entry.translated_addr = 0;
   2482    memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
   2483
   2484done:
   2485    return true;
   2486}
   2487
   2488static bool vtd_process_inv_desc(IntelIOMMUState *s)
   2489{
   2490    VTDInvDesc inv_desc;
   2491    uint8_t desc_type;
   2492
   2493    trace_vtd_inv_qi_head(s->iq_head);
   2494    if (!vtd_get_inv_desc(s, &inv_desc)) {
   2495        s->iq_last_desc_type = VTD_INV_DESC_NONE;
   2496        return false;
   2497    }
   2498
   2499    desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
   2500    /* FIXME: should update at first or at last? */
   2501    s->iq_last_desc_type = desc_type;
   2502
   2503    switch (desc_type) {
   2504    case VTD_INV_DESC_CC:
   2505        trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
   2506        if (!vtd_process_context_cache_desc(s, &inv_desc)) {
   2507            return false;
   2508        }
   2509        break;
   2510
   2511    case VTD_INV_DESC_IOTLB:
   2512        trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
   2513        if (!vtd_process_iotlb_desc(s, &inv_desc)) {
   2514            return false;
   2515        }
   2516        break;
   2517
   2518    /*
   2519     * TODO: the entity of below two cases will be implemented in future series.
   2520     * To make guest (which integrates scalable mode support patch set in
   2521     * iommu driver) work, just return true is enough so far.
   2522     */
   2523    case VTD_INV_DESC_PC:
   2524        break;
   2525
   2526    case VTD_INV_DESC_PIOTLB:
   2527        break;
   2528
   2529    case VTD_INV_DESC_WAIT:
   2530        trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
   2531        if (!vtd_process_wait_desc(s, &inv_desc)) {
   2532            return false;
   2533        }
   2534        break;
   2535
   2536    case VTD_INV_DESC_IEC:
   2537        trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
   2538        if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
   2539            return false;
   2540        }
   2541        break;
   2542
   2543    case VTD_INV_DESC_DEVICE:
   2544        trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
   2545        if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
   2546            return false;
   2547        }
   2548        break;
   2549
   2550    default:
   2551        error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
   2552                          " (unknown type)", __func__, inv_desc.hi,
   2553                          inv_desc.lo);
   2554        return false;
   2555    }
   2556    s->iq_head++;
   2557    if (s->iq_head == s->iq_size) {
   2558        s->iq_head = 0;
   2559    }
   2560    return true;
   2561}
   2562
   2563/* Try to fetch and process more Invalidation Descriptors */
   2564static void vtd_fetch_inv_desc(IntelIOMMUState *s)
   2565{
   2566    int qi_shift;
   2567
   2568    /* Refer to 10.4.23 of VT-d spec 3.0 */
   2569    qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
   2570
   2571    trace_vtd_inv_qi_fetch();
   2572
   2573    if (s->iq_tail >= s->iq_size) {
   2574        /* Detects an invalid Tail pointer */
   2575        error_report_once("%s: detected invalid QI tail "
   2576                          "(tail=0x%x, size=0x%x)",
   2577                          __func__, s->iq_tail, s->iq_size);
   2578        vtd_handle_inv_queue_error(s);
   2579        return;
   2580    }
   2581    while (s->iq_head != s->iq_tail) {
   2582        if (!vtd_process_inv_desc(s)) {
   2583            /* Invalidation Queue Errors */
   2584            vtd_handle_inv_queue_error(s);
   2585            break;
   2586        }
   2587        /* Must update the IQH_REG in time */
   2588        vtd_set_quad_raw(s, DMAR_IQH_REG,
   2589                         (((uint64_t)(s->iq_head)) << qi_shift) &
   2590                         VTD_IQH_QH_MASK);
   2591    }
   2592}
   2593
   2594/* Handle write to Invalidation Queue Tail Register */
   2595static void vtd_handle_iqt_write(IntelIOMMUState *s)
   2596{
   2597    uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
   2598
   2599    if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
   2600        error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
   2601                          __func__, val);
   2602        return;
   2603    }
   2604    s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
   2605    trace_vtd_inv_qi_tail(s->iq_tail);
   2606
   2607    if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
   2608        /* Process Invalidation Queue here */
   2609        vtd_fetch_inv_desc(s);
   2610    }
   2611}
   2612
   2613static void vtd_handle_fsts_write(IntelIOMMUState *s)
   2614{
   2615    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
   2616    uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
   2617    uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
   2618
   2619    if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
   2620        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
   2621        trace_vtd_fsts_clear_ip();
   2622    }
   2623    /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
   2624     * Descriptors if there are any when Queued Invalidation is enabled?
   2625     */
   2626}
   2627
   2628static void vtd_handle_fectl_write(IntelIOMMUState *s)
   2629{
   2630    uint32_t fectl_reg;
   2631    /* FIXME: when software clears the IM field, check the IP field. But do we
   2632     * need to compare the old value and the new value to conclude that
   2633     * software clears the IM field? Or just check if the IM field is zero?
   2634     */
   2635    fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
   2636
   2637    trace_vtd_reg_write_fectl(fectl_reg);
   2638
   2639    if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
   2640        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
   2641        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
   2642    }
   2643}
   2644
   2645static void vtd_handle_ics_write(IntelIOMMUState *s)
   2646{
   2647    uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
   2648    uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
   2649
   2650    if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
   2651        trace_vtd_reg_ics_clear_ip();
   2652        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
   2653    }
   2654}
   2655
   2656static void vtd_handle_iectl_write(IntelIOMMUState *s)
   2657{
   2658    uint32_t iectl_reg;
   2659    /* FIXME: when software clears the IM field, check the IP field. But do we
   2660     * need to compare the old value and the new value to conclude that
   2661     * software clears the IM field? Or just check if the IM field is zero?
