cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

arm_gic_kvm.c (19776B)


      1/*
      2 * ARM Generic Interrupt Controller using KVM in-kernel support
      3 *
      4 * Copyright (c) 2012 Linaro Limited
      5 * Written by Peter Maydell
      6 * Save/Restore logic added by Christoffer Dall.
      7 *
      8 * This program is free software; you can redistribute it and/or modify
      9 * it under the terms of the GNU General Public License as published by
     10 * the Free Software Foundation, either version 2 of the License, or
     11 * (at your option) any later version.
     12 *
     13 * This program is distributed in the hope that it will be useful,
     14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     16 * GNU General Public License for more details.
     17 *
     18 * You should have received a copy of the GNU General Public License along
     19 * with this program; if not, see <http://www.gnu.org/licenses/>.
     20 */
     21
     22#include "qemu/osdep.h"
     23#include "qapi/error.h"
     24#include "qemu/module.h"
     25#include "migration/blocker.h"
     26#include "sysemu/kvm.h"
     27#include "kvm_arm.h"
     28#include "gic_internal.h"
     29#include "vgic_common.h"
     30#include "qom/object.h"
     31
     32#define TYPE_KVM_ARM_GIC "kvm-arm-gic"
     33typedef struct KVMARMGICClass KVMARMGICClass;
     34/* This is reusing the GICState typedef from ARM_GIC_COMMON */
     35DECLARE_OBJ_CHECKERS(GICState, KVMARMGICClass,
     36                     KVM_ARM_GIC, TYPE_KVM_ARM_GIC)
     37
     38struct KVMARMGICClass {
     39    ARMGICCommonClass parent_class;
     40    DeviceRealize parent_realize;
     41    void (*parent_reset)(DeviceState *dev);
     42};
     43
     44void kvm_arm_gic_set_irq(uint32_t num_irq, int irq, int level)
     45{
     46    /* Meaning of the 'irq' parameter:
     47     *  [0..N-1] : external interrupts
     48     *  [N..N+31] : PPI (internal) interrupts for CPU 0
     49     *  [N+32..N+63] : PPI (internal interrupts for CPU 1
     50     *  ...
     51     * Convert this to the kernel's desired encoding, which
     52     * has separate fields in the irq number for type,
     53     * CPU number and interrupt number.
     54     */
     55    int irqtype, cpu;
     56
     57    if (irq < (num_irq - GIC_INTERNAL)) {
     58        /* External interrupt. The kernel numbers these like the GIC
     59         * hardware, with external interrupt IDs starting after the
     60         * internal ones.
     61         */
     62        irqtype = KVM_ARM_IRQ_TYPE_SPI;
     63        cpu = 0;
     64        irq += GIC_INTERNAL;
     65    } else {
     66        /* Internal interrupt: decode into (cpu, interrupt id) */
     67        irqtype = KVM_ARM_IRQ_TYPE_PPI;
     68        irq -= (num_irq - GIC_INTERNAL);
     69        cpu = irq / GIC_INTERNAL;
     70        irq %= GIC_INTERNAL;
     71    }
     72    kvm_arm_set_irq(cpu, irqtype, irq, !!level);
     73}
     74
     75static void kvm_arm_gicv2_set_irq(void *opaque, int irq, int level)
     76{
     77    GICState *s = (GICState *)opaque;
     78
     79    kvm_arm_gic_set_irq(s->num_irq, irq, level);
     80}
     81
     82static bool kvm_arm_gic_can_save_restore(GICState *s)
     83{
     84    return s->dev_fd >= 0;
     85}
     86
     87#define KVM_VGIC_ATTR(offset, cpu) \
     88    ((((uint64_t)(cpu) << KVM_DEV_ARM_VGIC_CPUID_SHIFT) & \
     89      KVM_DEV_ARM_VGIC_CPUID_MASK) | \
     90     (((uint64_t)(offset) << KVM_DEV_ARM_VGIC_OFFSET_SHIFT) & \
     91      KVM_DEV_ARM_VGIC_OFFSET_MASK))
     92
     93static void kvm_gicd_access(GICState *s, int offset, int cpu,
     94                            uint32_t *val, bool write)
     95{
     96    kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
     97                      KVM_VGIC_ATTR(offset, cpu), val, write, &error_abort);
     98}
     99
    100static void kvm_gicc_access(GICState *s, int offset, int cpu,
    101                            uint32_t *val, bool write)
    102{
    103    kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_REGS,
    104                      KVM_VGIC_ATTR(offset, cpu), val, write, &error_abort);
    105}
    106
    107#define for_each_irq_reg(_ctr, _max_irq, _field_width) \
    108    for (_ctr = 0; _ctr < ((_max_irq) / (32 / (_field_width))); _ctr++)
    109
    110/*
    111 * Translate from the in-kernel field for an IRQ value to/from the qemu
    112 * representation.
