kvmvapic.c (24719B)
1/* 2 * TPR optimization for 32-bit Windows guests (XP and Server 2003) 3 * 4 * Copyright (C) 2007-2008 Qumranet Technologies 5 * Copyright (C) 2012 Jan Kiszka, Siemens AG 6 * 7 * This work is licensed under the terms of the GNU GPL version 2, or 8 * (at your option) any later version. See the COPYING file in the 9 * top-level directory. 10 */ 11 12#include "qemu/osdep.h" 13#include "qemu/module.h" 14#include "sysemu/sysemu.h" 15#include "sysemu/cpus.h" 16#include "sysemu/hw_accel.h" 17#include "sysemu/kvm.h" 18#include "sysemu/runstate.h" 19#include "hw/i386/apic_internal.h" 20#include "hw/sysbus.h" 21#include "hw/boards.h" 22#include "migration/vmstate.h" 23#include "qom/object.h" 24 25#define VAPIC_IO_PORT 0x7e 26 27#define VAPIC_CPU_SHIFT 7 28 29#define ROM_BLOCK_SIZE 512 30#define ROM_BLOCK_MASK (~(ROM_BLOCK_SIZE - 1)) 31 32typedef enum VAPICMode { 33 VAPIC_INACTIVE = 0, 34 VAPIC_ACTIVE = 1, 35 VAPIC_STANDBY = 2, 36} VAPICMode; 37 38typedef struct VAPICHandlers { 39 uint32_t set_tpr; 40 uint32_t set_tpr_eax; 41 uint32_t get_tpr[8]; 42 uint32_t get_tpr_stack; 43} QEMU_PACKED VAPICHandlers; 44 45typedef struct GuestROMState { 46 char signature[8]; 47 uint32_t vaddr; 48 uint32_t fixup_start; 49 uint32_t fixup_end; 50 uint32_t vapic_vaddr; 51 uint32_t vapic_size; 52 uint32_t vcpu_shift; 53 uint32_t real_tpr_addr; 54 VAPICHandlers up; 55 VAPICHandlers mp; 56} QEMU_PACKED GuestROMState; 57 58struct VAPICROMState { 59 SysBusDevice busdev; 60 MemoryRegion io; 61 MemoryRegion rom; 62 uint32_t state; 63 uint32_t rom_state_paddr; 64 uint32_t rom_state_vaddr; 65 uint32_t vapic_paddr; 66 uint32_t real_tpr_addr; 67 GuestROMState rom_state; 68 size_t rom_size; 69 bool rom_mapped_writable; 70 VMChangeStateEntry *vmsentry; 71}; 72 73#define TYPE_VAPIC "kvmvapic" 74OBJECT_DECLARE_SIMPLE_TYPE(VAPICROMState, VAPIC) 75 76#define TPR_INSTR_ABS_MODRM 0x1 77#define TPR_INSTR_MATCH_MODRM_REG 0x2 78 79typedef struct TPRInstruction { 80 uint8_t opcode; 81 uint8_t modrm_reg; 82 unsigned int flags; 83 TPRAccess access; 84 size_t length; 85 off_t addr_offset; 86} TPRInstruction; 87 88/* must be sorted by length, shortest first */ 89static const TPRInstruction tpr_instr[] = { 90 { /* mov abs to eax */ 91 .opcode = 0xa1, 92 .access = TPR_ACCESS_READ, 93 .length = 5, 94 .addr_offset = 1, 95 }, 96 { /* mov eax to abs */ 97 .opcode = 0xa3, 98 .access = TPR_ACCESS_WRITE, 99 .length = 5, 100 .addr_offset = 1, 101 }, 102 { /* mov r32 to r/m32 */ 103 .opcode = 0x89, 104 .flags = TPR_INSTR_ABS_MODRM, 105 .access = TPR_ACCESS_WRITE, 106 .length = 6, 107 .addr_offset = 2, 108 }, 109 { /* mov r/m32 to r32 */ 110 .opcode = 0x8b, 111 .flags = TPR_INSTR_ABS_MODRM, 112 .access = TPR_ACCESS_READ, 113 .length = 6, 114 .addr_offset = 2, 115 }, 116 { /* push r/m32 */ 117 .opcode = 0xff, 118 .modrm_reg = 6, 119 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG, 120 .access = TPR_ACCESS_READ, 121 .length = 6, 122 .addr_offset = 2, 123 }, 124 { /* mov imm32, r/m32 (c7/0) */ 125 .opcode = 0xc7, 126 .modrm_reg = 0, 127 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG, 128 .access = TPR_ACCESS_WRITE, 129 .length = 10, 130 .addr_offset = 2, 131 }, 132}; 133 134static void read_guest_rom_state(VAPICROMState *s) 135{ 136 cpu_physical_memory_read(s->rom_state_paddr, &s->rom_state, 137 sizeof(GuestROMState)); 138} 139 140static void