   2662     */
   2663    iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
   2664
   2665    trace_vtd_reg_write_iectl(iectl_reg);
   2666
   2667    if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
   2668        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
   2669        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
   2670    }
   2671}
   2672
   2673static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
   2674{
   2675    IntelIOMMUState *s = opaque;
   2676    uint64_t val;
   2677
   2678    trace_vtd_reg_read(addr, size);
   2679
   2680    if (addr + size > DMAR_REG_SIZE) {
   2681        error_report_once("%s: MMIO over range: addr=0x%" PRIx64
   2682                          " size=0x%x", __func__, addr, size);
   2683        return (uint64_t)-1;
   2684    }
   2685
   2686    switch (addr) {
   2687    /* Root Table Address Register, 64-bit */
   2688    case DMAR_RTADDR_REG:
   2689        val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
   2690        if (size == 4) {
   2691            val = val & ((1ULL << 32) - 1);
   2692        }
   2693        break;
   2694
   2695    case DMAR_RTADDR_REG_HI:
   2696        assert(size == 4);
   2697        val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
   2698        break;
   2699
   2700    /* Invalidation Queue Address Register, 64-bit */
   2701    case DMAR_IQA_REG:
   2702        val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
   2703        if (size == 4) {
   2704            val = val & ((1ULL << 32) - 1);
   2705        }
   2706        break;
   2707
   2708    case DMAR_IQA_REG_HI:
   2709        assert(size == 4);
   2710        val = s->iq >> 32;
   2711        break;
   2712
   2713    default:
   2714        if (size == 4) {
   2715            val = vtd_get_long(s, addr);
   2716        } else {
   2717            val = vtd_get_quad(s, addr);
   2718        }
   2719    }
   2720
   2721    return val;
   2722}
   2723
   2724static void vtd_mem_write(void *opaque, hwaddr addr,
   2725                          uint64_t val, unsigned size)
   2726{
   2727    IntelIOMMUState *s = opaque;
   2728
   2729    trace_vtd_reg_write(addr, size, val);
   2730
   2731    if (addr + size > DMAR_REG_SIZE) {
   2732        error_report_once("%s: MMIO over range: addr=0x%" PRIx64
   2733                          " size=0x%x", __func__, addr, size);
   2734        return;
   2735    }
   2736
   2737    switch (addr) {
   2738    /* Global Command Register, 32-bit */
   2739    case DMAR_GCMD_REG:
   2740        vtd_set_long(s, addr, val);
   2741        vtd_handle_gcmd_write(s);
   2742        break;
   2743
   2744    /* Context Command Register, 64-bit */
   2745    case DMAR_CCMD_REG:
   2746        if (size == 4) {
   2747            vtd_set_long(s, addr, val);
   2748        } else {
   2749            vtd_set_quad(s, addr, val);
   2750            vtd_handle_ccmd_write(s);
   2751        }
   2752        break;
   2753
   2754    case DMAR_CCMD_REG_HI:
   2755        assert(size == 4);
   2756        vtd_set_long(s, addr, val);
   2757        vtd_handle_ccmd_write(s);
   2758        break;
   2759
   2760    /* IOTLB Invalidation Register, 64-bit */
   2761    case DMAR_IOTLB_REG:
   2762        if (size == 4) {
   2763            vtd_set_long(s, addr, val);
   2764        } else {
   2765            vtd_set_quad(s, addr, val);
   2766            vtd_handle_iotlb_write(s);
   2767        }
   2768        break;
   2769
   2770    case DMAR_IOTLB_REG_HI:
   2771        assert(size == 4);
   2772        vtd_set_long(s, addr, val);
   2773        vtd_handle_iotlb_write(s);
   2774        break;
   2775
   2776    /* Invalidate Address Register, 64-bit */
   2777    case DMAR_IVA_REG:
   2778        if (size == 4) {
   2779            vtd_set_long(s, addr, val);
   2780        } else {
   2781            vtd_set_quad(s, addr, val);
   2782        }
   2783        break;
   2784
   2785    case DMAR_IVA_REG_HI:
   2786        assert(size == 4);
   2787        vtd_set_long(s, addr, val);
   2788        break;
   2789
   2790    /* Fault Status Register, 32-bit */
   2791    case DMAR_FSTS_REG:
   2792        assert(size == 4);
   2793        vtd_set_long(s, addr, val);
   2794        vtd_handle_fsts_write(s);
   2795        break;
   2796
   2797    /* Fault Event Control Register, 32-bit */
   2798    case DMAR_FECTL_REG:
   2799        assert(size == 4);
   2800        vtd_set_long(s, addr, val);
   2801        vtd_handle_fectl_write(s);
   2802        break;
   2803
   2804    /* Fault Event Data Register, 32-bit */
   2805    case DMAR_FEDATA_REG:
   2806        assert(size == 4);
   2807        vtd_set_long(s, addr, val);
   2808        break;
   2809
   2810    /* Fault Event Address Register, 32-bit */
   2811    case DMAR_FEADDR_REG:
   2812        if (size == 4) {
   2813            vtd_set_long(s, addr, val);
   2814        } else {
   2815            /*
   2816             * While the register is 32-bit only, some guests (Xen...) write to
   2817             * it with 64-bit.
