cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

arm_gic_common.c (13153B)


      1/*
      2 * ARM GIC support - common bits of emulated and KVM kernel model
      3 *
      4 * Copyright (c) 2012 Linaro Limited
      5 * Written by Peter Maydell
      6 *
      7 * This program is free software; you can redistribute it and/or modify
      8 * it under the terms of the GNU General Public License as published by
      9 * the Free Software Foundation, either version 2 of the License, or
     10 * (at your option) any later version.
     11 *
     12 * This program is distributed in the hope that it will be useful,
     13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15 * GNU General Public License for more details.
     16 *
     17 * You should have received a copy of the GNU General Public License along
     18 * with this program; if not, see <http://www.gnu.org/licenses/>.
     19 */
     20
     21#include "qemu/osdep.h"
     22#include "qapi/error.h"
     23#include "qemu/module.h"
     24#include "gic_internal.h"
     25#include "hw/arm/linux-boot-if.h"
     26#include "hw/qdev-properties.h"
     27#include "migration/vmstate.h"
     28
     29static int gic_pre_save(void *opaque)
     30{
     31    GICState *s = (GICState *)opaque;
     32    ARMGICCommonClass *c = ARM_GIC_COMMON_GET_CLASS(s);
     33
     34    if (c->pre_save) {
     35        c->pre_save(s);
     36    }
     37
     38    return 0;
     39}
     40
     41static int gic_post_load(void *opaque, int version_id)
     42{
     43    GICState *s = (GICState *)opaque;
     44    ARMGICCommonClass *c = ARM_GIC_COMMON_GET_CLASS(s);
     45
     46    if (c->post_load) {
     47        c->post_load(s);
     48    }
     49    return 0;
     50}
     51
     52static bool gic_virt_state_needed(void *opaque)
     53{
     54    GICState *s = (GICState *)opaque;
     55
     56    return s->virt_extn;
     57}
     58
     59static const VMStateDescription vmstate_gic_irq_state = {
     60    .name = "arm_gic_irq_state",
     61    .version_id = 1,
     62    .minimum_version_id = 1,
     63    .fields = (VMStateField[]) {
     64        VMSTATE_UINT8(enabled, gic_irq_state),
     65        VMSTATE_UINT8(pending, gic_irq_state),
     66        VMSTATE_UINT8(active, gic_irq_state),
     67        VMSTATE_UINT8(level, gic_irq_state),
     68        VMSTATE_BOOL(model, gic_irq_state),
     69        VMSTATE_BOOL(edge_trigger, gic_irq_state),
     70        VMSTATE_UINT8(group, gic_irq_state),
     71        VMSTATE_END_OF_LIST()
     72    }
     73};
     74
     75static const VMStateDescription vmstate_gic_virt_state = {
     76    .name = "arm_gic_virt_state",
     77    .version_id = 1,
     78    .minimum_version_id = 1,
     79    .needed = gic_virt_state_needed,
     80    .fields = (VMStateField[]) {
     81        /* Virtual interface */
     82        VMSTATE_UINT32_ARRAY(h_hcr, GICState, GIC_NCPU),
     83        VMSTATE_UINT32_ARRAY(h_misr, GICState, GIC_NCPU),
     84        VMSTATE_UINT32_2DARRAY(h_lr, GICState, GIC_MAX_LR, GIC_NCPU),
     85        VMSTATE_UINT32_ARRAY(h_apr, GICState, GIC_NCPU),
     86
     87        /* Virtual CPU interfaces */
     88        VMSTATE_UINT32_SUB_ARRAY(cpu_ctlr, GICState, GIC_NCPU, GIC_NCPU),
     89        VMSTATE_UINT16_SUB_ARRAY(priority_mask, GICState, GIC_NCPU, GIC_NCPU),
     90        VMSTATE_UINT16_SUB_ARRAY(running_priority, GICState, GIC_NCPU, GIC_NCPU),
     91        VMSTATE_UINT16_SUB_ARRAY(current_pending, GICState, GIC_NCPU, GIC_NCPU),