    113 */
    114typedef void (*vgic_translate_fn)(GICState *s, int irq, int cpu,
    115                                  uint32_t *field, bool to_kernel);
    116
    117/* synthetic translate function used for clear/set registers to completely
    118 * clear a setting using a clear-register before setting the remaining bits
    119 * using a set-register */
    120static void translate_clear(GICState *s, int irq, int cpu,
    121                            uint32_t *field, bool to_kernel)
    122{
    123    if (to_kernel) {
    124        *field = ~0;
    125    } else {
    126        /* does not make sense: qemu model doesn't use set/clear regs */
    127        abort();
    128    }
    129}
    130
    131static void translate_group(GICState *s, int irq, int cpu,
    132                            uint32_t *field, bool to_kernel)
    133{
    134    int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
    135
    136    if (to_kernel) {
    137        *field = GIC_DIST_TEST_GROUP(irq, cm);
    138    } else {
    139        if (*field & 1) {
    140            GIC_DIST_SET_GROUP(irq, cm);
    141        }
    142    }
    143}
    144
    145static void translate_enabled(GICState *s, int irq, int cpu,
    146                              uint32_t *field, bool to_kernel)
    147{
    148    int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
    149
    150    if (to_kernel) {
    151        *field = GIC_DIST_TEST_ENABLED(irq, cm);
    152    } else {
    153        if (*field & 1) {
    154            GIC_DIST_SET_ENABLED(irq, cm);
    155        }
    156    }
    157}
    158
    159static void translate_pending(GICState *s, int irq, int cpu,
    160                              uint32_t *field, bool to_kernel)
    161{
    162    int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
    163
    164    if (to_kernel) {
    165        *field = gic_test_pending(s, irq, cm);
    166    } else {
    167        if (*field & 1) {
    168            GIC_DIST_SET_PENDING(irq, cm);
    169            /* TODO: Capture is level-line is held high in the kernel */
    170        }
    171    }
    172}
    173
    174static void translate_active(GICState *s, int irq, int cpu,
    175                             uint32_t *field, bool to_kernel)
    176{
    177    int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
    178
    179    if (to_kernel) {
    180        *field = GIC_DIST_TEST_ACTIVE(irq, cm);
    181    } else {
    182        if (*field & 1) {
    183            GIC_DIST_SET_ACTIVE(irq, cm);
    184        }
    185    }
    186}
    187
    188static void translate_trigger(GICState *s, int irq, int cpu,
    189                              uint32_t *field, bool to_kernel)
    190{
    191    if (to_kernel) {
    192        *field = (GIC_DIST_TEST_EDGE_TRIGGER(irq)) ? 0x2 : 0x0;
    193    } else {
    194        if (*field & 0x2) {
    195            GIC_DIST_SET_EDGE_TRIGGER(irq);
    196        }
    197    }
    198}
    199
    200static void translate_priority(GICState *s, int irq, int cpu,
    201                               uint32_t *field, bool to_kernel)
    202{
    203    if (to_kernel) {
    204        *field = GIC_DIST_GET_PRIORITY(irq, cpu) & 0xff;
    205    } else {
    206        gic_dist_set_priority(s, cpu, irq,
    207                              *field & 0xff, MEMTXATTRS_UNSPECIFIED);
    208    }
    209}
    210
    211static void translate_targets(GICState *s, int irq, int cpu,
    212                              uint32_t *field, bool to_kernel)
    213{
    214    if (to_kernel) {
    215        *field = s->irq_target[irq] & 0xff;
    216    } else {
    217        s->irq_target[irq] = *field & 0xff;
    218    }
    219}
    220
    221static void translate_sgisource(GICState *s, int irq, int cpu,
    222                                uint32_t *field, bool to_kernel)
    223{
    224    if (to_kernel) {