   2818             */
   2819            vtd_set_quad(s, addr, val);
   2820        }
   2821        break;
   2822
   2823    /* Fault Event Upper Address Register, 32-bit */
   2824    case DMAR_FEUADDR_REG:
   2825        assert(size == 4);
   2826        vtd_set_long(s, addr, val);
   2827        break;
   2828
   2829    /* Protected Memory Enable Register, 32-bit */
   2830    case DMAR_PMEN_REG:
   2831        assert(size == 4);
   2832        vtd_set_long(s, addr, val);
   2833        break;
   2834
   2835    /* Root Table Address Register, 64-bit */
   2836    case DMAR_RTADDR_REG:
   2837        if (size == 4) {
   2838            vtd_set_long(s, addr, val);
   2839        } else {
   2840            vtd_set_quad(s, addr, val);
   2841        }
   2842        break;
   2843
   2844    case DMAR_RTADDR_REG_HI:
   2845        assert(size == 4);
   2846        vtd_set_long(s, addr, val);
   2847        break;
   2848
   2849    /* Invalidation Queue Tail Register, 64-bit */
   2850    case DMAR_IQT_REG:
   2851        if (size == 4) {
   2852            vtd_set_long(s, addr, val);
   2853        } else {
   2854            vtd_set_quad(s, addr, val);
   2855        }
   2856        vtd_handle_iqt_write(s);
   2857        break;
   2858
   2859    case DMAR_IQT_REG_HI:
   2860        assert(size == 4);
   2861        vtd_set_long(s, addr, val);
   2862        /* 19:63 of IQT_REG is RsvdZ, do nothing here */
   2863        break;
   2864
   2865    /* Invalidation Queue Address Register, 64-bit */
   2866    case DMAR_IQA_REG:
   2867        if (size == 4) {
   2868            vtd_set_long(s, addr, val);
   2869        } else {
   2870            vtd_set_quad(s, addr, val);
   2871        }
   2872        if (s->ecap & VTD_ECAP_SMTS &&
   2873            val & VTD_IQA_DW_MASK) {
   2874            s->iq_dw = true;
   2875        } else {
   2876            s->iq_dw = false;
   2877        }
   2878        break;
   2879
   2880    case DMAR_IQA_REG_HI:
   2881        assert(size == 4);
   2882        vtd_set_long(s, addr, val);
   2883        break;
   2884
   2885    /* Invalidation Completion Status Register, 32-bit */
   2886    case DMAR_ICS_REG:
   2887        assert(size == 4);
   2888        vtd_set_long(s, addr, val);
   2889        vtd_handle_ics_write(s);
   2890        break;
   2891
   2892    /* Invalidation Event Control Register, 32-bit */
   2893    case DMAR_IECTL_REG:
   2894        assert(size == 4);
   2895        vtd_set_long(s, addr, val);
   2896        vtd_handle_iectl_write(s);
   2897        break;
   2898
   2899    /* Invalidation Event Data Register, 32-bit */
   2900    case DMAR_IEDATA_REG:
   2901        assert(size == 4);
   2902        vtd_set_long(s, addr, val);
   2903        break;
   2904
   2905    /* Invalidation Event Address Register, 32-bit */
   2906    case DMAR_IEADDR_REG:
   2907        assert(size == 4);
   2908        vtd_set_long(s, addr, val);
   2909        break;
   2910
   2911    /* Invalidation Event Upper Address Register, 32-bit */
   2912    case DMAR_IEUADDR_REG:
   2913        assert(size == 4);
   2914        vtd_set_long(s, addr, val);
   2915        break;
   2916
   2917    /* Fault Recording Registers, 128-bit */
   2918    case DMAR_FRCD_REG_0_0:
   2919        if (size == 4) {
   2920            vtd_set_long(s, addr, val);
   2921        } else {
   2922            vtd_set_quad(s, addr, val);
   2923        }
   2924        break;
   2925
   2926    case DMAR_FRCD_REG_0_1:
   2927        assert(size == 4);
   2928        vtd_set_long(s, addr, val);
   2929        break;
   2930
   2931    case DMAR_FRCD_REG_0_2:
   2932        if (size == 4) {
   2933            vtd_set_long(s, addr, val);
   2934        } else {
   2935            vtd_set_quad(s, addr, val);
   2936            /* May clear bit 127 (Fault), update PPF */
   2937            vtd_update_fsts_ppf(s);
   2938        }
   2939        break;
   2940
   2941    case DMAR_FRCD_REG_0_3:
   2942        assert(size == 4);
   2943        vtd_set_long(s, addr, val);
   2944        /* May clear bit 127 (Fault), update PPF */
   2945        vtd_update_fsts_ppf(s);
   2946        break;
   2947
   2948    case DMAR_IRTA_REG:
   2949        if (size == 4) {
   2950            vtd_set_long(s, addr, val);
   2951        } else {
   2952            vtd_set_quad(s, addr, val);
   2953        }
   2954        break;
   2955
   2956    case DMAR_IRTA_REG_HI:
   2957        assert(size == 4);
   2958        vtd_set_long(s, addr, val);
   2959        break;
   2960
   2961    default:
   2962        if (size == 4) {
   2963            vtd_set_long(s, addr, val);
   2964        } else {
   2965            vtd_set_quad(s, addr, val);
   2966        }
   2967    }
   2968}
   2969
   2970static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
   2971                                         IOMMUAccessFlags flag, int iommu_idx)
   2972{
   2973    VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
   2974    IntelIOMMUState *s = vtd_as->iommu_state;
   2975    IOMMUTLBEntry iotlb = {
   2976        /* We'll fill in the rest later. */
   2977        .target_as = &address_space_memory,
   2978    };
   2979    bool success;
   2980
   2981    if (likely(s->dmar_enabled)) {
   2982        success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
   2983                                         addr, flag & IOMMU_WO, &iotlb);
   2984    } else {
   2985        /* DMAR disabled, passthrough, use 4k-page*/
   2986        iotlb.iova = addr & VTD_PAGE_MASK_4K;
   2987        iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
   2988        iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
   2989        iotlb.perm = IOMMU_RW;
   2990        success = true;
   2991    }
   2992
   2993    if (likely(success)) {
   2994        trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
   2995                                 VTD_PCI_SLOT(vtd_as->devfn),
   2996                                 VTD_PCI_FUNC(vtd_as->devfn),
   2997                                 iotlb.iova, iotlb.translated_addr,
   2998                                 iotlb.addr_mask);
   2999    } else {
   3000        error_report_once("%s: detected translation failure "
   3001                          "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
   3002                          __func__, pci_bus_num(vtd_as->bus),
   3003                          VTD_PCI_SLOT(vtd_as->devfn),
   3004                          VTD_PCI_FUNC(vtd_as->devfn),
   3005                          addr);
   3006    }
   3007
   3008    return iotlb;
   3009}
   3010
   3011static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
   3012                                         IOMMUNotifierFlag old,
   3013                                         IOMMUNotifierFlag new,
   3014                                         Error **errp)
   3015{
   3016    VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
   3017    IntelIOMMUState *s = vtd_as->iommu_state;
   3018
   3019    /* Update per-address-space notifier flags */
   3020    vtd_as->notifier_flags = new;
   3021
   3022    if (old == IOMMU_NOTIFIER_NONE) {
   3023        QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
   3024    } else if (new == IOMMU_NOTIFIER_NONE) {
   3025        QLIST_REMOVE(vtd_as, next);
   3026    }
   3027    return 0;
   3028}
   3029
   3030static int vtd_post_load(void *opaque, int version_id)
   3031{
   3032    IntelIOMMUState *iommu = opaque;
   3033
   3034    /*
   3035     * Memory regions are dynamically turned on/off depending on
   3036     * context entry configurations from the guest. After migration,
   3037     * we need to make sure the memory regions are still correct.