write_guest_rom_state(VAPICROMState *s) 141{ 142 cpu_physical_memory_write(s->rom_state_paddr, &s->rom_state, 143 sizeof(GuestROMState)); 144} 145 146static void update_guest_rom_state(VAPICROMState *s) 147{ 148 read_guest_rom_state(s); 149 150 s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr); 151 s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT); 152 153 write_guest_rom_state(s); 154} 155 156static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env) 157{ 158 CPUState *cs = env_cpu(env); 159 hwaddr paddr; 160 target_ulong addr; 161 162 if (s->state == VAPIC_ACTIVE) { 163 return 0; 164 } 165 /* 166 * If there is no prior TPR access instruction we could analyze (which is 167 * the case after resume from hibernation), we need to scan the possible 168 * virtual address space for the APIC mapping. 169 */ 170 for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) { 171 paddr = cpu_get_phys_page_debug(cs, addr); 172 if (paddr != APIC_DEFAULT_ADDRESS) { 173 continue; 174 } 175 s->real_tpr_addr = addr + 0x80; 176 update_guest_rom_state(s); 177 return 0; 178 } 179 return -1; 180} 181 182static uint8_t modrm_reg(uint8_t modrm) 183{ 184 return (modrm >> 3) & 7; 185} 186 187static bool is_abs_modrm(uint8_t modrm) 188{ 189 return (modrm & 0xc7) == 0x05; 190} 191 192static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr) 193{ 194 return opcode[0] == instr->opcode && 195 (!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) && 196 (!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) || 197 modrm_reg(opcode[1]) == instr->modrm_reg); 198} 199 200static int evaluate_tpr_instruction(VAPICROMState *s, X86CPU *cpu, 201 target_ulong *pip, TPRAccess access) 202{ 203 CPUState *cs = CPU(cpu); 204 const TPRInstruction *instr; 205 target_ulong ip = *pip; 206 uint8_t opcode[2]; 207 uint32_t real_tpr_addr; 208 int i; 209 210 if ((ip & 0xf0000000ULL) != 0x80000000ULL && 211 (ip & 0xf0000000ULL) != 0xe0000000ULL) { 212 return -1; 213 } 214 215 /* 216 * Early Windows 2003 SMP initialization contains a 217 * 218 * mov imm32, r/m32 219 * 220 * instruction that is patched by TPR optimization. The problem is that 221 * RSP, used by the patched instruction, is zero, so the guest gets a 222 * double fault and dies. 223 */ 224 if (cpu->env.regs[R_ESP] == 0) { 225 return -1; 226 } 227 228 if (kvm_enabled() && !kvm_irqchip_in_kernel()) { 229 /* 230 * KVM without kernel-based TPR access reporting will pass an IP that 231 * points after the accessing instruction. So we need to look backward 232 * to find the reason. 233 */ 234 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) { 235 instr = &tpr_instr[i]; 236 if (instr->access != access) { 237 continue; 238 } 239 if (cpu_memory_rw_debug(cs, ip - instr->length, opcode, 240 sizeof(opcode), 0) < 0) { 241 return -1; 242 } 243 if (opcode_matches(opcode, instr)) { 244 ip -= instr->length; 245 goto instruction_ok; 246 } 247 } 248 return -1; 249 } else { 250 if (cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0) < 0) { 251 return -1; 252 } 253 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) { 254 instr = &tpr_instr[i]; 255 if (opcode_matches(opcode, instr)) { 256 goto instruction_ok; 257 } 258 } 259 return -1; 260 } 261 262instruction_ok: 263 /* 264 * Grab the virtual TPR address from the instruction 265 * and update the cached values. 