     92        VMSTATE_UINT8_SUB_ARRAY(bpr, GICState, GIC_NCPU, GIC_NCPU),
     93        VMSTATE_UINT8_SUB_ARRAY(abpr, GICState, GIC_NCPU, GIC_NCPU),
     94
     95        VMSTATE_END_OF_LIST()
     96    }
     97};
     98
     99static const VMStateDescription vmstate_gic = {
    100    .name = "arm_gic",
    101    .version_id = 12,
    102    .minimum_version_id = 12,
    103    .pre_save = gic_pre_save,
    104    .post_load = gic_post_load,
    105    .fields = (VMStateField[]) {
    106        VMSTATE_UINT32(ctlr, GICState),
    107        VMSTATE_UINT32_SUB_ARRAY(cpu_ctlr, GICState, 0, GIC_NCPU),
    108        VMSTATE_STRUCT_ARRAY(irq_state, GICState, GIC_MAXIRQ, 1,
    109                             vmstate_gic_irq_state, gic_irq_state),
    110        VMSTATE_UINT8_ARRAY(irq_target, GICState, GIC_MAXIRQ),
    111        VMSTATE_UINT8_2DARRAY(priority1, GICState, GIC_INTERNAL, GIC_NCPU),
    112        VMSTATE_UINT8_ARRAY(priority2, GICState, GIC_MAXIRQ - GIC_INTERNAL),
    113        VMSTATE_UINT8_2DARRAY(sgi_pending, GICState, GIC_NR_SGIS, GIC_NCPU),
    114        VMSTATE_UINT16_SUB_ARRAY(priority_mask, GICState, 0, GIC_NCPU),
    115        VMSTATE_UINT16_SUB_ARRAY(running_priority, GICState, 0, GIC_NCPU),
    116        VMSTATE_UINT16_SUB_ARRAY(current_pending, GICState, 0, GIC_NCPU),
    117        VMSTATE_UINT8_SUB_ARRAY(bpr, GICState, 0, GIC_NCPU),
    118        VMSTATE_UINT8_SUB_ARRAY(abpr, GICState, 0, GIC_NCPU),
    119        VMSTATE_UINT32_2DARRAY(apr, GICState, GIC_NR_APRS, GIC_NCPU),
    120        VMSTATE_UINT32_2DARRAY(nsapr, GICState, GIC_NR_APRS, GIC_NCPU),
    121        VMSTATE_END_OF_LIST()
    122    },
    123    .subsections = (const VMStateDescription * []) {
    124        &vmstate_gic_virt_state,
    125        NULL
    126    }
    127};
    128
    129void gic_init_irqs_and_mmio(GICState *s, qemu_irq_handler handler,
    130                            const MemoryRegionOps *ops,
    131                            const MemoryRegionOps *virt_ops)
    132{
    133    SysBusDevice *sbd = SYS_BUS_DEVICE(s);
    134    int i = s->num_irq - GIC_INTERNAL;
    135
    136    /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
    137     * GPIO array layout is thus:
    138     *  [0..N-1] SPIs
    139     *  [N..N+31] PPIs for CPU 0
    140     *  [N+32..N+63] PPIs for CPU 1
    141     *   ...
    142     */
    143    i += (GIC_INTERNAL * s->num_cpu);
    144    qdev_init_gpio_in(DEVICE(s), handler, i);
    145
    146    for (i = 0; i < s->num_cpu; i++) {
    147        sysbus_init_irq(sbd, &s->parent_irq[i]);
    148    }
    149    for (i = 0; i < s->num_cpu; i++) {
    150        sysbus_init_irq(sbd, &s->parent_fiq[i]);
    151    }
    152    for (i = 0; i < s->num_cpu; i++) {
    153        sysbus_init_irq(sbd, &s->parent_virq[i]);
    154    }
    155    for (i = 0; i < s->num_cpu; i++) {
    156        sysbus_init_irq(sbd, &s->parent_vfiq[i]);
    157    }
    158    if (s->virt_extn) {
    159        for (i = 0; i < s->num_cpu; i++) {
    160            sysbus_init_irq(sbd, &s->maintenance_irq[i]);
    161        }
    162    }
    163
    164    /* Distributor */
    165    memory_region_init_io(&s->iomem, OBJECT(s), ops, s, "gic_dist", 0x1000);
    166    sysbus_init_mmio(sbd, &s->iomem);
    167
    168    /* This is the main CPU interface "for this core". It is always
    169     * present because it is required by both software emulation and KVM.