   3038     */
   3039    vtd_switch_address_space_all(iommu);
   3040
   3041    /*
   3042     * We don't need to migrate the root_scalable because we can
   3043     * simply do the calculation after the loading is complete.  We
   3044     * can actually do similar things with root, dmar_enabled, etc.
   3045     * however since we've had them already so we'd better keep them
   3046     * for compatibility of migration.
   3047     */
   3048    vtd_update_scalable_state(iommu);
   3049
   3050    return 0;
   3051}
   3052
   3053static const VMStateDescription vtd_vmstate = {
   3054    .name = "iommu-intel",
   3055    .version_id = 1,
   3056    .minimum_version_id = 1,
   3057    .priority = MIG_PRI_IOMMU,
   3058    .post_load = vtd_post_load,
   3059    .fields = (VMStateField[]) {
   3060        VMSTATE_UINT64(root, IntelIOMMUState),
   3061        VMSTATE_UINT64(intr_root, IntelIOMMUState),
   3062        VMSTATE_UINT64(iq, IntelIOMMUState),
   3063        VMSTATE_UINT32(intr_size, IntelIOMMUState),
   3064        VMSTATE_UINT16(iq_head, IntelIOMMUState),
   3065        VMSTATE_UINT16(iq_tail, IntelIOMMUState),
   3066        VMSTATE_UINT16(iq_size, IntelIOMMUState),
   3067        VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
   3068        VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
   3069        VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
   3070        VMSTATE_UNUSED(1),      /* bool root_extended is obsolete by VT-d */
   3071        VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
   3072        VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
   3073        VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
   3074        VMSTATE_BOOL(intr_eime, IntelIOMMUState),
   3075        VMSTATE_END_OF_LIST()
   3076    }
   3077};
   3078
   3079static const MemoryRegionOps vtd_mem_ops = {
   3080    .read = vtd_mem_read,
   3081    .write = vtd_mem_write,
   3082    .endianness = DEVICE_LITTLE_ENDIAN,
   3083    .impl = {
   3084        .min_access_size = 4,
   3085        .max_access_size = 8,
   3086    },
   3087    .valid = {
   3088        .min_access_size = 4,
   3089        .max_access_size = 8,
   3090    },
   3091};
   3092
   3093static Property vtd_properties[] = {
   3094    DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
   3095    DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
   3096                            ON_OFF_AUTO_AUTO),
   3097    DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
   3098    DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
   3099                      VTD_HOST_ADDRESS_WIDTH),
   3100    DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
   3101    DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
   3102    DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
   3103    DEFINE_PROP_END_OF_LIST(),
   3104};
   3105
   3106/* Read IRTE entry with specific index */
   3107static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
   3108                        VTD_IR_TableEntry *entry, uint16_t sid)
   3109{
   3110    static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
   3111        {0xffff, 0xfffb, 0xfff9, 0xfff8};
   3112    dma_addr_t addr = 0x00;
   3113    uint16_t mask, source_id;
   3114    uint8_t bus, bus_max, bus_min;
   3115
   3116    if (index >= iommu->intr_size) {
   3117        error_report_once("%s: index too large: ind=0x%x",
   3118                          __func__, index);
   3119        return -VTD_FR_IR_INDEX_OVER;
   3120    }
   3121
   3122    addr = iommu->intr_root + index * sizeof(*entry);
   3123    if (dma_memory_read(&address_space_memory, addr, entry,
   3124                        sizeof(*entry))) {
   3125        error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
   3126                          __func__, index, addr);
   3127        return -VTD_FR_IR_ROOT_INVAL;
   3128    }
   3129
   3130    trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
   3131                          le64_to_cpu(entry->data[0]));
   3132
   3133    if (!entry->irte.present) {
   3134        error_report_once("%s: detected non-present IRTE "
   3135                          "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
   3136                          __func__, index, le64_to_cpu(entry->data[1]),
   3137                          le64_to_cpu(entry->data[0]));
   3138        return -VTD_FR_IR_ENTRY_P;
   3139    }
   3140
   3141    if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
   3142        entry->irte.__reserved_2) {
   3143        error_report_once("%s: detected non-zero reserved IRTE "
   3144                          "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
   3145                          __func__, index, le64_to_cpu(entry->data[1]),
   3146                          le64_to_cpu(entry->data[0]));
   3147        return -VTD_FR_IR_IRTE_RSVD;
   3148    }
   3149
   3150    if (sid != X86_IOMMU_SID_INVALID) {
   3151        /* Validate IRTE SID */
   3152        source_id = le32_to_cpu(entry->irte.source_id);
   3153        switch (entry->irte.sid_vtype) {
   3154        case VTD_SVT_NONE:
   3155            break;
   3156
   3157        case VTD_SVT_ALL:
   3158            mask = vtd_svt_mask[entry->irte.sid_q];
   3159            if ((source_id & mask) != (sid & mask)) {
   3160                error_report_once("%s: invalid IRTE SID "
   3161                                  "(index=%u, sid=%u, source_id=%u)",
   3162                                  __func__, index, sid, source_id);
   3163                return -VTD_FR_IR_SID_ERR;
   3164            }
   3165            break;
