x86.c (45459B)
1/* 2 * Copyright (c) 2003-2004 Fabrice Bellard 3 * Copyright (c) 2019 Red Hat, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a copy 6 * of this software and associated documentation files (the "Software"), to deal 7 * in the Software without restriction, including without limitation the rights 8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 * copies of the Software, and to permit persons to whom the Software is 10 * furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 21 * THE SOFTWARE. 22 */ 23#include "qemu/osdep.h" 24#include "qemu/error-report.h" 25#include "qemu/option.h" 26#include "qemu/cutils.h" 27#include "qemu/units.h" 28#include "qemu-common.h" 29#include "qemu/datadir.h" 30#include "qapi/error.h" 31#include "qapi/qmp/qerror.h" 32#include "qapi/qapi-visit-common.h" 33#include "qapi/clone-visitor.h" 34#include "qapi/qapi-visit-machine.h" 35#include "qapi/visitor.h" 36#include "sysemu/qtest.h" 37#include "sysemu/whpx.h" 38#include "sysemu/numa.h" 39#include "sysemu/replay.h" 40#include "sysemu/sysemu.h" 41#include "sysemu/cpu-timers.h" 42#include "trace.h" 43 44#include "hw/i386/x86.h" 45#include "target/i386/cpu.h" 46#include "hw/i386/topology.h" 47#include "hw/i386/fw_cfg.h" 48#include "hw/intc/i8259.h" 49#include "hw/rtc/mc146818rtc.h" 50#include "target/i386/sev_i386.h" 51 52#include "hw/acpi/cpu_hotplug.h" 53#include "hw/irq.h" 54#include "hw/nmi.h" 55#include "hw/loader.h" 56#include "multiboot.h" 57#include "elf.h" 58#include "standard-headers/asm-x86/bootparam.h" 59#include CONFIG_DEVICES 60#include "kvm/kvm_i386.h" 61 62/* Physical Address of PVH entry point read from kernel ELF NOTE */ 63static size_t pvh_start_addr; 64 65inline void init_topo_info(X86CPUTopoInfo *topo_info, 66 const X86MachineState *x86ms) 67{ 68 MachineState *ms = MACHINE(x86ms); 69 70 topo_info->dies_per_pkg = ms->smp.dies; 71 topo_info->cores_per_die = ms->smp.cores; 72 topo_info->threads_per_core = ms->smp.threads; 73} 74 75/* 76 * Calculates initial APIC ID for a specific CPU index 77 * 78 * Currently we need to be able to calculate the APIC ID from the CPU index 79 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 80 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 81 * all CPUs up to max_cpus. 82 */ 83uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms, 84 unsigned int cpu_index) 85{ 86 X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms); 87 X86CPUTopoInfo topo_info; 88 uint32_t correct_id; 89 static bool warned; 90 91 init_topo_info(&topo_info, x86ms); 92 93 correct_id = x86_apicid_from_cpu_idx(&topo_info, cpu_index); 94 if (x86mc->compat_apic_id_mode) { 95 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 96 error_report("APIC IDs set in compatibility mode, " 97 "CPU topology won't match the configuration"); 98 warned = true; 99 } 100 return cpu_index; 101 } else { 102 return correct_id; 103 } 104} 105 106 107void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp) 108{ 109 Object *cpu = object_new(MACHINE(x86ms)->cpu_type); 110 111 if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) { 112 goto out; 113 } 114 qdev_realize(DEVICE(cpu), NULL, errp); 115 116out: 117 object_unref(cpu); 118} 119 120void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version) 121{ 122 int i; 123 const CPUArchIdList *possible_cpus; 124 MachineState *ms = MACHINE(x86ms); 125 MachineClass *mc = MACHINE_GET_CLASS(x86ms); 126 127 x86_cpu_set_default_version(default_cpu_version); 128 129 /* 130 * Calculates the limit to CPU APIC ID values 131 * 132 * Limit for the APIC ID value, so that all 133 * CPU APIC IDs are < x86ms->apic_id_limit. 134 * 135 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create(). 136 */ 137 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms, 138 ms->smp.max_cpus - 1) + 1; 139 possible_cpus = mc->possible_cpu_arch_ids(ms); 140 for (i = 0; i < ms->smp.cpus; i++) { 141 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal); 142 } 143} 144 145void x86_rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count) 146{ 147 if (cpus_count > 0xff) { 148 /* 149 * If the number of CPUs can't be represented in 8 bits, the 150 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 151 * to make old BIOSes fail more predictably. 152 */ 153 rtc_set_memory(rtc, 0x5f, 0); 154 } else { 155 rtc_set_memory(rtc, 0x5f, cpus_count - 1); 156 } 157} 158 159static int x86_apic_cmp(const void *a, const void *b) 160{ 161 CPUArchId *apic_a = (CPUArchId *)a; 162 CPUArchId *apic_b = (CPUArchId *)b; 163 164 return apic_a->arch_id - apic_b->arch_id; 165} 166 167/* 168 * returns pointer to CPUArchId descriptor that matches CPU's apic_id 169 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 170 * entry corresponding to CPU's apic_id returns NULL. 171 */ 172CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 173{ 174 CPUArchId apic_id, *found_cpu; 175 176 apic_id.arch_id = id; 177 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 178 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 179 x86_apic_cmp); 180 if (found_cpu && idx) { 181 *idx = found_cpu - ms->possible_cpus->cpus; 182 } 183 return found_cpu; 184} 185 186void x86_cpu_plug(HotplugHandler *hotplug_dev, 