    170     */
    171    memory_region_init_io(&s->cpuiomem[0], OBJECT(s), ops ? &ops[1] : NULL,
    172                          s, "gic_cpu", s->revision == 2 ? 0x2000 : 0x100);
    173    sysbus_init_mmio(sbd, &s->cpuiomem[0]);
    174
    175    if (s->virt_extn) {
    176        memory_region_init_io(&s->vifaceiomem[0], OBJECT(s), virt_ops,
    177                              s, "gic_viface", 0x1000);
    178        sysbus_init_mmio(sbd, &s->vifaceiomem[0]);
    179
    180        memory_region_init_io(&s->vcpuiomem, OBJECT(s),
    181                              virt_ops ? &virt_ops[1] : NULL,
    182                              s, "gic_vcpu", 0x2000);
    183        sysbus_init_mmio(sbd, &s->vcpuiomem);
    184    }
    185}
    186
    187static void arm_gic_common_realize(DeviceState *dev, Error **errp)
    188{
    189    GICState *s = ARM_GIC_COMMON(dev);
    190    int num_irq = s->num_irq;
    191
    192    if (s->num_cpu > GIC_NCPU) {
    193        error_setg(errp, "requested %u CPUs exceeds GIC maximum %d",
    194                   s->num_cpu, GIC_NCPU);
    195        return;
    196    }
    197    if (s->num_irq > GIC_MAXIRQ) {
    198        error_setg(errp,
    199                   "requested %u interrupt lines exceeds GIC maximum %d",
    200                   num_irq, GIC_MAXIRQ);
    201        return;
    202    }
    203    /* ITLinesNumber is represented as (N / 32) - 1 (see
    204     * gic_dist_readb) so this is an implementation imposed
    205     * restriction, not an architectural one:
    206     */
    207    if (s->num_irq < 32 || (s->num_irq % 32)) {
    208        error_setg(errp,
    209                   "%d interrupt lines unsupported: not divisible by 32",
    210                   num_irq);
    211        return;
    212    }
    213
    214    if (s->security_extn &&
    215        (s->revision == REV_11MPCORE)) {
    216        error_setg(errp, "this GIC revision does not implement "
    217                   "the security extensions");
    218        return;
    219    }
    220
    221    if (s->virt_extn) {
    222        if (s->revision != 2) {
    223            error_setg(errp, "GIC virtualization extensions are only "
    224                       "supported by revision 2");
    225            return;
    226        }
    227
    228        /* For now, set the number of implemented LRs to 4, as found in most
    229         * real GICv2. This could be promoted as a QOM property if we need to
    230         * emulate a variant with another num_lrs.
    231         */
    232        s->num_lrs = 4;
    233    }
    234}
    235
    236static inline void arm_gic_common_reset_irq_state(GICState *s, int first_cpu,
    237                                                  int resetprio)
    238{
    239    int i, j;
    240
    241    for (i = first_cpu; i < first_cpu + s->num_cpu; i++) {
    242        if (s->revision == REV_11MPCORE) {
    243            s->priority_mask[i] = 0xf0;
    244        } else {
    245            s->priority_mask[i] = resetprio;
    246        }
    247        s->current_pending[i] = 1023;
    248        s->running_priority[i] = 0x100;
    249        s->cpu_ctlr[i] = 0;
    250        s->bpr[i] = gic_is_vcpu(i) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
    251        s->abpr[i] = gic_is_vcpu(i) ? GIC_VIRT_MIN_ABPR : GIC_MIN_ABPR;
    252
    253        if (!gic_is_vcpu(i)) {
    254            for (j = 0; j < GIC_INTERNAL; j++) {
    255                s->priority1[j][i] = resetprio;
    256            }
    257            for (j = 0; j < GIC_NR_SGIS; j++) {
    258                s->sgi_pending[j][i] = 0;
    259            }
    260        }
    261    }
    262}
    263
    264static void arm_gic_common_reset(DeviceState *dev)
    265{
    266    GICState *s = ARM_GIC_COMMON(dev);
    267    int i, j;
    268    int resetprio;
    269
    270    /* If we're resetting a TZ-aware GIC as if secure firmware
    271     * had set it up ready to start a kernel in non-secure,
    272     * we need to set interrupt priorities to a "zero for the
    273     * NS view" value. This is particularly critical for the
    274     * priority_mask[] values, because if they are zero then NS
    275     * code cannot ever rewrite the priority to anything else.
    276     */
    277    if (s->security_extn && s->irq_reset_nonsecure) {
    278        resetprio = 0x80;
    279    } else {
    280        resetprio = 0;
    281    }
    282
    283    memset(s->irq_state, 0, GIC_MAXIRQ * sizeof(gic_irq_state));
    284    arm_gic_common_reset_irq_state(s, 0, resetprio);
    285
    286    if (s->virt_extn) {
    287        /* vCPU states are stored at indexes GIC_NCPU .. GIC_NCPU+num_cpu.