   3166
   3167        case VTD_SVT_BUS:
   3168            bus_max = source_id >> 8;
   3169            bus_min = source_id & 0xff;
   3170            bus = sid >> 8;
   3171            if (bus > bus_max || bus < bus_min) {
   3172                error_report_once("%s: invalid SVT_BUS "
   3173                                  "(index=%u, bus=%u, min=%u, max=%u)",
   3174                                  __func__, index, bus, bus_min, bus_max);
   3175                return -VTD_FR_IR_SID_ERR;
   3176            }
   3177            break;
   3178
   3179        default:
   3180            error_report_once("%s: detected invalid IRTE SVT "
   3181                              "(index=%u, type=%d)", __func__,
   3182                              index, entry->irte.sid_vtype);
   3183            /* Take this as verification failure. */
   3184            return -VTD_FR_IR_SID_ERR;
   3185        }
   3186    }
   3187
   3188    return 0;
   3189}
   3190
   3191/* Fetch IRQ information of specific IR index */
   3192static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
   3193                             X86IOMMUIrq *irq, uint16_t sid)
   3194{
   3195    VTD_IR_TableEntry irte = {};
   3196    int ret = 0;
   3197
   3198    ret = vtd_irte_get(iommu, index, &irte, sid);
   3199    if (ret) {
   3200        return ret;
   3201    }
   3202
   3203    irq->trigger_mode = irte.irte.trigger_mode;
   3204    irq->vector = irte.irte.vector;
   3205    irq->delivery_mode = irte.irte.delivery_mode;
   3206    irq->dest = le32_to_cpu(irte.irte.dest_id);
   3207    if (!iommu->intr_eime) {
   3208#define  VTD_IR_APIC_DEST_MASK         (0xff00ULL)
   3209#define  VTD_IR_APIC_DEST_SHIFT        (8)
   3210        irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
   3211            VTD_IR_APIC_DEST_SHIFT;
   3212    }
   3213    irq->dest_mode = irte.irte.dest_mode;
   3214    irq->redir_hint = irte.irte.redir_hint;
   3215
   3216    trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
   3217                       irq->delivery_mode, irq->dest, irq->dest_mode);
   3218
   3219    return 0;
   3220}
   3221
   3222/* Interrupt remapping for MSI/MSI-X entry */
   3223static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
   3224                                   MSIMessage *origin,
   3225                                   MSIMessage *translated,
   3226                                   uint16_t sid)
   3227{
   3228    int ret = 0;
   3229    VTD_IR_MSIAddress addr;
   3230    uint16_t index;
   3231    X86IOMMUIrq irq = {};
   3232
   3233    assert(origin && translated);
   3234
   3235    trace_vtd_ir_remap_msi_req(origin->address, origin->data);
   3236
   3237    if (!iommu || !iommu->intr_enabled) {
   3238        memcpy(translated, origin, sizeof(*origin));
   3239        goto out;
   3240    }
   3241
   3242    if (origin->address & VTD_MSI_ADDR_HI_MASK) {
   3243        error_report_once("%s: MSI address high 32 bits non-zero detected: "
   3244                          "address=0x%" PRIx64, __func__, origin->address);
   3245        return -VTD_FR_IR_REQ_RSVD;
   3246    }
   3247
   3248    addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
   3249    if (addr.addr.__head != 0xfee) {
   3250        error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
   3251                          __func__, addr.data);
   3252        return -VTD_FR_IR_REQ_RSVD;
   3253    }
   3254
   3255    /* This is compatible mode. */
   3256    if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
   3257        memcpy(translated, origin, sizeof(*origin));
   3258        goto out;
   3259    }
   3260
   3261    index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
   3262
   3263#define  VTD_IR_MSI_DATA_SUBHANDLE       (0x0000ffff)
   3264#define  VTD_IR_MSI_DATA_RESERVED        (0xffff0000)
   3265
   3266    if (addr.addr.sub_valid) {
   3267        /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
   3268        index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
   3269    }
   3270
   3271    ret = vtd_remap_irq_get(iommu, index, &irq, sid);
   3272    if (ret) {
   3273        return ret;
   3274    }
   3275
   3276    if (addr.addr.sub_valid) {
   3277        trace_vtd_ir_remap_type("MSI");
   3278        if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
   3279            error_report_once("%s: invalid IR MSI "
   3280                              "(sid=%u, address=0x%" PRIx64
   3281                              ", data=0x%" PRIx32 ")",
   3282                              __func__, sid, origin->address, origin->data);
   3283            return -VTD_FR_IR_REQ_RSVD;
   3284        }
   3285    } else {
   3286        uint8_t vector = origin->data & 0xff;
   3287        uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
   3288
   3289        trace_vtd_ir_remap_type("IOAPIC");
   3290        /* IOAPIC entry vector should be aligned with IRTE vector
   3291         * (see vt-d spec 5.1.5.1). */
   3292        if (vector != irq.vector) {
   3293            trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
   3294        }
   3295
   3296        /* The Trigger Mode field must match the Trigger Mode in the IRTE.
   3297         * (see vt-d spec 5.1.5.1). */
   3298        if (trigger_mode != irq.trigger_mode) {
   3299            trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
   3300                                      irq.trigger_mode);
   3301        }
   3302    }
   3303
   3304    /*
   3305     * We'd better keep the last two bits, assuming that guest OS
   3306     * might modify it. Keep it does not hurt after all.