187 DeviceState *dev, Error **errp) 188{ 189 CPUArchId *found_cpu; 190 Error *local_err = NULL; 191 X86CPU *cpu = X86_CPU(dev); 192 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 193 194 if (x86ms->acpi_dev) { 195 hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err); 196 if (local_err) { 197 goto out; 198 } 199 } 200 201 /* increment the number of CPUs */ 202 x86ms->boot_cpus++; 203 if (x86ms->rtc) { 204 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); 205 } 206 if (x86ms->fw_cfg) { 207 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); 208 } 209 210 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); 211 found_cpu->cpu = OBJECT(dev); 212out: 213 error_propagate(errp, local_err); 214} 215 216void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 217 DeviceState *dev, Error **errp) 218{ 219 int idx = -1; 220 X86CPU *cpu = X86_CPU(dev); 221 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 222 223 if (!x86ms->acpi_dev) { 224 error_setg(errp, "CPU hot unplug not supported without ACPI"); 225 return; 226 } 227 228 x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); 229 assert(idx != -1); 230 if (idx == 0) { 231 error_setg(errp, "Boot CPU is unpluggable"); 232 return; 233 } 234 235 hotplug_handler_unplug_request(x86ms->acpi_dev, dev, 236 errp); 237} 238 239void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev, 240 DeviceState *dev, Error **errp) 241{ 242 CPUArchId *found_cpu; 243 Error *local_err = NULL; 244 X86CPU *cpu = X86_CPU(dev); 245 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 246 247 hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err); 248 if (local_err) { 249 goto out; 250 } 251 252 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); 253 found_cpu->cpu = NULL; 254 qdev_unrealize(dev); 255 256 /* decrement the number of CPUs */ 257 x86ms->boot_cpus--; 258 /* Update the number of CPUs in CMOS */ 259 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); 260 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); 261 out: 262 error_propagate(errp, local_err); 263} 264 265void x86_cpu_pre_plug(HotplugHandler *hotplug_dev, 266 DeviceState *dev, Error **errp) 267{ 268 int idx; 269 CPUState *cs; 270 CPUArchId *cpu_slot; 271 X86CPUTopoIDs topo_ids; 272 X86CPU *cpu = X86_CPU(dev); 273 CPUX86State *env = &cpu->env; 274 MachineState *ms = MACHINE(hotplug_dev); 275 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 276 unsigned int smp_cores = ms->smp.cores; 277 unsigned int smp_threads = ms->smp.threads; 278 X86CPUTopoInfo topo_info; 279 280 if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 281 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 282 ms->cpu_type); 283 return; 284 } 285 286 if (x86ms->acpi_dev) { 287 Error *local_err = NULL; 288 289 hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev, 290 &local_err); 291 if (local_err) { 292 error_propagate(errp, local_err); 293 return; 294 } 295 } 296 297 init_topo_info(&topo_info, x86ms); 298 299 env->nr_dies = ms->smp.dies; 300 301 /* 302 * If APIC ID is not set, 303 * set it based on socket/die/core/thread properties. 304 */ 305 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 306 int max_socket = (ms->smp.max_cpus - 1) / 307 smp_threads / smp_cores / ms->smp.dies; 308 309 /* 310 * die-id was optional in QEMU 4.0 and older, so keep it optional 311 * if there's only one die per socket. 312 */ 313 if (cpu->die_id < 0 && ms->smp.dies == 1) { 314 cpu->die_id = 0; 315 } 316 317 if (cpu->socket_id < 0) { 318 error_setg(errp, "CPU socket-id is not set"); 319 return; 320 } else if (cpu->socket_id > max_socket) { 321 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 322 cpu->socket_id, max_socket); 323 return; 324 } 325 if (cpu->die_id < 0) { 326 error_setg(errp, "CPU die-id is not set"); 327 return; 328 } else if (cpu->die_id > ms->smp.dies - 1) { 329 error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u", 330 cpu->die_id, ms->smp.dies - 1); 331 return; 332 } 333 if (cpu->core_id < 0) { 334 error_setg(errp, "CPU core-id is not set"); 335 return; 336 } else if (cpu->core_id > (smp_cores - 1)) { 337 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 338 cpu->core_id, smp_cores - 1); 339 return; 340 } 341 if (cpu->thread_id < 0) { 342 error_setg(errp, "CPU thread-id is not set"); 343 return; 344 } else if (cpu->thread_id > (smp_threads - 1)) { 345 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 346 cpu->thread_id, smp_threads - 1); 347 return; 348 } 349 350 topo_ids.pkg_id = cpu->socket_id; 351 topo_ids.die_id = cpu->die_id; 352 topo_ids.core_id = cpu->core_id; 353 topo_ids.smt_id = cpu->thread_id; 354 cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids); 355 } 356 357 cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); 358 if (!cpu_slot) { 359 MachineState *ms = MACHINE(x86ms); 360 361 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); 362 error_setg(errp, 363 "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with" 364 " APIC ID %" PRIu32 ", valid index range 0:%d", 365 topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id, 366 cpu->apic_id, ms->possible_cpus->len - 1); 367 return; 368 } 369 370 if (cpu_slot->cpu) { 371 