266 */ 267 if (cpu_memory_rw_debug(cs, ip + instr->addr_offset, 268 (void *)&real_tpr_addr, 269 sizeof(real_tpr_addr), 0) < 0) { 270 return -1; 271 } 272 real_tpr_addr = le32_to_cpu(real_tpr_addr); 273 if ((real_tpr_addr & 0xfff) != 0x80) { 274 return -1; 275 } 276 s->real_tpr_addr = real_tpr_addr; 277 update_guest_rom_state(s); 278 279 *pip = ip; 280 return 0; 281} 282 283static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip) 284{ 285 CPUState *cs = env_cpu(env); 286 hwaddr paddr; 287 uint32_t rom_state_vaddr; 288 uint32_t pos, patch, offset; 289 290 /* nothing to do if already activated */ 291 if (s->state == VAPIC_ACTIVE) { 292 return 0; 293 } 294 295 /* bail out if ROM init code was not executed (missing ROM?) */ 296 if (s->state == VAPIC_INACTIVE) { 297 return -1; 298 } 299 300 /* find out virtual address of the ROM */ 301 rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000); 302 paddr = cpu_get_phys_page_debug(cs, rom_state_vaddr); 303 if (paddr == -1) { 304 return -1; 305 } 306 paddr += rom_state_vaddr & ~TARGET_PAGE_MASK; 307 if (paddr != s->rom_state_paddr) { 308 return -1; 309 } 310 read_guest_rom_state(s); 311 if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) { 312 return -1; 313 } 314 s->rom_state_vaddr = rom_state_vaddr; 315 316 /* fixup addresses in ROM if needed */ 317 if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) { 318 return 0; 319 } 320 for (pos = le32_to_cpu(s->rom_state.fixup_start); 321 pos < le32_to_cpu(s->rom_state.fixup_end); 322 pos += 4) { 323 cpu_physical_memory_read(paddr + pos - s->rom_state.vaddr, 324 &offset, sizeof(offset)); 325 offset = le32_to_cpu(offset); 326 cpu_physical_memory_read(paddr + offset, &patch, sizeof(patch)); 327 patch = le32_to_cpu(patch); 328 patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr); 329 patch = cpu_to_le32(patch); 330 cpu_physical_memory_write(paddr + offset, &patch, sizeof(patch)); 331 } 332 read_guest_rom_state(s); 333 s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) - 334 le32_to_cpu(s->rom_state.vaddr); 335 336 return 0; 337} 338 339/* 340 * Tries to read the unique processor number from the Kernel Processor Control 341 * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR 342 * cannot be accessed or is considered invalid. This also ensures that we are 343 * not patching the wrong guest. 344 */ 345static int get_kpcr_number(X86CPU *cpu) 346{ 347 CPUX86State *env = &cpu->env; 348 struct kpcr { 349 uint8_t fill1[0x1c]; 350 uint32_t self; 351 uint8_t fill2[0x31]; 352 uint8_t number; 353 } QEMU_PACKED kpcr; 354 355 if (cpu_memory_rw_debug(CPU(cpu), env->segs[R_FS].base, 356 (void *)&kpcr, sizeof(kpcr), 0) < 0 || 357 kpcr.self != env->segs[R_FS].base) { 358 return -1; 359 } 360 return kpcr.number; 361} 362 363static int vapic_enable(VAPICROMState *s, X86CPU *cpu) 364{ 365 int cpu_number = get_kpcr_number(cpu); 366 hwaddr vapic_paddr; 367 static const uint8_t enabled = 1; 368 369 if (cpu_number < 0) { 370 return -1; 371 } 372 vapic_paddr = s->vapic_paddr + 373 (((hwaddr)cpu_number) << VAPIC_CPU_SHIFT); 374 cpu_physical_memory_write(vapic_paddr + offsetof(VAPICState, enabled), 375 &enabled, sizeof(enabled)); 376 apic_enable_vapic(cpu->apic_state, vapic_paddr); 377 378 s->state = VAPIC_ACTIVE; 379 380 return 0; 381} 382 383static void patch_byte(X86CPU *cpu, target_ulong addr, uint8_t byte) 384{ 385 cpu_memory_rw_debug(CPU(cpu), addr, &byte, 