   3307     */
   3308    irq.msi_addr_last_bits = addr.addr.__not_care;
   3309
   3310    /* Translate X86IOMMUIrq to MSI message */
   3311    x86_iommu_irq_to_msi_message(&irq, translated);
   3312
   3313out:
   3314    trace_vtd_ir_remap_msi(origin->address, origin->data,
   3315                           translated->address, translated->data);
   3316    return 0;
   3317}
   3318
   3319static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
   3320                         MSIMessage *dst, uint16_t sid)
   3321{
   3322    return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
   3323                                   src, dst, sid);
   3324}
   3325
   3326static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
   3327                                   uint64_t *data, unsigned size,
   3328                                   MemTxAttrs attrs)
   3329{
   3330    return MEMTX_OK;
   3331}
   3332
   3333static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
   3334                                    uint64_t value, unsigned size,
   3335                                    MemTxAttrs attrs)
   3336{
   3337    int ret = 0;
   3338    MSIMessage from = {}, to = {};
   3339    uint16_t sid = X86_IOMMU_SID_INVALID;
   3340
   3341    from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
   3342    from.data = (uint32_t) value;
   3343
   3344    if (!attrs.unspecified) {
   3345        /* We have explicit Source ID */
   3346        sid = attrs.requester_id;
   3347    }
   3348
   3349    ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
   3350    if (ret) {
   3351        /* TODO: report error */
   3352        /* Drop this interrupt */
   3353        return MEMTX_ERROR;
   3354    }
   3355
   3356    apic_get_class()->send_msi(&to);
   3357
   3358    return MEMTX_OK;
   3359}
   3360
   3361static const MemoryRegionOps vtd_mem_ir_ops = {
   3362    .read_with_attrs = vtd_mem_ir_read,
   3363    .write_with_attrs = vtd_mem_ir_write,
   3364    .endianness = DEVICE_LITTLE_ENDIAN,
   3365    .impl = {
   3366        .min_access_size = 4,
   3367        .max_access_size = 4,
   3368    },
   3369    .valid = {
   3370        .min_access_size = 4,
   3371        .max_access_size = 4,
   3372    },
   3373};
   3374
   3375VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
   3376{
   3377    uintptr_t key = (uintptr_t)bus;
   3378    VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
   3379    VTDAddressSpace *vtd_dev_as;
   3380    char name[128];
   3381
   3382    if (!vtd_bus) {
   3383        uintptr_t *new_key = g_malloc(sizeof(*new_key));
   3384        *new_key = (uintptr_t)bus;
   3385        /* No corresponding free() */
   3386        vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
   3387                            PCI_DEVFN_MAX);
   3388        vtd_bus->bus = bus;
   3389        g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
   3390    }
   3391
   3392    vtd_dev_as = vtd_bus->dev_as[devfn];
   3393
   3394    if (!vtd_dev_as) {
   3395        snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
   3396                 PCI_FUNC(devfn));
   3397        vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
   3398
   3399        vtd_dev_as->bus = bus;
   3400        vtd_dev_as->devfn = (uint8_t)devfn;
   3401        vtd_dev_as->iommu_state = s;
   3402        vtd_dev_as->context_cache_entry.context_cache_gen = 0;
   3403        vtd_dev_as->iova_tree = iova_tree_new();
   3404
   3405        memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
   3406        address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
   3407
   3408        /*
   3409         * Build the DMAR-disabled container with aliases to the
   3410         * shared MRs.  Note that aliasing to a shared memory region
   3411         * could help the memory API to detect same FlatViews so we
   3412         * can have devices to share the same FlatView when DMAR is
   3413         * disabled (either by not providing "intel_iommu=on" or with
   3414         * "iommu=pt").  It will greatly reduce the total number of
   3415         * FlatViews of the system hence VM runs faster.
   3416         */
   3417        memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
   3418                                 "vtd-nodmar", &s->mr_nodmar, 0,
   3419                                 memory_region_size(&s->mr_nodmar));
   3420
   3421        /*
   3422         * Build the per-device DMAR-enabled container.
   3423         *
   3424         * TODO: currently we have per-device IOMMU memory region only
   3425         * because we have per-device IOMMU notifiers for devices.  If
   3426         * one day we can abstract the IOMMU notifiers out of the
   3427         * memory regions then we can also share the same memory
   3428         * region here just like what we've done above with the nodmar
   3429         * region.
   3430         */
   3431        strcat(name, "-dmar");
   3432        memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
   3433                                 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
   3434                                 name, UINT64_MAX);
   3435        memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
   3436                                 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
   3437        memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
   3438                                            VTD_INTERRUPT_ADDR_FIRST,
   3439                                            &vtd_dev_as->iommu_ir, 1);
   3440
   3441        /*
   3442         * Hook both the containers under the root container, we
   3443         * switch between DMAR & noDMAR by enable/disable
   3444         * corresponding sub-containers
   3445         */
   3446        memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
   3447                                            MEMORY_REGION(&vtd_dev_as->iommu),
   3448                                            0);
   3449        memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
   3450                                            &vtd_dev_as->nodmar, 0);
   3451
   3452        vtd_switch_address_space(vtd_dev_as);
   3453    }
   3454    return vtd_dev_as;
   3455}
   3456
   3457/* Unmap the whole range in the notifier's scope. */
   3458static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
   3459{
   3460    hwaddr size, remain;
   3461    hwaddr start = n->start;
   3462    hwaddr end = n->end;
   3463    IntelIOMMUState *s = as->iommu_state;
   3464    DMAMap map;
   3465
   3466    /*
   3467     * Note: all the codes in this function has a assumption that IOVA
   3468     * bits are no more than VTD_MGAW bits (which is restricted by
   3469     * VT-d spec), otherwise we need to consider overflow of 64 bits.
   3470     */
   3471
   3472    if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
   3473        /*
   3474         * Don't need to unmap regions that is bigger than the whole
   3475         * VT-d supported address space size
   3476         */
   3477        end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
   3478    }
   3479
   3480    assert(start <= end);
   3481    size = remain = end - start + 1;
   3482
   3483    while (remain >= VTD_PAGE_SIZE) {
   3484        IOMMUTLBEvent event;
   3485        uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
   3486        uint64_t size = mask + 1;
   3487
   3488        assert(size);
   3489
   3490        event.type = IOMMU_NOTIFIER_UNMAP;
   3491        event.entry.iova = start;
   3492        event.entry.addr_mask = mask;
   3493        event.entry.target_as = &address_space_memory;
   3494        event.entry.perm = IOMMU_NONE;
   3495        /* This field is meaningless for unmap */
   3496        event.entry.translated_addr = 0;
   3497
   3498        memory_region_notify_iommu_one(n, &event);
   3499
   3500        start += size;
   3501        remain -= size;
   3502    }
   3503
   3504    assert(!remain);
   3505
   3506    trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
   3507                             VTD_PCI_SLOT(as->devfn),
   3508                             VTD_PCI_FUNC(as->devfn),
   3509                             n->start, size);
   3510
   3511    map.iova = n->start;
   3512    map.size = size;
   3513    iova_tree_remove(as->iova_tree, &map);
   3514}
   3515
   3516static void vtd_address_space_unmap_all(IntelIOMMUState *s)
   3517{
   3518    VTDAddressSpace *vtd_as;
   3519    IOMMUNotifier *n;
   3520
   3521    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
   3522        IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
   3523            vtd_address_space_unmap(vtd_as, n);
   3524        }
   3525    }
   3526}
   3527
   3528static void vtd_address_space_refresh_all(IntelIOMMUState *s)
   3529{
   3530    vtd_address_space_unmap_all(s);
   3531    vtd_switch_address_space_all(s);
   3532}
   3533
   3534static int vtd_replay_hook(IOMMUTLBEvent *event, void *private)
   3535{
   3536    memory_region_notify_iommu_one(private, event);
   3537    return 0;
   3538}
   3539
   3540static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
   3541{
   3542    VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
   3543    IntelIOMMUState *s = vtd_as->iommu_state;
   3544    uint8_t bus_n = pci_bus_num(vtd_as->bus);
   3545    VTDContextEntry ce;
   3546
   3547    /*
   3548     * The replay can be triggered by either a invalidation or a newly
   3549     * created entry. No matter what, we release existing mappings
   3550     * (it means flushing caches for UNMAP-only registers).