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 372 idx, cpu->apic_id); 373 return; 374 } 375 376 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 377 * so that machine_query_hotpluggable_cpus would show correct values 378 */ 379 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 380 * once -smp refactoring is complete and there will be CPU private 381 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 382 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); 383 if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) { 384 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 385 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, 386 topo_ids.pkg_id); 387 return; 388 } 389 cpu->socket_id = topo_ids.pkg_id; 390 391 if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) { 392 error_setg(errp, "property die-id: %u doesn't match set apic-id:" 393 " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id); 394 return; 395 } 396 cpu->die_id = topo_ids.die_id; 397 398 if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) { 399 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 400 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, 401 topo_ids.core_id); 402 return; 403 } 404 cpu->core_id = topo_ids.core_id; 405 406 if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) { 407 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 408 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, 409 topo_ids.smt_id); 410 return; 411 } 412 cpu->thread_id = topo_ids.smt_id; 413 414 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && 415 !kvm_hv_vpindex_settable()) { 416 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); 417 return; 418 } 419 420 cs = CPU(cpu); 421 cs->cpu_index = idx; 422 423 numa_cpu_pre_plug(cpu_slot, dev, errp); 424} 425 426CpuInstanceProperties 427x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 428{ 429 MachineClass *mc = MACHINE_GET_CLASS(ms); 430 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 431 432 assert(cpu_index < possible_cpus->len); 433 return possible_cpus->cpus[cpu_index].props; 434} 435 436int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx) 437{ 438 X86CPUTopoIDs topo_ids; 439 X86MachineState *x86ms = X86_MACHINE(ms); 440 X86CPUTopoInfo topo_info; 441 442 init_topo_info(&topo_info, x86ms); 443 444 assert(idx < ms->possible_cpus->len); 445 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, 446 &topo_info, &topo_ids); 447 return topo_ids.pkg_id % ms->numa_state->num_nodes; 448} 449 450const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms) 451{ 452 X86MachineState *x86ms = X86_MACHINE(ms); 453 unsigned int max_cpus = ms->smp.max_cpus; 454 X86CPUTopoInfo topo_info; 455 int i; 456 457 if (ms->possible_cpus) { 458 /* 459 * make sure that max_cpus hasn't changed since the first use, i.e. 460 * -smp hasn't been parsed after it 461 */ 462 assert(ms->possible_cpus->len == max_cpus); 463 return ms->possible_cpus; 464 } 465 466 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 467 sizeof(CPUArchId) * max_cpus); 468 ms->possible_cpus->len = max_cpus; 469 470 init_topo_info(&topo_info, x86ms); 471 472 for (i = 0; i < ms->possible_cpus->len; i++) { 473 X86CPUTopoIDs topo_ids; 474 475 ms->possible_cpus->cpus[i].type = ms->cpu_type; 476 ms->possible_cpus->cpus[i].vcpus_count = 1; 477 ms->possible_cpus->cpus[i].arch_id = 478 x86_cpu_apic_id_from_index(x86ms, i); 479 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, 480 &topo_info, &topo_ids); 481 ms->possible_cpus->cpus[i].props.has_socket_id = true; 482 ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id; 483 if (ms->smp.dies > 1) { 484 ms->possible_cpus->cpus[i].props.has_die_id = true; 485 ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id; 486 } 487 ms->possible_cpus->cpus[i].props.has_core_id = true; 488 ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id; 489 ms->possible_cpus->cpus[i].props.has_thread_id = true; 490 ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id; 491 } 492 return ms->possible_cpus; 493} 494 495static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 496{ 497 /* cpu index isn't used */ 498 CPUState *cs; 499 500 CPU_FOREACH(cs) { 501 X86CPU *cpu = X86_CPU(cs); 502 503 if (!cpu->apic_state) { 504 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 505 } else { 506 apic_deliver_nmi(cpu->apic_state); 507 } 508 } 509} 510 511static long get_file_size(FILE *f) 512{ 513 long where, size; 514 515 /* XXX: on Unix systems, using fstat() probably makes more sense */ 516 517 where = ftell(f); 518 fseek(f, 0, SEEK_END); 519 size = ftell(f); 520 fseek(f, where, SEEK_SET); 521 522 return size; 523} 524 525/* TSC handling */ 526uint64_t cpu_get_tsc(CPUX86State *env) 527{ 528 return cpus_get_elapsed_ticks(); 529} 530 531/* IRQ handling */ 532static void pic_irq_request(void *opaque, int irq, int level) 533{ 534 CPUState *cs = first_cpu; 535 X86CPU *cpu = X86_CPU(cs); 536 537 trace_x86_pic_interrupt(irq, level); 538 if (cpu->apic_state && !kvm_irqchip_in_kernel() && 539 !whpx_apic_in_platform()) { 540 CPU_FOREACH(cs) { 541 cpu = X86_CPU(cs); 542 if (apic_accept_pic_intr(cpu->apic_state)) { 543 apic_deliver_pic_intr(cpu->apic_state, level); 544 } 545 } 546 } else { 547 if (level) { 548 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 549 } else { 550 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 551 } 552 } 553} 554 555qemu_irq x86_allocate_cpu_irq(void) 556{ 557 return qemu_allocate_irq(pic_irq_request, NULL, 0); 558} 559 560int cpu_get_pic_interrupt(CPUX86State *env) 561{ 562 X86CPU *cpu = env_archcpu(env); 563 int intno; 564 565 if (!kvm_irqchip_in_kernel() && !whpx_apic_in_platform()) { 566 intno = apic_get_interrupt(cpu->apic_state); 567 if (intno >= 0) { 568 return intno; 569 } 570 /* read the irq from the PIC */ 571 if (!apic_accept_pic_intr(cpu->apic_state)) { 572 return -1; 573 } 574 } 575 576 intno = pic_read_irq(isa_pic); 577 return intno; 578} 579 580DeviceState *cpu_get_current_apic(void) 581{ 582 if (current_cpu) { 583 X86CPU *cpu = X86_CPU(current_cpu); 584 return cpu->apic_state; 585 } else { 586 return NULL; 587 } 588} 589 590void gsi_handler(void *opaque, int n, int level) 591{ 592 GSIState *s = opaque; 593 594 trace_x86_gsi_interrupt(n, level); 595 switch (n) { 596 case 0 ... ISA_NUM_IRQS - 1: 597 if (s->i8259_irq[n]) { 598 /* Under KVM, Kernel will forward to both PIC and IOAPIC */ 599 qemu_set_irq(s->i8259_irq[n], level); 600 } 601 /* fall through */ 602 case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1: 603 qemu_set_irq(s->ioapic_irq[n], level); 604 break; 605 case IO_APIC_SECONDARY_IRQBASE 606 ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1: 607 qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level); 608 break; 609 } 610} 611 612void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 613{ 614 DeviceState *dev; 615 SysBusDevice *d; 616 unsigned int i; 617 618 assert(parent_name); 619 if (kvm_ioapic_in_kernel()) { 620 dev = qdev_new(TYPE_KVM_IOAPIC); 621 } else { 622 dev = qdev_new(TYPE_IOAPIC); 623 } 624 object_property_add_child(object_resolve_path(parent_name, NULL), 625 "ioapic", OBJECT(dev)); 626 d = SYS_BUS_DEVICE(dev); 627 sysbus_realize_and_unref(d, &error_fatal); 628 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 629 630 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 631 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 632 } 633} 634 635DeviceState *ioapic_init_secondary(GSIState *gsi_state) 636{ 637 DeviceState *dev; 638 SysBusDevice *d; 639 unsigned int i; 640 641 dev = qdev_new(TYPE_IOAPIC); 642 d = SYS_BUS_DEVICE(dev); 643 sysbus_realize_and_unref(d, &error_fatal); 644 sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS); 645 646 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 647 gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i); 648 } 649 return dev; 650} 651 652struct setup_data { 653 uint64_t next; 654 uint32_t type; 655 uint32_t len; 656 uint8_t data[]; 657} __attribute__((packed)); 658 659 660/* 661 * The entry point into the kernel for PVH boot is different from 662 * the native entry point. The PVH entry is defined by the x86/HVM 663 * direct boot ABI and is available in an ELFNOTE in the kernel binary. 664 * 665 * This function is passed to load_elf() when it is called from 666 * load_elfboot() which then additionally checks for an ELF Note of 667 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to 668 * parse the PVH entry address from the ELF Note. 669 * 670 * Due to trickery in elf_opts.h, load_elf() is actually available as 671 * load_elf32() or load_elf64() and this routine needs to be able 672 * to deal with being called as 32 or 64 bit. 673 * 674 * The address of the PVH entry point is saved to the 'pvh_start_addr' 675 * global variable. (although the entry point is 32-bit, the kernel 676 * binary can be either 32-bit or 64-bit). 677 */ 678static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64) 679{ 680 size_t *elf_note_data_addr; 681 682 /* Check if ELF Note header passed in is valid */ 683 if (arg1 == NULL) { 684 return 0; 685 } 686 687 if (is64) { 688 struct elf64_note *nhdr64 = (struct elf64_note *)arg1; 689 uint64_t nhdr_size64 = sizeof(struct elf64_note); 690 uint64_t phdr_align = *(uint64_t *)arg2; 691 uint64_t nhdr_namesz = nhdr64->n_namesz; 692 693 elf_note_data_addr = 694 ((void *)nhdr64) + nhdr_size64 + 695 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 696 697 pvh_start_addr = *elf_note_data_addr; 698 } else { 699 struct elf32_note *nhdr32 = (struct elf32_note *)arg1; 700 uint32_t nhdr_size32 = sizeof(struct elf32_note); 701 uint32_t phdr_align = *(uint32_t *)arg2; 702 uint32_t nhdr_namesz = nhdr32->n_namesz; 703 704 elf_note_data_addr = 705 ((void *)nhdr32) + nhdr_size32 + 706 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 707 708 pvh_start_addr = *(uint32_t *)elf_note_data_addr; 709 } 710 711 return pvh_start_addr; 712} 713 714static bool load_elfboot(const char *kernel_filename, 715 int kernel_file_size, 716 uint8_t *header, 717 size_t pvh_xen_start_addr, 718 FWCfgState *fw_cfg) 719{ 720 uint32_t flags = 0; 721 uint32_t mh_load_addr = 0; 722 uint32_t elf_kernel_size = 0; 723 uint64_t elf_entry; 724 uint64_t elf_low, elf_high; 725 int kernel_size; 726 727 if (ldl_p(header) != 0x464c457f) { 728 return false; /* no elfboot */ 729 } 730 731 bool elf_is64 = header[EI_CLASS] == ELFCLASS64; 732 flags = elf_is64 ? 