1, 1); 386} 387 388static void patch_call(X86CPU *cpu, target_ulong ip, uint32_t target) 389{ 390 uint32_t offset; 391 392 offset = cpu_to_le32(target - ip - 5); 393 patch_byte(cpu, ip, 0xe8); /* call near */ 394 cpu_memory_rw_debug(CPU(cpu), ip + 1, (void *)&offset, sizeof(offset), 1); 395} 396 397typedef struct PatchInfo { 398 VAPICHandlers *handler; 399 target_ulong ip; 400} PatchInfo; 401 402static void do_patch_instruction(CPUState *cs, run_on_cpu_data data) 403{ 404 X86CPU *x86_cpu = X86_CPU(cs); 405 PatchInfo *info = (PatchInfo *) data.host_ptr; 406 VAPICHandlers *handlers = info->handler; 407 target_ulong ip = info->ip; 408 uint8_t opcode[2]; 409 uint32_t imm32 = 0; 410 411 cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0); 412 413 switch (opcode[0]) { 414 case 0x89: /* mov r32 to r/m32 */ 415 patch_byte(x86_cpu, ip, 0x50 + modrm_reg(opcode[1])); /* push reg */ 416 patch_call(x86_cpu, ip + 1, handlers->set_tpr); 417 break; 418 case 0x8b: /* mov r/m32 to r32 */ 419 patch_byte(x86_cpu, ip, 0x90); 420 patch_call(x86_cpu, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]); 421 break; 422 case 0xa1: /* mov abs to eax */ 423 patch_call(x86_cpu, ip, handlers->get_tpr[0]); 424 break; 425 case 0xa3: /* mov eax to abs */ 426 patch_call(x86_cpu, ip, handlers->set_tpr_eax); 427 break; 428 case 0xc7: /* mov imm32, r/m32 (c7/0) */ 429 patch_byte(x86_cpu, ip, 0x68); /* push imm32 */ 430 cpu_memory_rw_debug(cs, ip + 6, (void *)&imm32, sizeof(imm32), 0); 431 cpu_memory_rw_debug(cs, ip + 1, (void *)&imm32, sizeof(imm32), 1); 432 patch_call(x86_cpu, ip + 5, handlers->set_tpr); 433 break; 434 case 0xff: /* push r/m32 */ 435 patch_byte(x86_cpu, ip, 0x50); /* push eax */ 436 patch_call(x86_cpu, ip + 1, handlers->get_tpr_stack); 437 break; 438 default: 439 abort(); 440 } 441 442 g_free(info); 443} 444 445static void patch_instruction(VAPICROMState *s, X86CPU *cpu, target_ulong ip) 446{ 447 MachineState *ms = MACHINE(qdev_get_machine()); 448 CPUState *cs = CPU(cpu); 449 VAPICHandlers *handlers; 450 PatchInfo *info; 451 452 if (ms->smp.cpus == 1) { 453 handlers = &s->rom_state.up; 454 } else { 455 handlers = &s->rom_state.mp; 456 } 457 458 info = g_new(PatchInfo, 1); 459 info->handler = handlers; 460 info->ip = ip; 461 462 async_safe_run_on_cpu(cs, do_patch_instruction, RUN_ON_CPU_HOST_PTR(info)); 463} 464 465void vapic_report_tpr_access(DeviceState *dev, CPUState *cs, target_ulong ip, 466 TPRAccess access) 467{ 468 VAPICROMState *s = VAPIC(dev); 469 X86CPU *cpu = X86_CPU(cs); 470 CPUX86State *env = &cpu->env; 471 472 cpu_synchronize_state(cs); 473 474 if (evaluate_tpr_instruction(s, cpu, &ip, access) < 0) { 475 if (s->state == VAPIC_ACTIVE) { 476 vapic_enable(s, cpu); 477 } 478 return; 479 } 480 if (update_rom_mapping(s, env, ip) < 0) { 481 return; 482 } 483 if (vapic_enable(s, cpu) < 0) { 484 return; 485 } 486 patch_instruction(s, cpu, ip); 487} 488 489typedef struct VAPICEnableTPRReporting { 490 DeviceState *apic; 491 bool enable; 492} VAPICEnableTPRReporting; 493 494static void vapic_do_enable_tpr_reporting(CPUState *cpu, run_on_cpu_data data) 495{ 496 VAPICEnableTPRReporting *info = data.host_ptr; 497 apic_enable_tpr_access_reporting(info->apic, info->enable); 498} 499 500static void vapic_enable_tpr_reporting(bool enable) 501{ 502 VAPICEnableTPRReporting info = { 503 .enable = enable, 504 }; 505 CPUState *cs; 506 