   3551     */
   3552    vtd_address_space_unmap(vtd_as, n);
   3553
   3554    if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
   3555        trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
   3556                                  "legacy mode",
   3557                                  bus_n, PCI_SLOT(vtd_as->devfn),
   3558                                  PCI_FUNC(vtd_as->devfn),
   3559                                  vtd_get_domain_id(s, &ce),
   3560                                  ce.hi, ce.lo);
   3561        if (vtd_as_has_map_notifier(vtd_as)) {
   3562            /* This is required only for MAP typed notifiers */
   3563            vtd_page_walk_info info = {
   3564                .hook_fn = vtd_replay_hook,
   3565                .private = (void *)n,
   3566                .notify_unmap = false,
   3567                .aw = s->aw_bits,
   3568                .as = vtd_as,
   3569                .domain_id = vtd_get_domain_id(s, &ce),
   3570            };
   3571
   3572            vtd_page_walk(s, &ce, 0, ~0ULL, &info);
   3573        }
   3574    } else {
   3575        trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
   3576                                    PCI_FUNC(vtd_as->devfn));
   3577    }
   3578
   3579    return;
   3580}
   3581
   3582/* Do the initialization. It will also be called when reset, so pay
   3583 * attention when adding new initialization stuff.
   3584 */
   3585static void vtd_init(IntelIOMMUState *s)
   3586{
   3587    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
   3588
   3589    memset(s->csr, 0, DMAR_REG_SIZE);
   3590    memset(s->wmask, 0, DMAR_REG_SIZE);
   3591    memset(s->w1cmask, 0, DMAR_REG_SIZE);
   3592    memset(s->womask, 0, DMAR_REG_SIZE);
   3593
   3594    s->root = 0;
   3595    s->root_scalable = false;
   3596    s->dmar_enabled = false;
   3597    s->intr_enabled = false;
   3598    s->iq_head = 0;
   3599    s->iq_tail = 0;
   3600    s->iq = 0;
   3601    s->iq_size = 0;
   3602    s->qi_enabled = false;
   3603    s->iq_last_desc_type = VTD_INV_DESC_NONE;
   3604    s->iq_dw = false;
   3605    s->next_frcd_reg = 0;
   3606    s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
   3607             VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
   3608             VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
   3609    if (s->dma_drain) {
   3610        s->cap |= VTD_CAP_DRAIN;
   3611    }
   3612    if (s->aw_bits == VTD_HOST_AW_48BIT) {
   3613        s->cap |= VTD_CAP_SAGAW_48bit;
   3614    }
   3615    s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
   3616
   3617    /*
   3618     * Rsvd field masks for spte
   3619     */
   3620    vtd_spte_rsvd[0] = ~0ULL;
   3621    vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
   3622                                                  x86_iommu->dt_supported);
   3623    vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
   3624    vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
   3625    vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
   3626
   3627    vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
   3628                                                         x86_iommu->dt_supported);
   3629    vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
   3630                                                         x86_iommu->dt_supported);
   3631
   3632    if (x86_iommu_ir_supported(x86_iommu)) {
   3633        s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
   3634        if (s->intr_eim == ON_OFF_AUTO_ON) {
   3635            s->ecap |= VTD_ECAP_EIM;
   3636        }
   3637        assert(s->intr_eim != ON_OFF_AUTO_AUTO);
   3638    }
   3639
   3640    if (x86_iommu->dt_supported) {
   3641        s->ecap |= VTD_ECAP_DT;
   3642    }
   3643
   3644    if (x86_iommu->pt_supported) {
   3645        s->ecap |= VTD_ECAP_PT;
   3646    }
   3647
   3648    if (s->caching_mode) {
   3649        s->cap |= VTD_CAP_CM;
   3650    }
   3651
   3652    /* TODO: read cap/ecap from host to decide which cap to be exposed. */
   3653    if (s->scalable_mode) {
   3654        s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
   3655    }
   3656
   3657    vtd_reset_caches(s);
   3658
   3659    /* Define registers with default values and bit semantics */
   3660    vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
   3661    vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
   3662    vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
   3663    vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
   3664    vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
   3665    vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
   3666    vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
   3667    vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
   3668    vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
   3669
   3670    /* Advanced Fault Logging not supported */
   3671    vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
   3672    vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
   3673    vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
   3674    vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
   3675
   3676    /* Treated as RsvdZ when EIM in ECAP_REG is not supported
   3677     * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
   3678     */
   3679    vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
   3680
   3681    /* Treated as RO for implementations that PLMR and PHMR fields reported
   3682     * as Clear in the CAP_REG.
   3683     * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
   3684     */
   3685    vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
   3686
   3687    vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
   3688    vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
   3689    vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
   3690    vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
   3691    vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
   3692    vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
   3693    vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
   3694    /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
   3695    vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
   3696
   3697    /* IOTLB registers */
   3698    vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
   3699    vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
   3700    vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
   3701
   3702    /* Fault Recording Registers, 128-bit */
   3703    vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
   3704    vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
   3705
   3706    /*
   3707     * Interrupt remapping registers.
   3708     */
   3709    vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
   3710}
   3711
   3712/* Should not reset address_spaces when reset because devices will still use
   3713 * the address space they got at first (won't ask the bus again).