733 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags; 734 735 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */ 736 error_report("elfboot unsupported flags = %x", flags); 737 exit(1); 738 } 739 740 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY; 741 kernel_size = load_elf(kernel_filename, read_pvh_start_addr, 742 NULL, &elf_note_type, &elf_entry, 743 &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE, 744 0, 0); 745 746 if (kernel_size < 0) { 747 error_report("Error while loading elf kernel"); 748 exit(1); 749 } 750 mh_load_addr = elf_low; 751 elf_kernel_size = elf_high - elf_low; 752 753 if (pvh_start_addr == 0) { 754 error_report("Error loading uncompressed kernel without PVH ELF Note"); 755 exit(1); 756 } 757 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr); 758 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); 759 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size); 760 761 return true; 762} 763 764void x86_load_linux(X86MachineState *x86ms, 765 FWCfgState *fw_cfg, 766 int acpi_data_size, 767 bool pvh_enabled, 768 bool linuxboot_dma_enabled) 769{ 770 uint16_t protocol; 771 int setup_size, kernel_size, cmdline_size; 772 int dtb_size, setup_data_offset; 773 uint32_t initrd_max; 774 uint8_t header[8192], *setup, *kernel; 775 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 776 FILE *f; 777 char *vmode; 778 MachineState *machine = MACHINE(x86ms); 779 struct setup_data *setup_data; 780 const char *kernel_filename = machine->kernel_filename; 781 const char *initrd_filename = machine->initrd_filename; 782 const char *dtb_filename = machine->dtb; 783 const char *kernel_cmdline = machine->kernel_cmdline; 784 SevKernelLoaderContext sev_load_ctx = {}; 785 786 /* Align to 16 bytes as a paranoia measure */ 787 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15; 788 789 /* load the kernel header */ 790 f = fopen(kernel_filename, "rb"); 791 if (!f) { 792 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n", 793 kernel_filename, strerror(errno)); 794 exit(1); 795 } 796 797 kernel_size = get_file_size(f); 798 if (!kernel_size || 799 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 800 MIN(ARRAY_SIZE(header), kernel_size)) { 801 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 802 kernel_filename, strerror(errno)); 803 exit(1); 804 } 805 806 /* kernel protocol version */ 807 if (ldl_p(header + 0x202) == 0x53726448) { 808 protocol = lduw_p(header + 0x206); 809 } else { 810 /* 811 * This could be a multiboot kernel. If it is, let's stop treating it 812 * like a Linux kernel. 813 * Note: some multiboot images could be in the ELF format (the same of 814 * PVH), so we try multiboot first since we check the multiboot magic 815 * header before to load it. 816 */ 817 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 818 kernel_cmdline, kernel_size, header)) { 819 return; 820 } 821 /* 822 * Check if the file is an uncompressed kernel file (ELF) and load it, 823 * saving the PVH entry point used by the x86/HVM direct boot ABI. 824 * If load_elfboot() is successful, populate the fw_cfg info. 825 */ 826 if (pvh_enabled && 827 load_elfboot(kernel_filename, kernel_size, 828 header, pvh_start_addr, fw_cfg)) { 829 fclose(f); 830 831 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 832 strlen(kernel_cmdline) + 1); 833 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 834 835 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header)); 836 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, 837 header, sizeof(header)); 838 839 /* load initrd */ 840 if (initrd_filename) { 841 GMappedFile *mapped_file; 842 gsize initrd_size; 843 gchar *initrd_data; 844 GError *gerr = NULL; 845 846 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 847 if (!mapped_file) { 848 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 849 initrd_filename, gerr->message); 850 exit(1); 851 } 852 x86ms->initrd_mapped_file = mapped_file; 853 854 initrd_data = g_mapped_file_get_contents(mapped_file); 855 initrd_size = g_mapped_file_get_length(mapped_file); 856 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 857 if (initrd_size >= initrd_max) { 858 fprintf(stderr, "qemu: initrd is too large, cannot support." 859 "(max: %"PRIu32", need %"PRId64")\n", 860 initrd_max, (uint64_t)initrd_size); 861 exit(1); 862 } 863 864 initrd_addr = (initrd_max - initrd_size) & ~4095; 865 866 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 867 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 868 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, 869 initrd_size); 870 } 871 872 option_rom[nb_option_roms].bootindex = 0; 873 option_rom[nb_option_roms].name = "pvh.bin"; 874 nb_option_roms++; 875 876 return; 877 } 878 protocol = 0; 879 } 880 881 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 882 /* Low kernel */ 883 real_addr = 0x90000; 884 cmdline_addr = 0x9a000 - cmdline_size; 885 prot_addr = 0x10000; 886 } else if (protocol < 0x202) { 887 /* High but ancient kernel */ 888 real_addr = 0x90000; 889 cmdline_addr = 0x9a000 - cmdline_size; 890 prot_addr = 0x100000; 891 } else { 892 /* High and recent kernel */ 893 real_addr = 0x10000; 894 cmdline_addr = 0x20000; 895 prot_addr = 0x100000; 896 } 897 898 /* highest address for loading the initrd */ 899 if (protocol >= 0x20c && 900 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) { 901 /* 902 * Linux has supported initrd up to 4 GB for a very long time (2007, 903 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013), 904 * though it only sets initrd_max to 2 GB to "work around bootloader 905 * bugs". Luckily, QEMU firmware(which does something like bootloader) 906 * has supported this. 907 * 908 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can 909 * be loaded into any address. 