X86CPU *cpu; 507 508 CPU_FOREACH(cs) { 509 cpu = X86_CPU(cs); 510 info.apic = cpu->apic_state; 511 run_on_cpu(cs, vapic_do_enable_tpr_reporting, RUN_ON_CPU_HOST_PTR(&info)); 512 } 513} 514 515static void vapic_reset(DeviceState *dev) 516{ 517 VAPICROMState *s = VAPIC(dev); 518 519 s->state = VAPIC_INACTIVE; 520 s->rom_state_paddr = 0; 521 vapic_enable_tpr_reporting(false); 522} 523 524/* 525 * Set the IRQ polling hypercalls to the supported variant: 526 * - vmcall if using KVM in-kernel irqchip 527 * - 32-bit VAPIC port write otherwise 528 */ 529static int patch_hypercalls(VAPICROMState *s) 530{ 531 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK; 532 static const uint8_t vmcall_pattern[] = { /* vmcall */ 533 0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1 534 }; 535 static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */ 536 0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e 537 }; 538 uint8_t alternates[2]; 539 const uint8_t *pattern; 540 const uint8_t *patch; 541 off_t pos; 542 uint8_t *rom; 543 544 rom = g_malloc(s->rom_size); 545 cpu_physical_memory_read(rom_paddr, rom, s->rom_size); 546 547 for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) { 548 if (kvm_irqchip_in_kernel()) { 549 pattern = outl_pattern; 550 alternates[0] = outl_pattern[7]; 551 alternates[1] = outl_pattern[7]; 552 patch = &vmcall_pattern[5]; 553 } else { 554 pattern = vmcall_pattern; 555 alternates[0] = vmcall_pattern[7]; 556 alternates[1] = 0xd9; /* AMD's VMMCALL */ 557 patch = &outl_pattern[5]; 558 } 559 if (memcmp(rom + pos, pattern, 7) == 0 && 560 (rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) { 561 cpu_physical_memory_write(rom_paddr + pos + 5, patch, 3); 562 /* 563 * Don't flush the tb here. Under ordinary conditions, the patched 564 * calls are miles away from the current IP. Under malicious 565 * conditions, the guest could trick us to crash. 566 */ 567 } 568 } 569 570 g_free(rom); 571 return 0; 572} 573 574/* 575 * For TCG mode or the time KVM honors read-only memory regions, we need to 576 * enable write access to the option ROM so that variables can be updated by 577 * the guest. 578 */ 579static int vapic_map_rom_writable(VAPICROMState *s) 580{ 581 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK; 582 MemoryRegionSection section; 583 MemoryRegion *as; 584 size_t rom_size; 585 uint8_t *ram; 586 587 as = sysbus_address_space(&s->busdev); 588 589 if (s->rom_mapped_writable) { 590 memory_region_del_subregion(as, &s->rom); 591 object_unparent(OBJECT(&s->rom)); 592 } 593 594 /* grab RAM memory region (region @rom_paddr may still be pc.rom) */ 595 section = memory_region_find(as, 0, 1); 596 597 /* read ROM size from RAM region */ 598 if (rom_paddr + 2 >= memory_region_size(section.mr)) { 599 return -1; 600 } 601 ram = memory_region_get_ram_ptr(section.mr); 602 rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE; 603 if (rom_size == 0) { 604 return -1; 605 } 606 s->rom_size = rom_size; 607 608 /* We need to round to avoid creating subpages 609 * from which we cannot run code. */ 610 rom_size += rom_paddr & ~TARGET_PAGE_MASK; 611 rom_paddr &= TARGET_PAGE_MASK; 612 rom_size = TARGET_PAGE_ALIGN(rom_size); 613 614 memory_region_init_alias(&s->rom, OBJECT(s), "kvmvapic-rom", section.mr, 615 rom_paddr, rom_size); 616 memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000); 617 s->rom_mapped_writable = true; 618 memory_region_unref(section.mr); 619 620 return 0; 621} 622 623static int vapic_prepare(VAPICROMState *s) 624{ 625 if (vapic_map_rom_writable(s) < 0) { 626 return -1; 627 } 628 629 if (patch_hypercalls(s) < 0) { 630 return -1; 631 } 632 633 vapic_enable_tpr_reporting(true); 634 635 return 0; 636} 637 638static void vapic_write(void *opaque, hwaddr addr, uint64_t data, 639 unsigned int size) 640{ 641 VAPICROMState *s = opaque; 642 X86CPU *cpu; 643 CPUX86State *env; 644 hwaddr rom_paddr; 645 646 if (!current_cpu) { 647 return; 648 } 649 650 cpu_synchronize_state(current_cpu); 651 cpu = X86_CPU(current_cpu); 652 env = &cpu->env; 653 654 /* 655 * The VAPIC supports two PIO-based hypercalls, both via port 0x7E. 656 * o 16-bit write access: 657 * Reports the option ROM initialization to the hypervisor. Written 658 * value is the offset of the state structure in the ROM. 659 * o 8-bit write access: 660 * Reactivates the VAPIC after a guest hibernation, i.e. after the 661 * option ROM content has been re-initialized by a guest power cycle. 662 * o 32-bit write access: 663 * Poll for pending IRQs, considering the current VAPIC state. 664 */ 665 switch (size) { 666 case 2: 667 if (s->state == VAPIC_INACTIVE) { 668 rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK; 669 s->rom_state_paddr = rom_paddr + data; 670 671 s->state = VAPIC_STANDBY; 672 } 673 if (vapic_prepare(s) < 0) { 674 s->state = VAPIC_INACTIVE; 675 s->rom_state_paddr = 0; 676 break; 677 } 678 break; 679 case 1: 680 if (kvm_enabled()) { 681 /* 682 * Disable triggering instruction in ROM by writing a NOP. 683 * 684 * We cannot do this in TCG mode as the reported IP is not 685 * accurate. 686 */ 687 pause_all_vcpus(); 688 patch_byte(cpu, env->eip - 2, 0x66); 689 patch_byte(cpu, env->eip - 1, 0x90); 690 resume_all_vcpus(); 691 } 692 693 if (s->state == VAPIC_ACTIVE) { 694 break; 695 } 696 if (update_rom_mapping(s, env, env->eip) < 0) { 697 break; 698 } 699 if (find_real_tpr_addr(s, env) < 0) { 700 break; 701 } 702 vapic_enable(s, cpu); 703 break; 704 default: 705 case 4: 706 if (!kvm_irqchip_in_kernel()) { 707 apic_poll_irq(cpu->apic_state); 708 } 709 break; 710 } 711} 712 713static uint64_t vapic_read(void *opaque, hwaddr addr, unsigned size) 714{ 715 return 0xffffffff; 716} 717 718static const MemoryRegionOps vapic_ops = { 719 .write = vapic_write, 720 .read = vapic_read, 721 .endianness = DEVICE_NATIVE_ENDIAN, 722}; 723 724static void vapic_realize(DeviceState *dev, Error **errp) 725{ 726 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 727 VAPICROMState *s = VAPIC(dev); 728 729 memory_region_init_io(&s->io, OBJECT(s), &vapic_ops, s, "kvmvapic", 2); 730 sysbus_add_io(sbd, VAPIC_IO_PORT, &s->io); 731 sysbus_init_ioports(sbd, VAPIC_IO_PORT, 2); 732 733 option_rom[nb_option_roms].name = "kvmvapic.bin"; 734 option_rom[nb_option_roms].bootindex = -1; 735 nb_option_roms++; 736} 737 738static void do_vapic_enable(CPUState *cs, run_on_cpu_data data) 739{ 740 VAPICROMState *s = data.host_ptr; 741 X86CPU *cpu = X86_CPU(cs); 742 743 static const uint8_t enabled = 1; 744 cpu_physical_memory_write(s->vapic_paddr + offsetof(VAPICState, enabled), 745 &enabled, sizeof(enabled)); 746 apic_enable_vapic(cpu->apic_state, s->vapic_paddr); 747 s->state = VAPIC_ACTIVE; 748} 749 750static void kvmvapic_vm_state_change(void *opaque, bool running, 751 