    225        *field = s->sgi_pending[irq][cpu] & 0xff;
    226    } else {
    227        s->sgi_pending[irq][cpu] = *field & 0xff;
    228    }
    229}
    230
    231/* Read a register group from the kernel VGIC */
    232static void kvm_dist_get(GICState *s, uint32_t offset, int width,
    233                         int maxirq, vgic_translate_fn translate_fn)
    234{
    235    uint32_t reg;
    236    int i;
    237    int j;
    238    int irq;
    239    int cpu;
    240    int regsz = 32 / width; /* irqs per kernel register */
    241    uint32_t field;
    242
    243    for_each_irq_reg(i, maxirq, width) {
    244        irq = i * regsz;
    245        cpu = 0;
    246        while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) {
    247            kvm_gicd_access(s, offset, cpu, &reg, false);
    248            for (j = 0; j < regsz; j++) {
    249                field = extract32(reg, j * width, width);
    250                translate_fn(s, irq + j, cpu, &field, false);
    251            }
    252
    253            cpu++;
    254        }
    255        offset += 4;
    256    }
    257}
    258
    259/* Write a register group to the kernel VGIC */
    260static void kvm_dist_put(GICState *s, uint32_t offset, int width,
    261                         int maxirq, vgic_translate_fn translate_fn)
    262{
    263    uint32_t reg;
    264    int i;
    265    int j;
    266    int irq;
    267    int cpu;
    268    int regsz = 32 / width; /* irqs per kernel register */
    269    uint32_t field;
    270
    271    for_each_irq_reg(i, maxirq, width) {
    272        irq = i * regsz;
    273        cpu = 0;
    274        while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) {
    275            reg = 0;
    276            for (j = 0; j < regsz; j++) {
    277                translate_fn(s, irq + j, cpu, &field, true);
    278                reg = deposit32(reg, j * width, width, field);
    279            }
    280            kvm_gicd_access(s, offset, cpu, &reg, true);
    281
    282            cpu++;
    283        }
    284        offset += 4;
    285    }
    286}
    287
    288static void kvm_arm_gic_put(GICState *s)
    289{
    290    uint32_t reg;
    291    int i;
    292    int cpu;
    293    int num_cpu;
    294    int num_irq;
    295
    296    /* Note: We do the restore in a slightly different order than the save
    297     * (where the order doesn't matter and is simply ordered according to the
    298     * register offset values */
    299
    300    /*****************************************************************
    301     * Distributor State
    302     */
    303
    304    /* s->ctlr -> GICD_CTLR */
    305    reg = s->ctlr;
    306    kvm_gicd_access(s, 0x0, 0, &reg, true);
    307
    308    /* Sanity checking on GICD_TYPER and s->num_irq, s->num_cpu */
    309    kvm_gicd_access(s, 0x4, 0, &reg, false);
    310    num_irq = ((reg & 0x1f) + 1) * 32;
    311    num_cpu = ((reg & 0xe0) >> 5) + 1;
    312
    313    if (num_irq < s->num_irq) {
    314            fprintf(stderr, "Restoring %u IRQs, but kernel supports max %d\n",
    315                    s->num_irq, num_irq);
    316            abort();
    317    } else if (num_cpu != s->num_cpu) {
    318            fprintf(stderr, "Restoring %u CPU interfaces, kernel only has %d\n",
    319                    s->num_cpu, num_cpu);
    320            /* Did we not create the VCPUs in the kernel yet? */
    321            abort();
    322    }
    323
    324    /* TODO: Consider checking compatibility with the IIDR ? */
    325
    326    /* irq_state[n].enabled -> GICD_ISENABLERn */
    327    kvm_dist_put(s, 0x180, 1, s->num_irq, translate_clear);
    328    kvm_dist_put(s, 0x100, 1, s->num_irq, translate_enabled);
    329
    330    /* irq_state[n].group -> GICD_IGROUPRn */
    331    kvm_dist_put(s, 0x80, 1, s->num_irq, translate_group);