910 * 911 * In addition, initrd_max is uint32_t simply because QEMU doesn't 912 * support the 64-bit boot protocol (specifically the ext_ramdisk_image 913 * field). 914 * 915 * Therefore here just limit initrd_max to UINT32_MAX simply as well. 916 */ 917 initrd_max = UINT32_MAX; 918 } else if (protocol >= 0x203) { 919 initrd_max = ldl_p(header + 0x22c); 920 } else { 921 initrd_max = 0x37ffffff; 922 } 923 924 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) { 925 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 926 } 927 928 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 929 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); 930 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 931 sev_load_ctx.cmdline_data = (char *)kernel_cmdline; 932 sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1; 933 934 if (protocol >= 0x202) { 935 stl_p(header + 0x228, cmdline_addr); 936 } else { 937 stw_p(header + 0x20, 0xA33F); 938 stw_p(header + 0x22, cmdline_addr - real_addr); 939 } 940 941 /* handle vga= parameter */ 942 vmode = strstr(kernel_cmdline, "vga="); 943 if (vmode) { 944 unsigned int video_mode; 945 const char *end; 946 int ret; 947 /* skip "vga=" */ 948 vmode += 4; 949 if (!strncmp(vmode, "normal", 6)) { 950 video_mode = 0xffff; 951 } else if (!strncmp(vmode, "ext", 3)) { 952 video_mode = 0xfffe; 953 } else if (!strncmp(vmode, "ask", 3)) { 954 video_mode = 0xfffd; 955 } else { 956 ret = qemu_strtoui(vmode, &end, 0, &video_mode); 957 if (ret != 0 || (*end && *end != ' ')) { 958 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n"); 959 exit(1); 960 } 961 } 962 stw_p(header + 0x1fa, video_mode); 963 } 964 965 /* loader type */ 966 /* 967 * High nybble = B reserved for QEMU; low nybble is revision number. 968 * If this code is substantially changed, you may want to consider 969 * incrementing the revision. 970 */ 971 if (protocol >= 0x200) { 972 header[0x210] = 0xB0; 973 } 974 /* heap */ 975 if (protocol >= 0x201) { 976 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 977 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200); 978 } 979 980 /* load initrd */ 981 if (initrd_filename) { 982 GMappedFile *mapped_file; 983 gsize initrd_size; 984 gchar *initrd_data; 985 GError *gerr = NULL; 986 987 if (protocol < 0x200) { 988 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 989 exit(1); 990 } 991 992 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 993 if (!mapped_file) { 994 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 995 initrd_filename, gerr->message); 996 exit(1); 997 } 998 x86ms->initrd_mapped_file = mapped_file; 999 1000 initrd_data = g_mapped_file_get_contents(mapped_file); 1001 initrd_size = g_mapped_file_get_length(mapped_file); 1002 if (initrd_size >= initrd_max) { 1003 fprintf(stderr, "qemu: initrd is too large, cannot support." 1004 "(max: %"PRIu32", need %"PRId64")\n", 1005 initrd_max, (uint64_t)initrd_size); 1006 exit(1); 1007 } 1008 1009 initrd_addr = (initrd_max - initrd_size) & ~4095; 1010 1011 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 1012 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 1013 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 1014 sev_load_ctx.initrd_data = initrd_data; 1015 sev_load_ctx.initrd_size = initrd_size; 1016 1017 stl_p(header + 0x218, initrd_addr); 1018 stl_p(header + 0x21c, initrd_size); 1019 } 1020 1021 /* load kernel and setup */ 1022 setup_size = header[0x1f1]; 1023 if (setup_size == 0) { 1024 setup_size = 4; 1025 } 1026 setup_size = (setup_size + 1) * 512; 1027 if (setup_size > kernel_size) { 1028 fprintf(stderr, "qemu: invalid kernel header\n"); 1029 exit(1); 1030 } 1031 kernel_size -= setup_size; 1032 1033 setup = g_malloc(setup_size); 1034 kernel = g_malloc(kernel_size); 1035 fseek(f, 0, SEEK_SET); 1036 if (fread(setup, 1, setup_size, f) != setup_size) { 1037 fprintf(stderr, "fread() failed\n"); 1038 exit(1); 1039 } 1040 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 1041 fprintf(stderr, "fread() failed\n"); 1042 exit(1); 1043 } 1044 fclose(f); 1045 1046 /* append dtb to kernel */ 1047 if (dtb_filename) { 1048 if (protocol < 0x209) { 1049 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1050 exit(1); 1051 } 1052 1053 dtb_size = get_image_size(dtb_filename); 1054 if (dtb_size <= 0) { 1055 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1056 dtb_filename, strerror(errno)); 1057 exit(1); 1058 } 1059 1060 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 1061 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 1062 kernel = g_realloc(kernel, kernel_size); 1063 1064 stq_p(header + 0x250, prot_addr + setup_data_offset); 