    288         * The exposed vCPU interface does not have security extensions.
    289         */
    290        arm_gic_common_reset_irq_state(s, GIC_NCPU, 0);
    291    }
    292
    293    for (i = 0; i < GIC_NR_SGIS; i++) {
    294        GIC_DIST_SET_ENABLED(i, ALL_CPU_MASK);
    295        GIC_DIST_SET_EDGE_TRIGGER(i);
    296    }
    297
    298    for (i = 0; i < ARRAY_SIZE(s->priority2); i++) {
    299        s->priority2[i] = resetprio;
    300    }
    301
    302    for (i = 0; i < GIC_MAXIRQ; i++) {
    303        /* For uniprocessor GICs all interrupts always target the sole CPU */
    304        if (s->num_cpu == 1) {
    305            s->irq_target[i] = 1;
    306        } else {
    307            s->irq_target[i] = 0;
    308        }
    309    }
    310    if (s->security_extn && s->irq_reset_nonsecure) {
    311        for (i = 0; i < GIC_MAXIRQ; i++) {
    312            GIC_DIST_SET_GROUP(i, ALL_CPU_MASK);
    313        }
    314    }
    315
    316    if (s->virt_extn) {
    317        for (i = 0; i < s->num_lrs; i++) {
    318            for (j = 0; j < s->num_cpu; j++) {
    319                s->h_lr[i][j] = 0;
    320            }
    321        }
    322
    323        for (i = 0; i < s->num_cpu; i++) {
    324            s->h_hcr[i] = 0;
    325            s->h_misr[i] = 0;
    326        }
    327    }
    328
    329    s->ctlr = 0;
    330}
    331
    332static void arm_gic_common_linux_init(ARMLinuxBootIf *obj,
    333                                      bool secure_boot)
    334{
    335    GICState *s = ARM_GIC_COMMON(obj);
    336
    337    if (s->security_extn && !secure_boot) {
    338        /* We're directly booting a kernel into NonSecure. If this GIC
    339         * implements the security extensions then we must configure it
    340         * to have all the interrupts be NonSecure (this is a job that
    341         * is done by the Secure boot firmware in real hardware, and in
    342         * this mode QEMU is acting as a minimalist firmware-and-bootloader
    343         * equivalent).
    344         */
    345        s->irq_reset_nonsecure = true;
    346    }
    347}
    348
    349static Property arm_gic_common_properties[] = {
    350    DEFINE_PROP_UINT32("num-cpu", GICState, num_cpu, 1),
    351    DEFINE_PROP_UINT32("num-irq", GICState, num_irq, 32),
    352    /* Revision can be 1 or 2 for GIC architecture specification
    353     * versions 1 or 2, or 0 to indicate the legacy 11MPCore GIC.
    354     */
    355    DEFINE_PROP_UINT32("revision", GICState, revision, 1),
    356    /* True if the GIC should implement the security extensions */
    357    DEFINE_PROP_BOOL("has-security-extensions", GICState, security_extn, 0),
    358    /* True if the GIC should implement the virtualization extensions */
    359    DEFINE_PROP_BOOL("has-virtualization-extensions", GICState, virt_extn, 0),
    360    DEFINE_PROP_UINT32("num-priority-bits", GICState, n_prio_bits, 8),
    361    DEFINE_PROP_END_OF_LIST(),
    362};
    363
    364static void arm_gic_common_class_init(ObjectClass *klass, void *data)
    365{
    366    DeviceClass *dc = DEVICE_CLASS(klass);
    367    ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass);
    368
    369    dc->reset = arm_gic_common_reset;
    370    dc->realize = arm_gic_common_realize;
    371    device_class_set_props(dc, arm_gic_common_properties);
    372    dc->vmsd = &vmstate_gic;
    373    albifc->arm_linux_init = arm_gic_common_linux_init;
    374}
    375
    376static const TypeInfo arm_gic_common_type = {
    377    .name = TYPE_ARM_GIC_COMMON,
    378    .parent = TYPE_SYS_BUS_DEVICE,
    379    .instance_size = sizeof(GICState),
    380    .class_size = sizeof(ARMGICCommonClass),
    381    .class_init = arm_gic_common_class_init,
    382    .abstract = true,
    383    .interfaces = (InterfaceInfo []) {
    384        { TYPE_ARM_LINUX_BOOT_IF },
    385        { },
    386    },
    387};
    388
    389static void register_types(void)
    390{
    391    type_register_static(&arm_gic_common_type);
    392}
    393
    394type_init(register_types)