    332
    333    /* s->irq_target[irq] -> GICD_ITARGETSRn
    334     * (restore targets before pending to ensure the pending state is set on
    335     * the appropriate CPU interfaces in the kernel) */
    336    kvm_dist_put(s, 0x800, 8, s->num_irq, translate_targets);
    337
    338    /* irq_state[n].trigger -> GICD_ICFGRn
    339     * (restore configuration registers before pending IRQs so we treat
    340     * level/edge correctly) */
    341    kvm_dist_put(s, 0xc00, 2, s->num_irq, translate_trigger);
    342
    343    /* irq_state[n].pending + irq_state[n].level -> GICD_ISPENDRn */
    344    kvm_dist_put(s, 0x280, 1, s->num_irq, translate_clear);
    345    kvm_dist_put(s, 0x200, 1, s->num_irq, translate_pending);
    346
    347    /* irq_state[n].active -> GICD_ISACTIVERn */
    348    kvm_dist_put(s, 0x380, 1, s->num_irq, translate_clear);
    349    kvm_dist_put(s, 0x300, 1, s->num_irq, translate_active);
    350
    351
    352    /* s->priorityX[irq] -> ICD_IPRIORITYRn */
    353    kvm_dist_put(s, 0x400, 8, s->num_irq, translate_priority);
    354
    355    /* s->sgi_pending -> ICD_CPENDSGIRn */
    356    kvm_dist_put(s, 0xf10, 8, GIC_NR_SGIS, translate_clear);
    357    kvm_dist_put(s, 0xf20, 8, GIC_NR_SGIS, translate_sgisource);
    358
    359
    360    /*****************************************************************
    361     * CPU Interface(s) State
    362     */
    363
    364    for (cpu = 0; cpu < s->num_cpu; cpu++) {
    365        /* s->cpu_ctlr[cpu] -> GICC_CTLR */
    366        reg = s->cpu_ctlr[cpu];
    367        kvm_gicc_access(s, 0x00, cpu, &reg, true);
    368
    369        /* s->priority_mask[cpu] -> GICC_PMR */
    370        reg = (s->priority_mask[cpu] & 0xff);
    371        kvm_gicc_access(s, 0x04, cpu, &reg, true);
    372
    373        /* s->bpr[cpu] -> GICC_BPR */
    374        reg = (s->bpr[cpu] & 0x7);
    375        kvm_gicc_access(s, 0x08, cpu, &reg, true);
    376
    377        /* s->abpr[cpu] -> GICC_ABPR */
    378        reg = (s->abpr[cpu] & 0x7);
    379        kvm_gicc_access(s, 0x1c, cpu, &reg, true);
    380
    381        /* s->apr[n][cpu] -> GICC_APRn */
    382        for (i = 0; i < 4; i++) {
    383            reg = s->apr[i][cpu];
    384            kvm_gicc_access(s, 0xd0 + i * 4, cpu, &reg, true);
    385        }
    386    }
    387}
    388
    389static void kvm_arm_gic_get(GICState *s)
    390{
    391    uint32_t reg;
    392    int i;
    393    int cpu;
    394
    395    /*****************************************************************
    396     * Distributor State
    397     */
    398
    399    /* GICD_CTLR -> s->ctlr */
    400    kvm_gicd_access(s, 0x0, 0, &reg, false);
    401    s->ctlr = reg;
    402
    403    /* Sanity checking on GICD_TYPER -> s->num_irq, s->num_cpu */
    404    kvm_gicd_access(s, 0x4, 0, &reg, false);
    405    s->num_irq = ((reg & 0x1f) + 1) * 32;
    406    s->num_cpu = ((reg & 0xe0) >> 5) + 1;
    407
    408    if (s->num_irq > GIC_MAXIRQ) {
    409            fprintf(stderr, "Too many IRQs reported from the kernel: %d\n",
    410                    s->num_irq);
    411            abort();
    412    }
    413
    414    /* GICD_IIDR -> ? */
    415    kvm_gicd_access(s, 0x8, 0, &reg, false);
    416
    417    /* Clear all the IRQ settings */
    418    for (i = 0; i < s->num_irq; i++) {
    419        memset(&s->irq_state[i], 0, sizeof(s->irq_state[0]));
    420    }
    421
    422    /* GICD_IGROUPRn -> irq_state[n].group */
    423    kvm_dist_get(s, 0x80, 1, s->num_irq, translate_group);
    424
    425    /* GICD_ISENABLERn -> irq_state[n].enabled */
    426    kvm_dist_get(s, 0x100, 1, s->num_irq, translate_enabled);
    427
    428    /* GICD_ISPENDRn -> irq_state[n].pending + irq_state[n].level */
    429    kvm_dist_get(s, 0x200, 1, s->num_irq, translate_pending);
    430
    431    /* GICD_ISACTIVERn -> irq_state[n].active */