1065 1066 setup_data = (struct setup_data *)(kernel + setup_data_offset); 1067 setup_data->next = 0; 1068 setup_data->type = cpu_to_le32(SETUP_DTB); 1069 setup_data->len = cpu_to_le32(dtb_size); 1070 1071 load_image_size(dtb_filename, setup_data->data, dtb_size); 1072 } 1073 1074 /* 1075 * If we're starting an encrypted VM, it will be OVMF based, which uses the 1076 * efi stub for booting and doesn't require any values to be placed in the 1077 * kernel header. We therefore don't update the header so the hash of the 1078 * kernel on the other side of the fw_cfg interface matches the hash of the 1079 * file the user passed in. 1080 */ 1081 if (!sev_enabled()) { 1082 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1083 } 1084 1085 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1086 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1087 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1088 sev_load_ctx.kernel_data = (char *)kernel; 1089 sev_load_ctx.kernel_size = kernel_size; 1090 1091 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1092 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1093 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1094 sev_load_ctx.setup_data = (char *)setup; 1095 sev_load_ctx.setup_size = setup_size; 1096 1097 if (sev_enabled()) { 1098 sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal); 1099 } 1100 1101 option_rom[nb_option_roms].bootindex = 0; 1102 option_rom[nb_option_roms].name = "linuxboot.bin"; 1103 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 1104 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1105 } 1106 nb_option_roms++; 1107} 1108 1109void x86_bios_rom_init(MachineState *ms, const char *default_firmware, 1110 MemoryRegion *rom_memory, bool isapc_ram_fw) 1111{ 1112 const char *bios_name; 1113 char *filename; 1114 MemoryRegion *bios, *isa_bios; 1115 int bios_size, isa_bios_size; 1116 int ret; 1117 1118 /* BIOS load */ 1119 bios_name = ms->firmware ?: default_firmware; 1120 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1121 if (filename) { 1122 bios_size = get_image_size(filename); 1123 } else { 1124 bios_size = -1; 1125 } 1126 if (bios_size <= 0 || 1127 (bios_size % 65536) != 0) { 1128 goto bios_error; 1129 } 1130 bios = g_malloc(sizeof(*bios)); 1131 memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal); 1132 if (!isapc_ram_fw) { 1133 memory_region_set_readonly(bios, true); 1134 } 1135 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1); 1136 if (ret != 0) { 1137 bios_error: 1138 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name); 1139 exit(1); 1140 } 1141 g_free(filename); 1142 1143 /* map the last 128KB of the BIOS in ISA space */ 1144 isa_bios_size = MIN(bios_size, 128 * KiB); 1145 isa_bios = g_malloc(sizeof(*isa_bios)); 1146 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios, 1147 bios_size - isa_bios_size, isa_bios_size); 1148 memory_region_add_subregion_overlap(rom_memory, 1149 0x100000 - isa_bios_size, 1150 isa_bios, 1151 1); 1152 if (!isapc_ram_fw) { 1153 memory_region_set_readonly(isa_bios, true); 1154 } 1155 1156 /* map all the bios at the top of memory */ 1157 memory_region_add_subregion(rom_memory, 1158 (uint32_t)(-bios_size), 1159 bios); 1160} 1161 1162bool x86_machine_is_smm_enabled(const X86MachineState *x86ms) 1163{ 1164 bool smm_available = false; 1165 1166 if (x86ms->smm == ON_OFF_AUTO_OFF) { 1167 return false; 1168 } 1169 1170 if (tcg_enabled() || qtest_enabled()) { 1171 smm_available = true; 1172 } else if (kvm_enabled()) { 1173 smm_available = kvm_has_smm(); 1174 } 1175 1176 if (smm_available) { 1177 return true; 1178 } 1179 1180 if (x86ms->smm == ON_OFF_AUTO_ON) { 1181 error_report("System Management Mode not supported by this hypervisor."); 1182 exit(1); 1183 } 1184 return false; 1185} 1186 1187static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name, 1188 void *opaque, Error **errp) 1189{ 1190 X86MachineState *x86ms = X86_MACHINE(obj); 1191 OnOffAuto smm = x86ms->smm; 1192 1193 visit_type_OnOffAuto(v, name, &smm, errp); 1194} 1195 1196static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name, 1197 void *opaque, Error **errp) 1198{ 1199 X86MachineState *x86ms = X86_MACHINE(obj); 1200 1201 visit_type_OnOffAuto(v, name, &x86ms->smm, errp); 1202} 1203 1204bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms) 1205{ 1206 if (x86ms->acpi == ON_OFF_AUTO_OFF) { 1207 return false; 1208 } 1209 return true; 1210} 1211 1212static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name, 1213 void *opaque, Error **errp) 1214{ 1215 X86MachineState *x86ms = X86_MACHINE(obj); 1216 OnOffAuto acpi = x86ms->acpi; 1217 1218 visit_type_OnOffAuto(v, name, &acpi, errp); 1219} 1220 1221static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name, 1222 void *opaque, Error **errp) 1223{ 1224 X86MachineState *x86ms = X86_MACHINE(obj); 1225 1226 visit_type_OnOffAuto(v, name, &x86ms->acpi, errp); 1227} 1228 1229static char *x86_machine_get_oem_id(Object *obj, Error **errp) 1230{ 1231 X86MachineState *x86ms = X86_MACHINE(obj); 1232 1233 return g_strdup(x86ms->oem_id); 1234} 1235 1236static void x86_machine_set_oem_id(Object *obj, const char *value, Error **errp) 1237{ 1238 