   3714 */
   3715static void vtd_reset(DeviceState *dev)
   3716{
   3717    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
   3718
   3719    vtd_init(s);
   3720    vtd_address_space_refresh_all(s);
   3721}
   3722
   3723static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
   3724{
   3725    IntelIOMMUState *s = opaque;
   3726    VTDAddressSpace *vtd_as;
   3727
   3728    assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
   3729
   3730    vtd_as = vtd_find_add_as(s, bus, devfn);
   3731    return &vtd_as->as;
   3732}
   3733
   3734static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
   3735{
   3736    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
   3737
   3738    if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
   3739        error_setg(errp, "eim=on cannot be selected without intremap=on");
   3740        return false;
   3741    }
   3742
   3743    if (s->intr_eim == ON_OFF_AUTO_AUTO) {
   3744        s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
   3745                      && x86_iommu_ir_supported(x86_iommu) ?
   3746                                              ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
   3747    }
   3748    if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
   3749        if (!kvm_irqchip_in_kernel()) {
   3750            error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
   3751            return false;
   3752        }
   3753        if (!kvm_enable_x2apic()) {
   3754            error_setg(errp, "eim=on requires support on the KVM side"
   3755                             "(X2APIC_API, first shipped in v4.7)");
   3756            return false;
   3757        }
   3758    }
   3759
   3760    /* Currently only address widths supported are 39 and 48 bits */
   3761    if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
   3762        (s->aw_bits != VTD_HOST_AW_48BIT)) {
   3763        error_setg(errp, "Supported values for aw-bits are: %d, %d",
   3764                   VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
   3765        return false;
   3766    }
   3767
   3768    if (s->scalable_mode && !s->dma_drain) {
   3769        error_setg(errp, "Need to set dma_drain for scalable mode");
   3770        return false;
   3771    }
   3772
   3773    return true;
   3774}
   3775
   3776static int vtd_machine_done_notify_one(Object *child, void *unused)
   3777{
   3778    IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
   3779
   3780    /*
   3781     * We hard-coded here because vfio-pci is the only special case
   3782     * here.  Let's be more elegant in the future when we can, but so
   3783     * far there seems to be no better way.
   3784     */
   3785    if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
   3786        vtd_panic_require_caching_mode();
   3787    }
   3788
   3789    return 0;
   3790}
   3791
   3792static void vtd_machine_done_hook(Notifier *notifier, void *unused)
   3793{
   3794    object_child_foreach_recursive(object_get_root(),
   3795                                   vtd_machine_done_notify_one, NULL);
   3796}
   3797
   3798static Notifier vtd_machine_done_notify = {
   3799    .notify = vtd_machine_done_hook,
   3800};
   3801
   3802static void vtd_realize(DeviceState *dev, Error **errp)
   3803{
   3804    MachineState *ms = MACHINE(qdev_get_machine());
   3805    PCMachineState *pcms = PC_MACHINE(ms);
   3806    X86MachineState *x86ms = X86_MACHINE(ms);
   3807    PCIBus *bus = pcms->bus;
   3808    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
   3809    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
   3810
   3811    x86_iommu->type = TYPE_INTEL;
   3812
   3813    if (!vtd_decide_config(s, errp)) {
   3814        return;
   3815    }
   3816
   3817    QLIST_INIT(&s->vtd_as_with_notifiers);
   3818    qemu_mutex_init(&s->iommu_lock);
   3819    memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
   3820    memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
   3821                          "intel_iommu", DMAR_REG_SIZE);
   3822
   3823    /* Create the shared memory regions by all devices */
   3824    memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
   3825                       UINT64_MAX);
   3826    memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
   3827                          s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
   3828    memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
   3829                             "vtd-sys-alias", get_system_memory(), 0,
   3830                             memory_region_size(get_system_memory()));
   3831    memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
   3832                                        &s->mr_sys_alias, 0);
   3833    memory_region_add_subregion_overlap(&s->mr_nodmar,
   3834                                        VTD_INTERRUPT_ADDR_FIRST,
   3835                                        &s->mr_ir, 1);
   3836
   3837    sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
   3838    /* No corresponding destroy */
   3839    s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
   3840                                     g_free, g_free);
   3841    s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
   3842                                              g_free, g_free);
   3843    vtd_init(s);
   3844    sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
   3845    pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
   3846    /* Pseudo address space under root PCI bus. */
   3847    x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
   3848    qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
   3849}
   3850
   3851static void vtd_class_init(ObjectClass *klass, void *data)
   3852{
   3853    DeviceClass *dc = DEVICE_CLASS(klass);
   3854    X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
   3855
   3856    dc->reset = vtd_reset;
   3857    dc->vmsd = &vtd_vmstate;
   3858    device_class_set_props(dc, vtd_properties);
   3859    dc->hotpluggable = false;
   3860    x86_class->realize = vtd_realize;
   3861    x86_class->int_remap = vtd_int_remap;
   3862    /* Supported by the pc-q35-* machine types */
   3863    dc->user_creatable = true;
   3864    set_bit(DEVICE_CATEGORY_MISC, dc->categories);
   3865    dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
   3866}
   3867
   3868static const TypeInfo vtd_info = {
   3869    .name          = TYPE_INTEL_IOMMU_DEVICE,
   3870    .parent        = TYPE_X86_IOMMU_DEVICE,
   3871    .instance_size = sizeof(IntelIOMMUState),
   3872    .class_init    = vtd_class_init,
   3873};
   3874
   3875static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
   3876                                                     void *data)
   3877{
   3878    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
   3879
   3880    imrc->translate = vtd_iommu_translate;
   3881    imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
   3882    imrc->replay = vtd_iommu_replay;
   3883}
   3884
   3885static const TypeInfo vtd_iommu_memory_region_info = {
   3886    .parent = TYPE_IOMMU_MEMORY_REGION,
   3887    .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
   3888    .class_init = vtd_iommu_memory_region_class_init,
   3889};
   3890
   3891static void vtd_register_types(void)
   3892{
   3893    type_register_static(&vtd_info);
   3894    type_register_static(&vtd_iommu_memory_region_info);
   3895}
   3896
   3897type_init(vtd_register_types)