    432    kvm_dist_get(s, 0x300, 1, s->num_irq, translate_active);
    433
    434    /* GICD_ICFRn -> irq_state[n].trigger */
    435    kvm_dist_get(s, 0xc00, 2, s->num_irq, translate_trigger);
    436
    437    /* GICD_IPRIORITYRn -> s->priorityX[irq] */
    438    kvm_dist_get(s, 0x400, 8, s->num_irq, translate_priority);
    439
    440    /* GICD_ITARGETSRn -> s->irq_target[irq] */
    441    kvm_dist_get(s, 0x800, 8, s->num_irq, translate_targets);
    442
    443    /* GICD_CPENDSGIRn -> s->sgi_pending */
    444    kvm_dist_get(s, 0xf10, 8, GIC_NR_SGIS, translate_sgisource);
    445
    446
    447    /*****************************************************************
    448     * CPU Interface(s) State
    449     */
    450
    451    for (cpu = 0; cpu < s->num_cpu; cpu++) {
    452        /* GICC_CTLR -> s->cpu_ctlr[cpu] */
    453        kvm_gicc_access(s, 0x00, cpu, &reg, false);
    454        s->cpu_ctlr[cpu] = reg;
    455
    456        /* GICC_PMR -> s->priority_mask[cpu] */
    457        kvm_gicc_access(s, 0x04, cpu, &reg, false);
    458        s->priority_mask[cpu] = (reg & 0xff);
    459
    460        /* GICC_BPR -> s->bpr[cpu] */
    461        kvm_gicc_access(s, 0x08, cpu, &reg, false);
    462        s->bpr[cpu] = (reg & 0x7);
    463
    464        /* GICC_ABPR -> s->abpr[cpu] */
    465        kvm_gicc_access(s, 0x1c, cpu, &reg, false);
    466        s->abpr[cpu] = (reg & 0x7);
    467
    468        /* GICC_APRn -> s->apr[n][cpu] */
    469        for (i = 0; i < 4; i++) {
    470            kvm_gicc_access(s, 0xd0 + i * 4, cpu, &reg, false);
    471            s->apr[i][cpu] = reg;
    472        }
    473    }
    474}
    475
    476static void kvm_arm_gic_reset(DeviceState *dev)
    477{
    478    GICState *s = ARM_GIC_COMMON(dev);
    479    KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s);
    480
    481    kgc->parent_reset(dev);
    482
    483    if (kvm_arm_gic_can_save_restore(s)) {
    484        kvm_arm_gic_put(s);
    485    }
    486}
    487
    488static void kvm_arm_gic_realize(DeviceState *dev, Error **errp)
    489{
    490    int i;
    491    GICState *s = KVM_ARM_GIC(dev);
    492    KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s);
    493    Error *local_err = NULL;
    494    int ret;
    495
    496    kgc->parent_realize(dev, &local_err);
    497    if (local_err) {
    498        error_propagate(errp, local_err);
    499        return;
    500    }
    501
    502    if (s->security_extn) {
    503        error_setg(errp, "the in-kernel VGIC does not implement the "
    504                   "security extensions");
    505        return;
    506    }
    507
    508    if (s->virt_extn) {
    509        error_setg(errp, "the in-kernel VGIC does not implement the "
    510                   "virtualization extensions");
    511        return;
    512    }
    513
    514    if (!kvm_arm_gic_can_save_restore(s)) {
    515        error_setg(&s->migration_blocker, "This operating system kernel does "
    516                                          "not support vGICv2 migration");
    517        if (migrate_add_blocker(s->migration_blocker, errp) < 0) {
    518            error_free(s->migration_blocker);
    519            return;
    520        }
    521    }
    522
    523    gic_init_irqs_and_mmio(s, kvm_arm_gicv2_set_irq, NULL, NULL);
    524
    525    for (i = 0; i < s->num_irq - GIC_INTERNAL; i++) {
    526        qemu_irq irq = qdev_get_gpio_in(dev, i);
    527        kvm_irqchip_set_qemuirq_gsi(kvm_state, irq, i);
    528    }
    529
    530    /* Try to create the device via the device control API */
    531    s->dev_fd = -1;
    532    ret = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V2, false);
    533    if (ret >= 0) {
    534        s->dev_fd = ret;
    535
    536        /* Newstyle API is used, we may have attributes */