X86MachineState *x86ms = X86_MACHINE(obj); 1239 size_t len = strlen(value); 1240 1241 if (len > 6) { 1242 error_setg(errp, 1243 "User specified "X86_MACHINE_OEM_ID" value is bigger than " 1244 "6 bytes in size"); 1245 return; 1246 } 1247 1248 strncpy(x86ms->oem_id, value, 6); 1249} 1250 1251static char *x86_machine_get_oem_table_id(Object *obj, Error **errp) 1252{ 1253 X86MachineState *x86ms = X86_MACHINE(obj); 1254 1255 return g_strdup(x86ms->oem_table_id); 1256} 1257 1258static void x86_machine_set_oem_table_id(Object *obj, const char *value, 1259 Error **errp) 1260{ 1261 X86MachineState *x86ms = X86_MACHINE(obj); 1262 size_t len = strlen(value); 1263 1264 if (len > 8) { 1265 error_setg(errp, 1266 "User specified "X86_MACHINE_OEM_TABLE_ID 1267 " value is bigger than " 1268 "8 bytes in size"); 1269 return; 1270 } 1271 strncpy(x86ms->oem_table_id, value, 8); 1272} 1273 1274static void x86_machine_get_bus_lock_ratelimit(Object *obj, Visitor *v, 1275 const char *name, void *opaque, Error **errp) 1276{ 1277 X86MachineState *x86ms = X86_MACHINE(obj); 1278 uint64_t bus_lock_ratelimit = x86ms->bus_lock_ratelimit; 1279 1280 visit_type_uint64(v, name, &bus_lock_ratelimit, errp); 1281} 1282 1283static void x86_machine_set_bus_lock_ratelimit(Object *obj, Visitor *v, 1284 const char *name, void *opaque, Error **errp) 1285{ 1286 X86MachineState *x86ms = X86_MACHINE(obj); 1287 1288 visit_type_uint64(v, name, &x86ms->bus_lock_ratelimit, errp); 1289} 1290 1291static void machine_get_sgx_epc(Object *obj, Visitor *v, const char *name, 1292 void *opaque, Error **errp) 1293{ 1294 X86MachineState *x86ms = X86_MACHINE(obj); 1295 SgxEPCList *list = x86ms->sgx_epc_list; 1296 1297 visit_type_SgxEPCList(v, name, &list, errp); 1298} 1299 1300static void machine_set_sgx_epc(Object *obj, Visitor *v, const char *name, 1301 void *opaque, Error **errp) 1302{ 1303 X86MachineState *x86ms = X86_MACHINE(obj); 1304 SgxEPCList *list; 1305 1306 list = x86ms->sgx_epc_list; 1307 visit_type_SgxEPCList(v, name, &x86ms->sgx_epc_list, errp); 1308 1309 qapi_free_SgxEPCList(list); 1310} 1311 1312static void x86_machine_initfn(Object *obj) 1313{ 1314 X86MachineState *x86ms = X86_MACHINE(obj); 1315 1316 x86ms->smm = ON_OFF_AUTO_AUTO; 1317 x86ms->acpi = ON_OFF_AUTO_AUTO; 1318 x86ms->pci_irq_mask = ACPI_BUILD_PCI_IRQS; 1319 x86ms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6); 1320 x86ms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8); 1321 x86ms->bus_lock_ratelimit = 0; 1322} 1323 1324static void x86_machine_class_init(ObjectClass *oc, void *data) 1325{ 1326 MachineClass *mc = MACHINE_CLASS(oc); 1327 X86MachineClass *x86mc = X86_MACHINE_CLASS(oc); 1328 NMIClass *nc = NMI_CLASS(oc); 1329 1330 mc->cpu_index_to_instance_props = x86_cpu_index_to_props; 1331 mc->get_default_cpu_node_id = x86_get_default_cpu_node_id; 1332 mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids; 1333 x86mc->compat_apic_id_mode = false; 1334 x86mc->save_tsc_khz = true; 1335 nc->nmi_monitor_handler = x86_nmi; 1336 1337 object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto", 1338 x86_machine_get_smm, x86_machine_set_smm, 1339 NULL, NULL); 1340 object_class_property_set_description(oc, X86_MACHINE_SMM, 1341 "Enable SMM"); 1342 1343 object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto", 1344 x86_machine_get_acpi, x86_machine_set_acpi, 1345 NULL, NULL); 1346 object_class_property_set_description(oc, X86_MACHINE_ACPI, 1347 "Enable ACPI"); 1348 1349 object_class_property_add_str(oc, X86_MACHINE_OEM_ID, 1350 x86_machine_get_oem_id, 1351 x86_machine_set_oem_id); 1352 object_class_property_set_description(oc, X86_MACHINE_OEM_ID, 1353 "Override the default value of field OEMID " 1354 "in ACPI table header." 1355 "The string may be up to 6 bytes in size"); 1356 1357 1358 object_class_property_add_str(oc, X86_MACHINE_OEM_TABLE_ID, 1359 x86_machine_get_oem_table_id, 1360 x86_machine_set_oem_table_id); 1361 object_class_property_set_description(oc, X86_MACHINE_OEM_TABLE_ID, 1362 "Override the default value of field OEM Table ID " 1363 "in ACPI table header." 1364 "The string may be up to 8 bytes in size"); 1365 1366 object_class_property_add(oc, X86_MACHINE_BUS_LOCK_RATELIMIT, "uint64_t", 1367 x86_machine_get_bus_lock_ratelimit, 1368 x86_machine_set_bus_lock_ratelimit, NULL, NULL); 1369 object_class_property_set_description(oc, X86_MACHINE_BUS_LOCK_RATELIMIT, 1370 "Set the ratelimit for the bus locks acquired in VMs"); 1371 1372 object_class_property_add(oc, "sgx-epc", "SgxEPC", 1373 machine_get_sgx_epc, machine_set_sgx_epc, 1374 NULL, NULL); 1375 object_class_property_set_description(oc, "sgx-epc", 1376 "SGX EPC device"); 1377} 1378 1379static const TypeInfo x86_machine_info = { 1380 .name = TYPE_X86_MACHINE, 1381 .parent = TYPE_MACHINE, 1382 .abstract = true, 1383 .instance_size = sizeof(X86MachineState), 1384 .instance_init = x86_machine_initfn, 1385 .class_size = sizeof(X86MachineClass), 1386 .class_init = x86_machine_class_init, 1387 .interfaces = (InterfaceInfo[]) { 1388 { TYPE_NMI }, 1389 { } 1390 }, 1391}; 1392 1393static void x86_machine_register_types(void) 1394{ 1395 type_register_static(&x86_machine_info); 1396} 1397 1398type_init(x86_machine_register_types)