RunState state) 752{ 753 MachineState *ms = MACHINE(qdev_get_machine()); 754 VAPICROMState *s = opaque; 755 uint8_t *zero; 756 757 if (!running) { 758 return; 759 } 760 761 if (s->state == VAPIC_ACTIVE) { 762 if (ms->smp.cpus == 1) { 763 run_on_cpu(first_cpu, do_vapic_enable, RUN_ON_CPU_HOST_PTR(s)); 764 } else { 765 zero = g_malloc0(s->rom_state.vapic_size); 766 cpu_physical_memory_write(s->vapic_paddr, zero, 767 s->rom_state.vapic_size); 768 g_free(zero); 769 } 770 } 771 772 qemu_del_vm_change_state_handler(s->vmsentry); 773 s->vmsentry = NULL; 774} 775 776static int vapic_post_load(void *opaque, int version_id) 777{ 778 VAPICROMState *s = opaque; 779 780 /* 781 * The old implementation of qemu-kvm did not provide the state 782 * VAPIC_STANDBY. Reconstruct it. 783 */ 784 if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) { 785 s->state = VAPIC_STANDBY; 786 } 787 788 if (s->state != VAPIC_INACTIVE) { 789 if (vapic_prepare(s) < 0) { 790 return -1; 791 } 792 } 793 794 if (!s->vmsentry) { 795 s->vmsentry = 796 qemu_add_vm_change_state_handler(kvmvapic_vm_state_change, s); 797 } 798 return 0; 799} 800 801static const VMStateDescription vmstate_handlers = { 802 .name = "kvmvapic-handlers", 803 .version_id = 1, 804 .minimum_version_id = 1, 805 .fields = (VMStateField[]) { 806 VMSTATE_UINT32(set_tpr, VAPICHandlers), 807 VMSTATE_UINT32(set_tpr_eax, VAPICHandlers), 808 VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8), 809 VMSTATE_UINT32(get_tpr_stack, VAPICHandlers), 810 VMSTATE_END_OF_LIST() 811 } 812}; 813 814static const VMStateDescription vmstate_guest_rom = { 815 .name = "kvmvapic-guest-rom", 816 .version_id = 1, 817 .minimum_version_id = 1, 818 .fields = (VMStateField[]) { 819 VMSTATE_UNUSED(8), /* signature */ 820 VMSTATE_UINT32(vaddr, GuestROMState), 821 VMSTATE_UINT32(fixup_start, GuestROMState), 822 VMSTATE_UINT32(fixup_end, GuestROMState), 823 VMSTATE_UINT32(vapic_vaddr, GuestROMState), 824 VMSTATE_UINT32(vapic_size, GuestROMState), 825 VMSTATE_UINT32(vcpu_shift, GuestROMState), 826 VMSTATE_UINT32(real_tpr_addr, GuestROMState), 827 VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers), 828 VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers), 829 VMSTATE_END_OF_LIST() 830 } 831}; 832 833static const VMStateDescription vmstate_vapic = { 834 .name = "kvm-tpr-opt", /* compatible with qemu-kvm VAPIC */ 835 .version_id = 1, 836 .minimum_version_id = 1, 837 .post_load = vapic_post_load, 838 .fields = (VMStateField[]) { 839 VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom, 840 GuestROMState), 841 VMSTATE_UINT32(state, VAPICROMState), 842 VMSTATE_UINT32(real_tpr_addr, VAPICROMState), 843 VMSTATE_UINT32(rom_state_vaddr, VAPICROMState), 844 VMSTATE_UINT32(vapic_paddr, VAPICROMState), 845 VMSTATE_UINT32(rom_state_paddr, VAPICROMState), 846 VMSTATE_END_OF_LIST() 847 } 848}; 849 850static void vapic_class_init(ObjectClass *klass, void *data) 851{ 852 DeviceClass *dc = DEVICE_CLASS(klass); 853 854 dc->reset = vapic_reset; 855 dc->vmsd = &vmstate_vapic; 856 dc->realize = vapic_realize; 857} 858 859static const TypeInfo vapic_type = { 860 .name = TYPE_VAPIC, 861 .parent = TYPE_SYS_BUS_DEVICE, 862 .instance_size = sizeof(VAPICROMState), 863 .class_init = vapic_class_init, 864}; 865 866static void vapic_register(void) 867{ 868 type_register_static(&vapic_type); 869} 870 871type_init(vapic_register);