    537        if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0)) {
    538            uint32_t numirqs = s->num_irq;
    539            kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0,
    540                              &numirqs, true, &error_abort);
    541        }
    542        /* Tell the kernel to complete VGIC initialization now */
    543        if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
    544                                  KVM_DEV_ARM_VGIC_CTRL_INIT)) {
    545            kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
    546                              KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true,
    547                              &error_abort);
    548        }
    549    } else if (kvm_check_extension(kvm_state, KVM_CAP_DEVICE_CTRL)) {
    550        error_setg_errno(errp, -ret, "error creating in-kernel VGIC");
    551        error_append_hint(errp,
    552                          "Perhaps the host CPU does not support GICv2?\n");
    553    } else if (ret != -ENODEV && ret != -ENOTSUP) {
    554        /*
    555         * Very ancient kernel without KVM_CAP_DEVICE_CTRL: assume that
    556         * ENODEV or ENOTSUP mean "can't create GICv2 with KVM_CREATE_DEVICE",
    557         * and that we will get a GICv2 via KVM_CREATE_IRQCHIP.
    558         */
    559        error_setg_errno(errp, -ret, "error creating in-kernel VGIC");
    560        return;
    561    }
    562
    563    /* Distributor */
    564    kvm_arm_register_device(&s->iomem,
    565                            (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT)
    566                            | KVM_VGIC_V2_ADDR_TYPE_DIST,
    567                            KVM_DEV_ARM_VGIC_GRP_ADDR,
    568                            KVM_VGIC_V2_ADDR_TYPE_DIST,
    569                            s->dev_fd, 0);
    570    /* CPU interface for current core. Unlike arm_gic, we don't
    571     * provide the "interface for core #N" memory regions, because
    572     * cores with a VGIC don't have those.
    573     */
    574    kvm_arm_register_device(&s->cpuiomem[0],
    575                            (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT)
    576                            | KVM_VGIC_V2_ADDR_TYPE_CPU,
    577                            KVM_DEV_ARM_VGIC_GRP_ADDR,
    578                            KVM_VGIC_V2_ADDR_TYPE_CPU,
    579                            s->dev_fd, 0);
    580
    581    if (kvm_has_gsi_routing()) {
    582        /* set up irq routing */
    583        for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) {
    584            kvm_irqchip_add_irq_route(kvm_state, i, 0, i);
    585        }
    586
    587        kvm_gsi_routing_allowed = true;
    588
    589        kvm_irqchip_commit_routes(kvm_state);
    590    }
    591}
    592
    593static void kvm_arm_gic_class_init(ObjectClass *klass, void *data)
    594{
    595    DeviceClass *dc = DEVICE_CLASS(klass);
    596    ARMGICCommonClass *agcc = ARM_GIC_COMMON_CLASS(klass);
    597    KVMARMGICClass *kgc = KVM_ARM_GIC_CLASS(klass);
    598
    599    agcc->pre_save = kvm_arm_gic_get;
    600    agcc->post_load = kvm_arm_gic_put;
    601    device_class_set_parent_realize(dc, kvm_arm_gic_realize,
    602                                    &kgc->parent_realize);
    603    device_class_set_parent_reset(dc, kvm_arm_gic_reset, &kgc->parent_reset);
    604}
    605
    606static const TypeInfo kvm_arm_gic_info = {
    607    .name = TYPE_KVM_ARM_GIC,
    608    .parent = TYPE_ARM_GIC_COMMON,
    609    .instance_size = sizeof(GICState),
    610    .class_init = kvm_arm_gic_class_init,
    611    .class_size = sizeof(KVMARMGICClass),
    612};
    613
    614static void kvm_arm_gic_register_types(void)
    615{
    616    type_register_static(&kvm_arm_gic_info);
    617}
    618
    619type_init(kvm_arm_gic_register_types)